
115

Chapter 4

Adaptive Ensemble of Gaussian Processes

for Trust Modelling

4.1 Motivation

In chapter 3, we proposed a framework for trust value prediction for future time

slot using Gaussian Process Regression (GPR). We reintroduce here the final

trust equation once again.

(, ,) * (, ,) (1) * (, ,)i d i r iT A c t T A c t T A c t (4.1)

By selecting the value of , Eq. (4.1) can generate a direct trust model or an

indirect trust model or a hybrid of these two. Further we have seen that the

model can be used to calculate the direct trust and indirect trust in a given

context and during the current time slot using Algorithm 3.2 and Algorithm 3.3

respectively. Here we want to use Eq. (4.1) only for either direct trust or indirect

trust based sequential interactions with the service provider. The core of

Algorithm 3.2 and 3.3 is the GPR model. Kernel in GPR is the prior belief about

the structure of data. So the selection of proper kernel in any regression work is

crucial. Further, the trustworthiness of the service provider may change over

time and this makes the kernel selection more challenging. A single GPR model

with a fixed kernel may not be able to capture its dynamic nature properly. For

example, [152] shows that the use of multiple kernels help in determining the

underlying patterns while analyzing the CO2 emission rates (Figure 4.1).

116

Figure 4.1: Prediction of CO2 emissions using a Radial basis function (RBF)

kernel, sum of a RBF kernel and a Linear (Lin) kernel, sum of a Lin kernel to

the product of a RBF kernel and a Periodic (Per) kernel [152]

In the above figure, grey lines show observed CO2 emissions and red lines show

posterior predictions of Gaussian process regressions with different kernels. It

was found that a kernel composed by multiplying a radial basis and periodic

kernel and adding a linear kernel was able to capture the true nature of the data.

Motivated by this observation, we proposed a better method using ensemble

approach for combining different GPR models. We are motivated by the fact

that using a kind of model selection approach we can select the model(s) which

will best predict the future value at a given time.

4.2 GP Kernels

There are different kernels available for Gaussian process [120]. Here we report

some of those kernels used in the machine learning circle and discussed the

structure they represent.

117

4.2.1 Basic kernels and their structures

A kernel is a semi-positive functions of two inputs ', dx x R . Gaussian process

models use kernel to define the prior covariance between any function values.

Many kernels are available, here we discuss commonly used kernels and the

types of structures expressible through them.

Square Exponential Kernel:

The square exponential covariance (SE) function has already been introduced

in Chapter 3, and is also very often referred to as the Gaussian covariance

function given by

2

2

()
(,) * exp()

2
f

x x
k x x

l
 (4.2)

The corresponding Gaussian process will give higher priors to smooth function.

Rational Quadratic Kernel:

The rational quadratic (RQ) covariance function is given by

2

2

()
(,) * (1)

2
f

x x
k x x

l
 (4.3)

When 0 RQ is related to SE kernel. For   it converges to the SE

kernel.

Periodic Kernel:

The periodic (PE) covariance function is given by

2
2

2 ()
(x,x) * exp(sin ())f

x x
k

pl
 (4.4)

where, p is the period.

Linear kernel:

The linear (Lin) covariance function is given by

(,) * ()()fk x x x c x c (4.5)

118

White noise kernel:

The white noise covariance function is given by

 (,) * ()fk x x x x (4.6)

These basic kernels can capture different structures in the input data when they

work alone. The Table 4.1 summarizes the structure each of these kernels

represents

Table 4.1: Commonly used basic kernels for Gaussian Process

4.2.2 Combining kernels

Kernels can be combined to create new ones with different properties. This will

allow us to include as much high-level structure as necessary into our models.

Given two kernels 1(,)k x x and 2(,)k x x , the following will also be valid

kernels.

1 2(,) (,) (,)k x x k x x k x x    (4.7)

1 2(,) (,)* (,)k x x k x x k x x   (4.8)

Multiplying or adding two positive-definite kernels together always results in

another positive definite kernel. Figure 4.2 shows some kernels obtained by

multiplying and adding two basic kernels together. Additive structure

sometimes allows us to make predictions far from the training data i.e.

extrapolation.

119

Figure 4.2. Compositions of basic kernels by addition and multiplication and

the structures that they represent

4.3 Proposed Model

4.3.1 Model Assumption

In the proposed model, we assumed that service user is locked into a situation

of sequential interactions with the service provider. Every time, a service user

has to make a trust value based decision of interaction with the service provider

by taking into account both the dynamic nature and context specific nature of

trust. The trust value can be a direct interaction-based trust value or indirect trust

value generated from the recommendations for other intermediaries. Figure 4.3

shows a typical scenario of sequential interactions.

120

Figure 4.3: Scenario of sequential interactions; (a) first interaction, trust

value is to be predicted from the previous values available in a given time

horizon, (b) second interaction, trust value is predicted by extending time

horizon to the next time spot.

In each interaction, it is required to predict the trust value from a given time

horizon. The lengths of time slot and time horizon are to be fixed by the service

user. The previous value in each time slot can be a direct trust value generated

by using Eq. (3.26) or recommended trust value generated using Eq. (3.33) via

a reputation query. After making an interaction based on the predicted trust

value, the service user will form a fresh opinion about the trustworthiness of the

service provider from the outcomes of the interaction. This opinion will further

be used to select a prediction model suitable for next interaction. Prediction

model and adaptation procedure are explained in the following section.

4.3.2 Trust prediction framework

The prediction of trust value is done by an ensemble of Gaussian Process

Regression models. In section 4.2 we have seen a wide variety of models could

be constructed by adding and multiplying a few base kernels together. However

selecting the right kernel combination is a hard decision. Here we propose a

method in which many GP models work together to increase accuracy in the

prediction of trust value. The conceptual framework of the proposed prediction

model is given in the Figure 4.4

121

Figure 4.4: Framework for ensemble Gaussian Processes

This framework extends our two proposed models in Chapter 3. Similar to

Chapter 3, in data selection phase, the direct trust values or the recommended

trust values from the intermediaries are collected and arranged into a time series

with each observation tagged by its time slot. Then using a fuzzy clustering

technique, the series is clustered into clusters known as regimes, Each regime

represents the similar behavior patterns occurred in the history of evolution of

the trustworthiness values of the service provider. In the extension, instead of

using only one expert for each regime, we used a group of experts trained for

each regime. Each expert in the group is a GPR with a different kernel function.

The reason behind using different GPR is that each of them, when consulted,

will provide different generalization of the regime vectors in each cluster. The

reason is that the clustering algorithm always does not group the regime vectors

perfectly. In other words, two regime vectors in a cluster may still have different

volatility patterns as shown in Figure 4.5. Due to this, a single kernel will

provide only a generalized profile of these different volatility signatures.

Therefore fusing the opinions from more than one expert will provide a better

accuracy in the prediction. The mechanism of fusion is explained in section

4.3.2.1.

Clustering

122

Figure-4.5: Illustration that a regime/cluster may have different regime

vectors each sensitive to a particular dynamic. Each expert will be more

specialize on a particular dynamic.

Based on this view, extensions to prediction model-1 and model-2 are shown in

Figure 4.6 and Figure 4.7. In Figure 4.6, after the regime construction phase,

using the transitions of regimes over time, a Markov transition matrix is

constructed and R groups of P experts in each group are also trained to find

the optimal values of their kernel parameters. In the final prediction step, all the

activities of the prediction phase of our model-1 in chapter-3 are performed.

Through these activities, when a query point is submitted, the Markov matrix

will select one of the regimes and its associated group of experts will then be

consulted to provide an ensemble prediction.

Figure 4.6: Overview of Markov Chain Local Ensemble Predictor Model

123

In figure 4.7, the extension to model-2, will train a Hidden Markov model using

the coarse grain trust time series. The same Baum-Welch method of chapter 3

is used for training the HMM. The only difference is that all the R states are

now subjected to a Gaussian emission probability function in Eq. (4.9)

2
(())*

22

2

1
() e

2

y ft si

si

i

i

s t

s

b y








Xt

 (4.9)

where
* ()

is tf X is the ensemble prediction from the thi state is at time t .

Figure 4.7: Overview of Coarse grained Hidden Markov Ensemble Predictor

Model

During the prediction phase, the extended model will perform the prediction.

All the steps of prediction phase of our model-2 in chatper-3 are used for the

prediction. Only the last step is changed to reflect the ensemble prediction as

follows.

124

Step 3: Prediction of future trust value.

The expert ensemble associated with each state identified by

1 2, ,[.....,]
Rs s sP p p p will predict the future trust value. Finally, the future trust

value is calculated as a weighted average according to Eq. (4.10).

*.
i i

R

final s s

i i

T p f


 (4.10)

Here *is
f is the ensemble prediction obtained from the

thi ensemble

predictor model trained on the adjusted regime is

We now explain the ensemble prediction technique used in both of our extended

models in the following section.

4.3.2.1 Ensemble Prediction

Given a set of data  
1

,
n

i i i
D x y


 , where d

ix R and () ,i iy f x R , we want

to model the input-output relationship by using P Gaussian Processes

 
1

((),)
P

j j j
GP m x


 Each Gaussian process has the mean function ()jm x and

covariance function j .

About a new input *
dx R , the jth-GP model will predict the mean and variance

of the function f using

* *

2 1
* ()

j

T T
j j n j
f k K I y k (4.11)

12
* *, * * *cov() () ()T
j j j j n jf k x x k K I k x (4.12)

where 2 1()j nK I is the predictor vector and 2
j nK I is the gram matrix.

We proposed an ensemble prediction method using multiple kernels. Our

ensemble is a vector of weights for individual kernels. The weight jw is the

125

contribution from the jth-Gaussian process model jm . We define an ensemble

vector as below:

1 2[, ,.......]Pw w w (4.13)

In each prediction session, the ensemble prediction model gives the final

predictive value of the function f at the new point *x as

* *
1

1 P

j j
j

f w f
C

 (4.14)

1

P

j
j

C w (4.15)

where C is the normalizing constant summing the weight of every model in

Since we do not have any prior information, all models are given uniform prior

i.e. we set to ones. This means that all models will participate equally at the

beginning.

We now formulate how the ensemble vector get updated when continuous

prediction at different points are requested. When the jth-model does the

prediction about a new point *
dx R the predicted mean and variance are given

by Eq. (4.11)-(4.12). With these values, the predicted value of the ensemble

will be calculated using Eq. (4.14)-(4.15). Then afterward using ensemble

prediction, our service user will calculate the final trust value using Eq. (4.1)

and takes a decision to or not to interact with the provider.

4.3.2.2 Self Correction of Ensemble Weight

Based on the calculated final trust value, our service consumer interacts with

the Web service provider and the actual value of actual trust will be available,

let us call it ty . On the basis of ty , we can update our ensemble weights in the

following manner.

126

Firstly, for each
thj model in the ensemble, the likelihood is calculated

according to Eq. (4.16).

2
*

* * 22
**

()1
() (, , cov()) exp()

2cov()2 cov()

t j
j t j j

jj

y f
l t l y f f

ff
 (4.16)

Larger the value of ()jl t the better is the
thj model. So Eq. (4.16) provides the

basis for the model selection.

Secondly, the weight jw in the ensemble vector at time t is adjusted as follows

using Eq. (4.17).

1

()
ˆ () (1)

()

j
j j P

i
i

l t
w t w t

l t

 (4.17)

Eq. (4.17) is further normalized to get the final weight jw of the
thj model in

the ensemble vector .

1

ˆ ()
()

ˆ ()

j
j P

ii

w t
w t

w t
 (4.18)

Combining Eq. (4.17) and Eq. (4.18), ()jw t is an effectively exponential

smoothing average of the posterior probability of the
thj model over time.

4.3.2.3 Model Selection

In order to reduce the prediction cost of the GP model, “Sleep and Recovery”

mechanism of [118] is used. At time slot t if the weight calculated using Eq.

(4.18) for the model is less than a threshold, we can temporarily make the model

jm to sleep. So model jm will not participate in the next time slot in the

prediction of the trust value. After several slots, the model jm will be recovered.

The “Sleep and Recovery” mechanism is briefly explained here.

127

A vector of sleep counters 1 2[, ,....,]P is maintained. Each counter value

j specifies how many time slots the model jm would sleep. If the weight jw is

less than a threshold,
1

P
 , we make the model jm sleep. It will recover again

when the number of prediction steps exceeds its counter j . During the recovery

step more than one model may be recovered. If is the number of models

recovered, their respective weights in the ensemble vector are set to
1 *

After normalization, the weights of the recovered models are equal to .

To make the “weaker" predictor sleep longer, the sleep counter j is self-

adaptive during the continuous prediction. First j is initialized as 1, which

means the predictor would only sleep for one step. If after recovery the model

jm goes to sleep immediately in next step, we will double the value of j .

Otherwise, if the predictor successfully avoids the sleep trap, we would

continuously halve the value of j at very prediction step until j = 1.

We now formally describe the continuous ensemble prediction with model

selection procedure for a regime in the Algorithm 4.1

Algorithm 4.1: Ensemble Prediction with Model Selection

Inputs:

1. P Gaussian processes,  
1

,cov
P

i i i
hyp



2. Initial training set, , yX 

Outputs:

1. The ensemble prediction value *f

Steps:

1. [Initializations]

 FOR 1,2,...,i P DO

 BEGIN

 1i  ; [Ensemble weight]

 1i ; [Sleep counter]

128

 1;pStep  [Prediction session counter]

 1;ipCount  [Subsequent prediction count]

 1;iaIndex  [0-sleep; 1-awake]

 1;ilrt  [Wake up session no]

 0;isTrap  [Sleep Trap indicator]

* 0;if  [Predicted value of model]

 ENDFOR

3. [Perform continuous prediction]

 DO WHILE NOT DONE

 BEGIN

 0;K  0;C 
1

2* P
  ; * 0;f  0;sum 

 *cov() 0;if  [Variance of prediction]

 *, , ();X y x getData D [Get data for pStep th round]

 FOR 1,2,...,i P DO [Who will wake up ?]

 BEGIN

 IF 0 & &i i iaIndex pCount   THEN [Waiting over]

 1;K K 

 ENDIF

 ENDFOR

 IF 0K  THEN [Set the weight of awakened models]

 BEGIN

 FOR 1,2,...,i P DO

 BEGIN

 IF 0 & &i i iaIndex pCount   THEN

 BEGIN

 ;
1 *

j
K









 0;isTrap 

 0;ipCount 

 1;iaIndex 

 ENDIF

 ENDFOR

 ENDIF

 FOR 1,2,...,i P DO [Prediction by awakened models]

 BEGIN

 IF 1iaIndex  THEN [Awaked, so predict]

 BEGIN

 * * *
ˆ ˆ[,cov()] gp(,cov , , ,);i i i if f hyp X y x [Predict for *x]

129

* * * * ;

i if f f   [Weighting individual prediction]

 ;iC C   

 ENDTHEN

 ELSE [Sleeping, reduce sleep count]

 BEGIN

 1;i ipCount pCount 

 IF 1isTrap  THEN / 2;i i

 ENDELSE

 ENDFOR

 * * / ;f f C [Ensemble prediction]

 *();otput f [Output predicted value]

 ();iy Interact [Obtain real trust]

 FOR 1,2,...,i P DO [Calculate likelihoods]

 BEGIN

 IF 1iaIndex  THEN [Only Awakened models]

 BEGIN

2

*

22
**

1 ()
*exp ;

2*cov()2 *cov()

i i
i

ii

y f
l

ff

 
  

 

 ;sum sum il l l 

 ENDIF

 ENDFOR

 FOR 1,2,...,i P DO [Update weight and sum up]

 BEGIN

 IF 1iaIndex  THEN

 BEGIN

 ;i
i i

sum

l

l
  

 ;isum sum   

 ENDIF

 ENDFOR

 FOR 1,2,...,i P [Normalize weight]

 IF 1iaIndex  THEN ;i
i

sum


 

 ENDFOR

 FOR 1,2,...,i P [Making model selection for next round]

 BEGIN

 IF i  && 1iaIndex  THEN

 BEGIN

 0;ipCount 

130

 0;iaIndex 

 IF (1)ilrt pStep  THEN

 BEGIN

 2 * ;i i

 1;isTrap 

 ENDIF

 ENDTHEN

 ELSE

 1;i

 ENDIF

 ;i ilrt pStep  

 ENDIF

 ENDFOR

 1;pStep pStep  [Go for next prediction]

ENDWHILE

The algorithm first receives the p GP models. Each model is defined by its

initial hyperparameters hyp and covariance kernel cov (here mean is assumed

to be zero for all model). In each round of prediction, the training data and query

point are obtained by the function ()getData . All ensemble members are trained

on these inputs to obtain their optimised hyperparameters using the function

 
1

(, ov ,X, y)
P

i i i
trainModel hyp c


. At the beginning of a prediction round a

check is made to find out those members who will be awakened or recovered

from last sleep. If there is at least one member to be recovered, then its weight

in the ensemble vector is first set and then proceeds for prediction along with

all other members who are not put to sleep in the previous round. Prediction by

each member is done by calling the function *
ˆ ˆgp(,cov , , ,)i ihyp X y x . Weighted

sum of the all predictions and finally the ensemble prediction is formed in *f .

Using this predicted value our service consumer will interact with the service

provider to obtain the real QoS value y. For the next round of interaction, the

ensemble weights are updated based on the likelihood value l . At the same time

which member model will be put to sleep at the end of just concluded round is

done by checking the validity of the condition i  . If a model is to sleep,

131

first we check its last recovery time lrt . If (1)lrt pStep  then the model is

going to sleep immediately after the last recovery, therefore it will fall into a

sleep trap. Consequently its sleep trap flag, sTrap will be set and sleep counter,

 will be doubled.

4.3.2.4 Incremental update of the Ensemble Members

In our set up, the predictions are performed sequentially as shown in the Figure

4.3. By the time the prediction for time t is over, the service user has to predict

the trust value for time 1t  , so we need to have the query regime vector 1NX

To obtain this we have to gather the observation 1ty  . Either the direct trust value

generated by using Eq. (3.26) or the recommended trust value generated using

Eq. (3.33) can be used to form 1ty  . Once we obtain 1ty  , the query regime vector

for time 1N as Eq. (4.19)

 1 1 (1)[,....,]t t t t mX y y y (4.19)

The update of the observation vector 1 2 1[, ,....., ,]t ty y y yy and its associated

course time series 1 2 1[, ,....., ,]t tX x x x x can be done sequentially in this

manner. However, if we do not update Markov model and ensemble, the

proposed models will fail to produce desirable results. On the other hand,

retraining of R P members will be highly costly. Therefore, we adopted the

online update method of [160] for the covariance matrix of all GPR experts.

All R P members are not updated at the end of each prediction session. We

followed the following step for the update.

Step 1: Insertion of new pair 1 1[,]t tyx .

We first insert the pair 1 1[,]t tyx to one of the R regimes (clusters). The target

cluster is identified from the future state vector fV created in Activity-2 of the

132

prediction phase of model-1. As this vector has only one non-zero entry, the

column index of this non-zero entry is the regime where the pair must be

inserted.

For the case of extended model-2, we identified the regime by using the

posterior probability vector
1 2, ,[.....,]

Rs s sp p p . We selected the target regime as the

regime that has the maximum probability value in
1 2, ,[.....,]

Rs s sp p p .

Step 2: Update of ensemble members

Once the target regime is selected, the update of the covariance matrices of the

P GPR experts is done by using the method explained in [160].

The predictor vector 2 1()j nK I of Eq. (4.12) can be incrementally

updated by directly adjusting Cholesky decomposition of the Gram matric

2 1()j nK I . For this purpose the predictor vector can be rewritten as Ty LL

, where the lower triangular matrix L is a Cholesky decomposition of the Gram

matrix. Incremental insertion of a new point is achieved by adding a an

additional row to the matrix L . newL and newK are obtained by adding an

additional row and column, such that

,new new
* *

K
l k

T
new new new
T

new

L 0 K K
L

l k

where ()knew newk X, x and ()newk k new newx , x then l and *l can be computed

by solving

2

* newand l knewLl k l

Now the update steps are as follows:

 Compute l after computing the kernel vector newk and by substituting it

back in newLl k

133

 Compute *l from
2

* newl k l

 Compute new by twice back-substitution while solving

T
new new new newy = L L

After the update of the covariance matrices the Markov model can be either

retrained or continue for prediction with the previously trained

hyperparameters.

4.4 Experiments and Results

To evaluate the effectiveness of our proposed models, we compare them with

one of the popular state of the art reputation trust models [80]. The simulated

experiment was conducted in MATLAB. The MATLAB functions were used to

simulate the behavior of Web service providers and service consumers. First we

explain the simulation environment in the following.

Experimental Environment Set Up

Our simulation environment is a community of Web service providers, Service

consumers and Service raters (Figure 4.8). Service raters are also service

consumers, but they are the sources of recommendation in our experiments.

We have created an environment of 200 raters, five service providers of

different behaviours and two service consumers. We ran three rounds of

simulation (for each value of k) consisting of 1000 transactions. In each round,

a particular type of Web service provider from the pool is selected and all the

models performed the assessment of its behavior from 1000 transactions. Final

comparison among the performance of models is performed taking the average

134

of these three rounds. In one transaction of each round the following events are

designed to occur:

Figure 4.8: Simulation Environment where (,)js u is the experienced

QoS of a service provider
js by a user in a transactionu . Dishonest

users add a noise term (0,)k  to their experienced QoS to form

recommendation. k is a scaling factor in the range (1-3) and 0.01 

is the standard deviation.

 First, a random number of service raters interact with one of the four

service providers. The experienced QoS value from this selected service

provider is then recorded.

 Second, these service raters exchange the experienced QoS among

themselves and to update two counters #, #n p to asses each other’s

reputation feedback trust by using Eq.3.27. If received QoS value differs

from the actual value by a threshold, #n increased 1; otherwise #p is

increased by 1. We used a threshold value of 0.02 in our experiment.

 Third, the two service consumers collect the rating values tagged with

their time of interaction from these service raters. Rating values were

135

then used to evaluate the trust value of the service provider using their

own trust models (TR1 and TR2). In case of consumer-1, for each rater,

from which the rating is collected, a check is made to see whether the

rater is in its reputation range using a value of the threshold thR . If the

rater is not in the reputation range, then the values of the two counters

#, #n p corresponding to this rater are also collected from other raters

to assess the reputation trust of the rater. From the collected information,

Eq. (3.28) to Eq.(3.30) is used for the evaluation of reputation trust of

the rater.

 Finally, two service consumers interact with the service provider

selected in this round to get their own assessment of its quality. This

self-assessed quality value is recorded.

In order to cover all possible scenarios, we considered the following types of

Web service providers in our provider pool.

Consistently High performer (P1): This category of provider does not engage

in any malicious activity. They deliver consistently high QoS. We modeled this

type of service provider by using MATLAB function to produce a QoS values

in the range (0.8-1.0). For generation of QoS values we used MATLAB’s

random number generator function.

Consistently Low performer (P2): This category of provider is same as the

above category, however they consistently deliver low QoS values in the range

(0.0-0.2). These type of providers are the ones who always take advantage of

the consumer.

Malicious High to Low performer (P3): The providers in this category,

perform honestly at the beginning to derive a good reputation trust and then start

‘milking’ the derived reputation value. We model them by another MATLAB

function which generated the QoS values in the range (0.8-1.0) initially in the

first half of the interactions and then generated low QoS values in the range

(0.0-0.2) in the latter half of the interactions.

136

Malicious Low to High performer (P4): The forth category behaves in an

opposite manner to the malicious High to Low performer. They are the ones

who learn from their previous mistakes.

Oscillatory Performer (P5): The last category of providers who sometimes

perform satisfactorily and unsatisfactorily at other times. Our MATLAB

function generates the QoS values in the range (0.0-1.0) for this type of

provider.

Our service consumers, who were designed to act as raters behaved in one of

the following models.

Honest Rater(R1): Rater of this type always provides the values of QoS as

their experienced QoS values without any modification.

Dishonest Rater(R2): They always do not provide the QoS values experienced

without modification. They generate the rating QoS values by adding a noise to

the QoS value experienced, (,)js u . In our simulation, we added to the

experienced QoS value, (,)js u a white noise term, (0,)k  , that follows

a zero-mean Gaussian distribution. The variance of the distribution is set to be

k , where k a scaling factor in the range (1-3) and  is the standard

deviation. To accommodate subjective inaccuracy in the recommended QoS

values, we set 0.01  , which means a relatively big deviation noise. Hence,

for different values of k , each feedback QoS value will have a different

deviation that follows a zero mean normal distribution with variance in the

range (0.01- 0.03).

Consumer-1 is equipped with our trust model. Consumer-2 is loaded with

RATEWeb [80] trust model. These two consumers collect the ratings from the

group of service raters. Then they combine these feedbacks along with their

personal experience to derive the final trust value for each interaction with any

selected service provider.

Consumer-2 uses a trust model based on RATEWeb. RATEWeb trust model is

multi-attribute trust model. On the other hand our proposed models are single-

value trust models. Therefore, for equitable comparisons with our models, we

considere only one QoS attribute of the service provider while implementing

137

RATEWeb. In other words, our consumer-2 and all service raters will evaluate

the reputation of Web service provider based on single QoS attribute. The

original metric for reputation of a service
js given in Eq.(4.20).

 
1

1

1

1

(,) *

* * ()

Reputation()

()

m
x

h j h
L

h
d rmx

hh

j L

r

x

s u RSV

f C x
RSV

s

C x










 
 
 
 
  







 (4.20)

Here (,)x

h js u is the rating assigned to the QoS attribute h by the service rater

x for the service provider
js in transaction u , hRSV is the preference of the

service consumer for the attribute, m is the number of QoS attributes, and L

is the set of service consumers.

For a single QoS attribute Eq. (4.20), has been reduced to Eq. (4.21).

1

1

(,) * * ()
Reputation()

()

L x

j d rx

j L

r

x

s u f C x
s

C x






  



 (4.21)

Here (,)js u is the rating assigned to the single QoS attribute by the service

rater x for the service provider
js in transaction u . It may be noted that when

1m  , hRSV cancels out.

The trust model of the consumer-2 is given in Figure 4.9. A loop is iterated over

a list of service rates that have personal assessment of the service provider
js

in question and reputation feedbacks are collected. The collected reputation

feedbacks Vi’s are used to compute majority rating M, Then the credibility Cr of

each rater is computed by using the majority rating M¸ last assessed reputation

A and rating usefulness factor Ufr .

138

Figure 4.9: Trust model for consumer-2 based on RATEWeb[80]

Finally, the reputation of the service provider
js is computed using Eq.(4.21).

The reputation value is diluted by a time-dependent decay factor df .

Consumer-1 used all the trust model proposed in Chapter-3 and their extended

versions explained earlier in this Chapter. The short names of the models that

we used in the description are summarized in the following Table-4.2.

Table -4.2: Short names for the four proposed models

Short name Model Details

M1 Markov chain based Local GPR (MLGPR)

M2 Markov Chain Local Ensemble Predictor Model

M3 Coarse Grained Hidden Markov GPR (CHMMGPR)

M4 Course grained HMM ensemble predictor model

To implement the ensemble models M2 and M4, we use seven GPR models.

The corresponding covariance functions used to contrast the seven members are

given Table 4.3.

Input: Ratings of service provider

 Output: Reputation trust of the service provider

Collect Ratings

Vi’s

Compute M

Compute R Compute Cr Get A

Get Uf Past Self Experiences

Get fd

139

Table 4.3: Models with their kernels

Ensemble

Member

Corresponding Kernel used

P1 SE

P2 RQ

P3 Lin

P4 Lin x SE

P5 C+Lin+WN

P6 Lin+SE+WN

P7 SExPer

Table-4.4: Parameters Settings for Simulation

Parameter Name Value

Time Horizon, hT 100 time instances

Time spot, T 1 time instance

Weighting factor,  of Eq.(3.25) 0.5

Reputation range threshold, thR 0.5

Advisor usability threshold, athR 0.9

Regime vector selection threshold, thxC 0.9

Model order, m 1

Number of regimes (clusters), R 3

The opened parameters of the models M1-M4 in the simulation were set

according to the Table 4.4.

We need to fill up two buffers each of length equals to the Time horizon hT

with direct trust values from the personal direct experiences of our consumer-1

and reputation feedbacks from the raters respectively. This is the booting period

to use the proposed prediction mechanisms. Evaluation of the final trust value

of each service provider at different time instances by service consumer-1 was

done according to following.

140

First transaction:

The final trust value of the Web service provider is assessed using Choice-1 of

our direct trust algorithm 3.2 given in Chapter-3. This is because there is no

transaction recorded in the direct trust table of our service consumer. So trust

value is calculated from only the indirect trust component of Eq. (3.25) using

Eq. (3.31) to Eq. (3.33)

From second transaction up to the th

hT transaction:

This is the booting period for the prediction models. Final trust values during

this period are calculated using Eq. (3.25). Its direct trust component was

evaluated using Eq.3.26 and the indirect trust component was obtained from Eq.

(3.31) to Eq. (3.33).

From (1)th

hT  transaction up to 1000th transaction:

Trust evaluation during this period was done using Eq. (3.25). However the

direct trust and indirect trust components were estimated using the prediction

mechanism proposed in models M1-M4 given in Table 4.3.

When the buffers are full, every time a transaction happens, the actual

experience of QoS value and recommended reputation value are saved and the

oldest values from both the buffers are discarded. This is done to maintain only

the records of the last hT transactions. Since RATEWeb does not use the

context information, in the simulation we assume that all interactions happened

for only one context and hence only the Type 2 of information sources given in

Table-3.3 of Chapter 3 are used.

In our implementation, the value of df and time decay factor for Eq. (3.26) and

Eq.(3.31)-Eq.(3.33) are decided from an exponential decay model

141

1()n nk u uk te e     where k is the decay rate and t is time difference between

two transactions. Figure 4.10 displays the effect of decay rate over transactions.

We have divided the time horizon hT into equal halves. All feedbacks in the

first half are given a decay factor of k = 0 and last half is associated with a decay

factor of 0.01k  .

Figure 4.10: Exponential Time Decay Model

Experimental Results

We performed two sets of experiments. In the first experiment, we maintained

the ratio of dishonest raters to honest raters at 75:25. In the second experiment,

we reversed this ratio. In all experiments, we conducted three rounds of

simulations with the noise variance 1 , 2 and 3 . The average behaviours of

all the models are presented below.

The comparison of the four proposed models with the RATEWeb [8] is shown

in Table 4.5 and Table 4.6. The comparison is done using the average of Root

Mean Square Errors (RMSE) and average Normalized Mean Square Error

(NMSE). Given N trust predictions, the RMSE and NMSE are calculated from

the Eq. (4.22) and Eq.(4.23).

 
2

ˆ
i i

i

T T

RMSE
N






 (4.22)

142

 
2

ˆ
1

ˆ

i i

i

T T
NMSE

N T T





 (4.23)

Here, T̂ and T are the predicted and the real trust values, T̂ and T are the

means of the predicted trust and real trust values. Average of RMSE and NMSE

are calculated by taking the average of Eq. (4.23)-(4.24) over N predictions.

Results presented in these two tables clearly show that our proposed models

except M1 have smaller values of average Root Mean Square Error (RMSE)

and average Normalized Mean Square Error (NMSE) as compared to

RATEWeb model. Therefore it can be concluded that Models M2, M3, M4

outperformed the RATEWeb model in trust prediction. The best model is M4

followed by M2, M3, RATEWeb and M1.

Table-4.5: Comparison of prediction performance of all models when the

honest raters outnumbered the dishonest raters.

Model

Provider Model

P1 P2 P3 P4 P5

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

M1 0.0020 0.0039 0.0021 0.0156 0.00103 0.0089 0.00457 0.0047 0.0069 0.0287

M2 0.0005 0.0023 0.00115 0.00288 0.00090 0.0071 0.00021 0.0020 0.0032 0.0057

M3 0.00011 0.0025 0.00121 0.00335 0.00089 0.0068 0.00026 0.00198 0.0076 0.0348

M4 0.0001 0.0018 0.0011 0.0022 0.00012 0.00017 0.00017 0.00088 0.0011 0.0045

RATEWeb 0.0011 0.0022 0.0014 0.0037 0.00094 0.0067 0.00029 0.0020 0.0078 0.0357

143

Table-4.6: Comparison of prediction performance of all models when the

dishonest raters outnumbered the honest raters.

Model

Provider Model

P1 P2 P3 P4 P5

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

N
M

S
E

R
M

S
E

M1 0.0043 0.0058 0.00301 0.6235 0.0036 0.0645 0.0235 0.0287 0.0898 0.0632

M2 0.0013 0.0032 0.0011 0.2845 0.002 0.0068 0.0016 0.0132 0.0085 0.0207

M3 0.00128 0.0034 0.0013 0.3105 0.003 0.0065 0.0019 0.0129 0.0802 0.0396

M4 0.0011 0.0030 0.0015 0.1212 0.0010 0.0032 0.0016 0.0124 0.0040 0.0134

RATEWeb 0.0013 0.0034 0.0011 0.0550 0.0010 0.0070 0.0018 0.0133 0.0432 0.0835

Further, to visualize graphically the performance of prediction, we selected M4

and RATEWEb and showed their prediction performances in Figure-4.11-

Figure-4.15. In all the figures, the two left most plots are made from 100

samples selected out of 1000 transactions. The rightmost plots show the

cumulative distribution function of prediction errors from 1000 transactions.

144

Figure 4.11: Performance of M4 and RATEWeb in prediction of behavior of

an oscillatory Web service provider

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RMSE = 0.0045, NMSE=0.0011

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Value

M4

(a) Honest raters = 75% and Dishonest Raters = 25%

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RMSE=0.0134,NMSE=0.0040

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Vale

M4

(b) Honest raters =25% and Dishonest Raters=75%

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

RMSE=0.0357, NMSE=0.0078

True Value

RATEWeb

(c) Honest Raters=75% and Dishonest Raters=25%

145

Figure 4.12: Performance of M4 and RATEWeb in prediction of behavior of

consistently good Web service provider

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
r
e
d

ic
ti

o
n

 E
r
r
o

r

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Value

RATEWeb

RMSE=0.0022, NMSE=0.0011

(c) Honest Raters=75% and Dishonest Raters=25%

146

Figure 4.13: Performance of M4 and RATEWeb in prediction of behavior of

consistently bad Web service provider

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

True Value

RATEWeb

(C) Honest Raters=75% and Dishonest Raters=25%

RMSE=0.0014, NMSE=0.00037

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

True Value

RATEWeb

RMSE=0.0550, NMSE=0.0011

(d) Honest Raters = 25% and Dishonest Raters=75%

147

Figure 4.14: Performance of M4 and RATEWeb in prediction of behavior of

Web service provider who swings from high to low performance

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 P

re
d

ic
ti

o
n

 E
rr

o
r

True Value

RATEWeb

RMSE=0.0070, NMSE=0.0010

(d) Honest Raters = 25% and Dishonest Raters=75%

148

Figure 4.15: Performance of M4 and RATEWeb in prediction of behavior of

Web service provider who swings from low to high performance

In all the figures, it can be observed that when the honest raters outnumbered

the dishonest raters in the environment, the predicted trust values by all models

are fairly consistent and close to the real trust values. However when the number

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Data

M4

(a) Honest Raters = 75% and Dishonest Raters=25%

RMSE=0.00088, NMSE=0.00017

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Value

M4

(b) Honest Raters = 25% and Dishonest Raters=75%

RMSE=0.0124, NMSE=0.0016

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Value

RATEWeb

(c) Honest Raters=75% and Dishonest Raters=25%

RMSE=0.0020, NMSE=0.00029

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t

V
a
lu

e

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
o

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

True Value

RATEWeb

RMSE=0.0133, NMSE=0.0018

(d) Honest Raters = 25% and Dishonest Raters=75%

149

of dishonest raters is more than the honest raters, the predicted trust values

deviate from the actual behavior of the Service provider. This is due to the

reason that most of the reputation feedbacks are obtained from dishonest

sources. However, in all the models, due to incorporation of the direct

experience of the service consumer, the assessed trust values are still close to

the actual values. The difference is around a margin of 0.2. Among the models,

M4 showed better prediction accuracy compare to RATEWeb in their

performance. This can be justified from the cumulative distribution plots of the

prediction errors over 1000 transaction in all cases.

Experiment with real data set-1

We performed one experiment on the real life dataset obtained from Cloud

Armor Project. The same dataset is used in chapter 3. In this experiment, we

make a comparison of our proposed models with one HMM based trust

prediction model for Web services [161]. They modeled reputation as a time

series and used a Hidden Markov Model (HMM) to predict future reputation.

Reputation is derived from a set of Quality of Web Service (QoWS) parameters

such as performance, availability, reliability and response time. Thus, the

reputation of a service in their model is represented by a single value or a vector

representing a value for each QoWS attributes. A HMM with a mixture of

Gaussian distributions is used as the emission probability function of every

state.

Training Data Preparation

We have selected a service called “BlueHost” for the study. The details of the

QoS values of the selected Web service are given in the Table 3.4. There are

455 feedback sessions recorded for this service. Only the values for QoS

attributes availability, price, accessibility, ease of use and technical service are

recorded. The value of each QoS attribute is an integer in the range 1-5 while

150

the final trust value is real vale in the range [1,5]. In 43 sessions the value of

one or more of the QoS attributes are found missing. We removed these sessions

from the data set.

Table 4.7: Details of data set selected from Cloud Armor dataset

C
lo

u
d
 S

er
v
ic

e

N
am

e

D
at

a
p
o
in

ts

T
im

e
QoS Attribute Value (Integer)

T
ru

st
(c

o
n
ti

n
u
o
u
s

)

A
v
ai

la
b
il

it
y

P
ri

ce

T
ec

h
n
o
lo

g
y

S
u
p
p
o
rt

A
cc

es
si

b
il

it
y

 E
as

e
o
f

U
se

B
lu

eH
o
st

 B
lu

eH
o
st

B
ef

o
re

P
re

p
ro

ce
ss

in
g

A
ft

er

P
re

p
ro

ce
ss

in
g

F
ro

m

T
o

M
in

im
u
m

M
ax

im
u
m

M
in

im
u
m

M
ax

im
u
m

M
in

im
u
m

M
ax

im
u
m

M
in

im
u
m

M
ax

im
u
m

M
in

im
u
m

M
ax

im
u
m

M
in

im
u
m

M
ax

im
u
m

455 411

A
u
g
u
st

 8
,
2
0
0
6

M
ay

 2
4
,
2
0
1
2

1 5 1 5 1 5 1 5 1 5 1 5

Experimental Results

The number of states R of the HMM model is decided by using the Elbow

method. The plot of the total within cluster sum of squares against the number

of clusters is shown in the Figure 4.16. We used 4R  for the experiment. 50%

of the data points were used for initial training of all models.

151

Figure 4.16: Selection of number of clusters by Elbow method.

The trained models are then used on the remaining 50 % of the reputation time

series data to ascertain the accuracy of all models. The models are compared by

using the percentage error given by the Eq. (4.24).

100
predicted value actual value

PerErr
actual value


  (4.24)

Figure (4.17) shows the percentage errors in prediction using all the models.

The results in all the figures show the comparison of actual trust data with

predicted trust data. As can be seen, all the proposed methods are able to

compete with the Gaussian Mixture HMM model. Except models M1 and M2,

all other models performed better than Gaussian Mixture HMM model.

The experimental results clearly show that statistical techniques and machine

learning techniques focus on providing a sound theory for trust management.

152

Figure 4.17 : Predicted Vs actual trust values and prediction performance in

the form of percentage error for all models

0 20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

3

4

5

6

Prediction

T
ru

s
t

V
a
lu

e

Prediction Error ActualModel=M4

0 20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

3

4

5

6

Prediction

T
ru

s
t

V
a
lu

e

Prediction Error Actual Model=M2

20 40 60 80 100 120 140 160 180 200
-2

-1

0

1

2

3

4

5

6

Prediction

T
ru

s
t

V
a
lu

e

Actual Prediction ErrorModel = M3

20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

5

6

Prediction

T
ru

s
t

V
a
lu

e

 Prediction Actual Error Gaussian Mixture HMM

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

6

Prediction

T
ru

s
t

V
a
lu

e

Prediction Error ActualModel=M1

153

Experiment with real dataset-2

Another set of experiments was conducted with the data set [161,162]. The

dataset describes real-world QoS evaluation results from 339 users from 30

countries on 5,825 Web services in 73 countries. The data set consists of two

339 by 5,825 real-world matrices for response time and throughput,

respectively. Each entry in the matrix represents the response-time or

throughput value observed by a user on a web service. We used in this

experiment the matrix of response-time to investigate the prediction quality and

consistency of our proposed models. The mean and standard deviation of

response time are 1.43 and 31.9 seconds, respectively. The large deviation

indicates that response time has a wide range of values.

For the purpose of our investigation, we have selected randomly 10 Web

services. Each of these Web services exhibits different behavioral pattern with

respect to response time values. The plots of response time values across 339

users are provided in Figure 4.18.

Figure 4.18: Response time values and country of origin of 10 randomly

selected Web services

50 100 150 200 250 300

-1

17

Service#1:United Sates, Min:-1, Max:16.5230

50 100 150 200 250 300
-1

5

Service#2:United States, Min:-1, Max:4.2900

50 100 150 200 250 300

-1

10

Service#7:Argentina, Min:-1, Max:9.6260

50 100 150 200 250 300
-1

10

Service#14:Argentina, Min:-1, Max:9.6510

50 100 150 200 250 300

-1

17

Service#33:Germany, Min: -1, Max:16.8070

50 100 150 200 250 300
-1

20

Service#42:Autralia, Min:-1, Max:19.8700

50 100 150 200 250 300

-1

16

Service#96:Autria, Min:-1, Max:15.7910

50 100 150 200 250 300
-1

4

Service#50:Australia, Min:-1, Max:3.200

50 100 150 200 250 300
-1

16

Service#242:Canada, Min:=-1, Max:13.3200

50 100 150 200 250 300
-1

0

5

Service#339:Canada, Min=-1, Max:4.1960

154

We used 50% of the 339 response time values in all the Web services to train

our models and remaining points are used for the prediction. A value of 1m 

is used for all cases. To measure the performance of our models, Mean Squared

Error (MSE) (in Eq. (4.22)), Mean Absolute Error (MAE) , and Symmetric

Mean Absolute Percentage Error (SMAPE) are used as the key performance

indicators.

1

1 ˆ
N

t t

t

MAE T T
N 

  (4.25)

1

ˆ
100

ˆ

N
t t

t t t

T T
SMAPE

N T T





 (4.26)

Here, tT and T̂ are the real and predicted values, respectively. MSE and MAE

represent the difference between the actual value and the predicted value.

SMAPE is an accurate measure based on percentage error. Its value belongs to

the range 0% and 100%. If the practical value of SMPAE is near 0%, the

predicted results are quite accurate.

It can be seen from Table 4.8 that model M4 has consitently low values for the

three indicators – MAE, SMAPE and MAE. SMAPE values of M4 are within

the range of 3% to 5%. SMAPE values of M1, M2, and M3 are within the

range of 4% to 60%, 2% to 7%, 7% to 25% respectively. Next to M4, model

M2 has otperformed the other models. Finally M3 superceeds M1 in terms of

prediction performance. We have ploted the indicator values for all models

against the selected 10 Web services in Figure 41.19 to Figure 4.21.

This observation we have maded can be further verified from the three plots.

The experiment clearly indicates that our proposed models can be used for

prediction of Web service QoS or trust values under varied behavioral

conditions.

155

Table: 4.8 : Performance indicators values for for models M1,M2,M3 and M4
M

o
d

el

In
d

ic
a
to

r
Web service

#1 #2 #7 #14 #33 #42 #50 #96 #242 #339

M1

MSE 0.2884 0..2630 1.2502 0.8088 0.4645 0.2650 1.1014 0.3545 1.2504 0.1925

SMAPE 9.6461 10.6742 5.9185 59.1265 13.3595 10.7712 5.9035 11.4904 5.9210 5.9452

MAE 0.9120 0.1252 0.2433 1.5555 0.1210 0.1223 0.2093 0.0834 0.2413 0.2087

M2

MSE 0.0985 0.0921 0.1284 0.1987 0.1042 0.0991 0.1284 0.1030 0.1284 0.1251

SMAPE 3.7679 3.8099 5.7534 6.3373 3.7477 3.8815 5.6575 3.8011 5.6462 5.624

MAE 0.0836 0.0974 0.03417 0.1925 0.1001 0.0941 0.2550 0.1141 0.2814 0.0724

M3

MSE 0.0776 0.0804 0.3622 0.3000 0.1523 0.0825 0.3543 0.0795 0.4547 0.0792

SMAPE 11.4854 11.5154 15.3365 11.1517 8.1605 8.3654 12.9832 11.4780 14.7926 20.234

MAE 0.1048 0.1031 0.1927 0.1925 0.1367 0.1021 0.1076 0.1048 0.1925 0.1854

M4

MSE 0.0150 0.0147 0.0186 0.0140 0.0137 0.0152 0.0187 0.0150 0.0187 0.0146

SMAPE 3.6746 3.5931 3.3879 3.3390 3.3142 3.9078 3.4277 3.6755 4.4299 4.5421

MAE 0.0144 0.0154 0.0154 0.0129 0.0151 0.0145 0.0155 0.0144 0.0154 0.0144

Figure 4.19: Plot of Mean Square Error (MSE) values for all models accorss

10 selected Web services.

0

0.5

1

1.5

#1 #2 #7 #14 #33 #42 #50 #96 #242 #339

M
SE

 V
al

u
e

Web Service

MSE Plot

M4 M3 M2 M1

156

Figure 4.20: Plot of Symmetric Mean Absolute Percentage Error (SMAPE)

values for all models accorss 10 selected Web services.

Figure 4.21: Plot of Mean Absolute Error (MAE) values for all models

accorss 10 selected Web services.

0

20

40

60

80

#1 #2 #7 #14 #33 #42 #50 #96 #242 #339

SM
A

P
E

Web servic

SMAPE Plot

M4 M2 M1 M3

0

0.1

0.2

0.3

0.4

#1 #2 #7 #14 #33 #42 #50 #96 #242 #339

M
A

E

Web service

MAE Plot

M4 M3 M1 M2

157

4.5 Conclusion

In this chapter, we have proposed an ensemble prediction using different GP

models as its members. While using GP model, the selection of the kernel is

very important as it is our prior knowledge about the input data. Using our

model selection approach based on the likelihood measure, we can select the

ensemble members to participate in the next prediction step. One of the main

concern about GP model is its computation time, which is O(n3). To reduce the

computational cost, a novel sleep and recovery mechanism and online update

technique of the covariance matrix of a GPR are used. The application of our

ensemble models and as well as the other two models proposed in Chapter 3 in

the sequential prediction has been experimentally shown. All the models are

tested in dynamic environment, where the Web service provider and the third

party information sources exhibit different behaviours over the transactions.

The dynamic characteristics of trust and reputation values over time have also

been considered in the experiment by using a time decay factor.

The experimental evidences show that the proposed framework can compete

with the existing models Except for one model, all proposed models are found

to have better prediction accuracy than the state of the art trust model. Further,

the superiority of the framework of our ensemble model over the prediction

model in Chapter 3 has also been experimentally established.

	Chapter_4

