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Chapter 4 

Adaptive Ensemble of Gaussian Processes 

for Trust Modelling 

 
 

4.1 Motivation 
 

In chapter 3, we proposed a framework for trust value prediction for future time 

slot using Gaussian Process Regression (GPR). We reintroduce here the final 

trust equation once again. 

( , , ) * ( , , ) (1 ) * ( , , )i d i r iT A c t T A c t T A c t                          (4.1) 

By selecting the value of , Eq. (4.1)  can generate a direct trust model or an 

indirect trust model or a hybrid of  these two. Further we have seen that the 

model can be used to calculate the direct trust and indirect trust in a given 

context and during the current time slot using Algorithm 3.2 and Algorithm 3.3 

respectively. Here we want to use Eq. (4.1) only for either direct trust or indirect 

trust based sequential interactions with the service provider. The core of 

Algorithm 3.2 and 3.3 is the GPR model. Kernel in GPR is the prior belief about 

the structure of data. So the selection of proper kernel in any regression work is 

crucial. Further, the trustworthiness   of the service provider may change over 

time and this makes the kernel selection more challenging. A single GPR model 

with a fixed kernel may not be able to capture its dynamic nature properly. For 

example, [152] shows that the use of multiple kernels help in determining the 

underlying patterns while analyzing the CO2 emission rates (Figure 4.1). 



116 

 

Figure 4.1: Prediction of CO2 emissions using a Radial basis function (RBF) 

kernel, sum of a RBF kernel and a Linear (Lin) kernel, sum of a Lin kernel to 

the product of a RBF kernel and a Periodic (Per) kernel [152]  

In the above figure, grey lines show observed CO2 emissions and red lines show 

posterior predictions of Gaussian process regressions with different kernels. It 

was found that a kernel composed by multiplying a radial basis and periodic 

kernel and adding a linear kernel was able to capture the true nature of the data. 

Motivated by this observation, we proposed a better method using ensemble 

approach for combining different GPR models. We are motivated by the fact 

that using a kind of model selection approach we can select the model(s) which 

will best predict the future value at a given time. 

 

4.2 GP Kernels 
 

 

There are different kernels available for Gaussian process [120]. Here we report 

some of those kernels used in the machine learning circle and discussed the 

structure they represent. 
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4.2.1 Basic kernels and their structures 
 

A kernel is a semi-positive functions of two inputs ', dx x R . Gaussian process 

models use kernel to define the prior covariance between any function values. 

Many kernels are available, here we discuss commonly used kernels and the 

types of structures expressible through them.  

Square Exponential Kernel: 

The square exponential covariance (SE) function has already been introduced 

in Chapter 3, and is also very often referred to as the Gaussian covariance 

function given by  

2

2

( )
( , ) * exp( )

2
f

x x
k x x

l
                                                (4.2) 

The corresponding Gaussian process will give higher priors to smooth function.  

Rational Quadratic Kernel: 

The rational quadratic (RQ) covariance function is given by   

2
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k x x

l
                                             (4.3) 

When 0  RQ is related to SE kernel. For    it converges to the SE 

kernel. 

Periodic Kernel: 

The periodic (PE) covariance function is given by 

2
2

2 ( )
(x,x ) * exp( sin ( ))f

x x
k

pl
                                          (4.4) 

where, p  is the period.  

Linear kernel: 

The linear (Lin) covariance function is given by  

( , ) * ( )( )fk x x x c x c                                                          (4.5) 
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White noise kernel: 

The white noise covariance function is given by 

 ( , ) * ( )fk x x x x                                                                (4.6) 

These basic kernels can capture different structures in the input data when they 

work alone. The Table 4.1 summarizes the structure each of these kernels 

represents 

 

Table 4.1: Commonly used basic kernels for Gaussian Process 

 

4.2.2 Combining kernels 
 

Kernels can be combined to create new ones with different properties. This will 

allow us to include as much high-level structure as necessary into our models.  

Given two kernels 1( , )k x x  and 2( , )k x x , the following will also be valid 

kernels. 

1 2( , ) ( , ) ( , )k x x k x x k x x                                               (4.7) 

1 2( , ) ( , )* ( , )k x x k x x k x x                                               (4.8) 

Multiplying or adding two positive-definite kernels together always results in 

another positive definite kernel. Figure 4.2 shows some kernels obtained by 

multiplying and adding two basic kernels together. Additive structure 

sometimes allows us to make predictions far from the training data i.e. 

extrapolation.  
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Figure 4.2. Compositions of basic kernels by addition and multiplication and 

the structures that they represent 

 

 

4.3 Proposed Model 
 

4.3.1 Model Assumption 
 

In the proposed model, we assumed that service user is locked into a situation 

of sequential interactions with the service provider. Every time, a service user 

has to make a trust value based decision of interaction with the service provider 

by taking into account both the dynamic nature and context specific nature of 

trust. The trust value can be a direct interaction-based trust value or indirect trust 

value generated from the recommendations for other intermediaries. Figure 4.3 

shows a typical scenario of sequential interactions. 
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Figure 4.3: Scenario of sequential interactions; (a)  first interaction, trust 

value is to be predicted from the previous values available in a given time 

horizon, (b) second interaction, trust value is predicted by extending time 

horizon to the next time spot. 

 

In each interaction, it is required to predict the trust value from a given time 

horizon. The lengths of time slot and time horizon are to be fixed by the service 

user. The previous value in each time slot can be a direct trust value generated 

by using Eq. (3.26) or recommended trust value generated using Eq. (3.33) via 

a reputation query. After making an interaction based on the predicted trust 

value, the service user will form a fresh opinion about the trustworthiness of the 

service provider from the outcomes of the interaction. This opinion will further 

be used to select a prediction model suitable for next interaction. Prediction 

model and adaptation procedure are explained in the following section. 

 

4.3.2 Trust prediction framework 
 

The prediction of trust value is done by an ensemble of Gaussian Process 

Regression models. In section 4.2 we have seen a wide variety of models could 

be constructed by adding and multiplying a few base kernels together. However 

selecting the right kernel combination is a hard decision. Here we propose a 

method in which many GP models work together to increase accuracy in the 

prediction of trust value. The conceptual framework of the proposed prediction 

model is given in the Figure 4.4 
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Figure 4.4: Framework for ensemble Gaussian Processes 

This framework extends our two proposed models in Chapter 3. Similar to 

Chapter 3, in data selection phase, the direct trust values or the recommended 

trust values from the intermediaries are collected and arranged into a time series 

with each observation tagged by its time slot. Then using a fuzzy clustering 

technique, the series is clustered into clusters known as regimes, Each regime 

represents the similar behavior patterns occurred in the history of  evolution of  

the trustworthiness values of the service provider. In the extension, instead of 

using only one expert for each regime, we used a group of experts trained for 

each regime. Each expert in the group is a GPR with a different kernel function. 

The reason behind using different GPR is that each of them, when consulted, 

will provide different generalization of the regime vectors in each cluster. The 

reason is that the clustering algorithm always does not group the regime vectors 

perfectly. In other words, two regime vectors in a cluster may still have different 

volatility patterns as shown in Figure 4.5. Due to this, a single kernel will 

provide only a generalized profile of these different volatility signatures. 

Therefore fusing the opinions from more than one expert will provide a better 

accuracy in the prediction. The mechanism of fusion is explained in section 

4.3.2.1. 

Clustering 
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Figure-4.5: Illustration that a regime/cluster may have different regime 

vectors each sensitive to a particular dynamic. Each expert will be more 

specialize on a particular dynamic.  

 

Based on this view, extensions to prediction model-1 and model-2 are shown in 

Figure 4.6 and Figure 4.7. In Figure 4.6, after the regime construction phase, 

using the transitions of regimes over time, a Markov transition matrix is 

constructed and R  groups of P  experts in each group are also trained to find 

the optimal values of their kernel parameters. In the final prediction step, all the 

activities of the prediction phase of our model-1 in chapter-3 are performed. 

Through these activities, when a query point is submitted, the Markov matrix 

will select one of the regimes and its associated group of experts will then be 

consulted to provide an ensemble prediction.

 

Figure 4.6: Overview of Markov Chain Local Ensemble Predictor Model 
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In figure 4.7, the extension to model-2, will train a Hidden Markov model using 

the coarse grain trust time series. The same Baum-Welch method of chapter 3 

is used for training the HMM. The only difference is that all the R  states are 

now subjected to a Gaussian emission probability function in Eq. (4.9) 
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                                            (4.9) 

where  
* ( )

is tf X  is the ensemble prediction from the thi  state is at time t .  

 

Figure 4.7: Overview of Coarse grained Hidden Markov Ensemble Predictor 

Model 

During the prediction phase, the extended model will perform the prediction.  

All the steps of prediction phase of our model-2 in chatper-3 are used for the 

prediction. Only the last step is changed to reflect the ensemble prediction as 

follows. 
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Step 3: Prediction of future trust value. 

The expert ensemble associated with each state identified by 

1 2, ,[ ....., ]
Rs s sP p p p  will predict the future trust value. Finally, the future trust 

value is calculated as a weighted average according to Eq. (4.10). 

*.
i i

R

final s s

i i

T p f


                                                       (4.10) 

Here *is
f  is the ensemble prediction obtained from the 

thi  ensemble 

predictor model trained on the adjusted regime is   

We now explain the ensemble prediction technique used in both of our extended 

models in the following section. 

4.3.2.1 Ensemble Prediction 

 

Given a set of data  
1

,
n

i i i
D x y


  , where d

ix R  and ( ) ,i iy f x R , we want 

to model the input-output relationship by using P Gaussian Processes  

 
1

( ( ), )
P

j j j
GP m x


    Each Gaussian process has the  mean function ( )jm x  and 

covariance function j .  

About a new input *
dx R , the jth-GP model will predict the mean and variance 

of the function f  using  

* *

2 1
* ( )

j

T T
j j n j
f k K I y k                                              (4.11) 

12
* *, * * *cov( ) ( ) ( )T
j j j j n jf k x x k K I k x                                   (4.12) 

where 2 1( )j nK I  is the predictor vector and 2
j nK I is the gram matrix. 

We proposed an ensemble prediction method using multiple kernels. Our 

ensemble is a vector of weights for individual kernels. The weight jw  is the 
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contribution from the  jth-Gaussian process model jm . We define an ensemble 

vector  as below: 

1 2[ , ,....... ]Pw w w                                                          (4.13) 

In each prediction session, the ensemble prediction model gives the final 

predictive value of the function f  at the new point *x   as  

* *
1

1 P

j j
j

f w f
C

                                                             (4.14) 

1

P

j
j

C w                                                                   (4.15) 

where C  is the normalizing constant summing the weight of every model in 

Since we do not have any prior information, all models are given uniform prior 

i.e.  we set  to ones. This means that all models will participate equally at the 

beginning. 

We now formulate how the ensemble vector  get updated when continuous 

prediction at different points are requested. When the jth-model does the 

prediction about a new point *
dx R  the predicted mean and variance are given 

by Eq.  (4.11)-(4.12). With these values, the predicted value of the ensemble 

will be calculated using Eq. (4.14)-(4.15).   Then afterward using ensemble 

prediction, our service user will calculate the final trust value using Eq. (4.1) 

and takes a decision to or not to interact with the provider.  

4.3.2.2 Self Correction of Ensemble Weight 

 

Based on the calculated final trust value, our service consumer interacts with 

the Web service provider and the actual value of actual trust will be available, 

let us call it ty . On the basis of ty , we can update our ensemble weights in the 

following manner. 
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Firstly, for each   
thj  model in the ensemble, the likelihood is calculated 

according to Eq. (4.16). 

2
*

* * 22
**

( )1
( ) ( , , cov( )) exp( )

2cov( )2 cov( )

t j
j t j j

jj

y f
l t l y f f

ff
                            (4.16) 

Larger the value of ( )jl t  the better is the 
thj model.  So Eq. (4.16) provides the 

basis for the model selection.  

Secondly, the weight jw  in the ensemble vector at time t is adjusted as follows 

using Eq. (4.17). 

1

( )
ˆ ( ) ( 1)

( )

j
j j P

i
i

l t
w t w t

l t

                                                       (4.17) 

Eq. (4.17) is further normalized to get the final weight jw  of the 
thj  model in 

the ensemble vector . 

1

ˆ ( )
( )

ˆ ( )

j
j P

ii

w t
w t

w t
                                                         (4.18) 

Combining Eq. (4.17) and Eq. (4.18), ( )jw t  is an effectively exponential 

smoothing average of the posterior probability of the 
thj model over time. 

 

4.3.2.3 Model Selection 

 

In order to reduce the prediction cost of the GP model, “Sleep and Recovery” 

mechanism of [118] is used. At time slot t if the weight calculated using Eq. 

(4.18) for the model is less than a threshold, we can temporarily make the model 

jm  to sleep. So model jm  will not participate in the next time slot in the 

prediction of the trust value. After several slots, the model jm will be recovered. 

The “Sleep and Recovery” mechanism is briefly explained here.  
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A vector of sleep counters  1 2[ , ,...., ]P    is maintained.  Each counter value 

j  specifies how many time slots the model jm would sleep. If the weight jw is 

less than a threshold,  
1

P
 , we make the model jm sleep. It will recover again 

when the number of prediction steps exceeds its counter j . During the recovery 

step more than one model may be recovered. If  is the number of models 

recovered, their respective weights in the ensemble vector  are set to 
1 *

After normalization, the weights of the recovered models are equal to .   

To make the “weaker" predictor sleep longer, the sleep counter  j  is self-

adaptive during the continuous prediction. First j  is   initialized as 1, which 

means the predictor would only sleep for one step. If after recovery the model 

jm  goes to sleep immediately in next step, we will double the value of j . 

Otherwise, if the predictor successfully avoids the sleep trap, we would 

continuously halve the value of j  at very prediction step until j = 1. 

We now formally describe the continuous ensemble prediction with model 

selection procedure for a regime in the Algorithm 4.1 

Algorithm 4.1: Ensemble Prediction with Model Selection 

Inputs: 

1. P  Gaussian processes,  
1

,cov
P

i i i
hyp


  

2. Initial training set, , yX    

 

Outputs: 

1. The ensemble prediction value *f  

 

Steps: 

1. [Initializations] 

    FOR  1,2,...,i P  DO 

    BEGIN 

 1i  ;     [Ensemble weight] 

 1i ;            [Sleep counter] 
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 1;pStep               [Prediction session counter] 

 1;ipCount          [Subsequent prediction count] 

 1;iaIndex       [0-sleep; 1-awake]  

 1;ilrt              [Wake up session no] 

 0;isTrap              [Sleep Trap indicator] 

* 0;if       [Predicted value of model] 

    ENDFOR 

3. [Perform continuous prediction] 

    DO WHILE NOT DONE 

    BEGIN  

 0;K   0;C   
1

2* P
   ; * 0;f   0;sum   

 *cov( ) 0;if          [Variance of prediction] 

            *, , ( );X y x getData D       [Get data for pStep th round] 

  

 FOR 1,2,...,i P  DO          [Who will wake up ?] 

 BEGIN 

                  IF 0 & &i i iaIndex pCount    THEN        [Waiting over] 

  1;K K    

       ENDIF 

 ENDFOR 

            IF 0K   THEN         [Set the weight of awakened models] 

            BEGIN 

    FOR 1,2,...,i P  DO 

    BEGIN 

                      IF 0 & &i i iaIndex pCount   THEN 

                      BEGIN 

                                ;
1 *

j
K








 

           0;isTrap   

            0;ipCount   

            1;iaIndex   

  ENDIF 

      ENDFOR 

            ENDIF 

 FOR 1,2,...,i P  DO  [Prediction by awakened models] 

 BEGIN 

    IF 1iaIndex  THEN          [Awaked, so predict] 

   BEGIN  

            * * *
ˆ ˆ[ ,cov( )] gp( ,cov , , , );i i i if f hyp X y x   [Predict for *x ] 
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* * * * ;

i if f f    [Weighting individual prediction]  

          ;iC C     

    ENDTHEN 

   ELSE        [Sleeping, reduce sleep count] 

    BEGIN 

           1;i ipCount pCount    

  IF 1isTrap  THEN / 2;i i  

    ENDELSE 

  ENDFOR 

              * * / ;f f C          [Ensemble prediction] 

               *( );otput f       [Output predicted value] 

              ();iy Interact                 [Obtain real trust] 

   FOR 1,2,...,i P  DO                 [Calculate likelihoods] 

   BEGIN 

      IF  1iaIndex   THEN            [Only Awakened models] 

                 BEGIN    

                        
2

*

22
**

1 ( )
*exp ;

2*cov( )2 *cov( )

i i
i

ii

y f
l

ff

 
  

 
 

           ;sum sum il l l    

            ENDIF 

               ENDFOR 

               FOR 1,2,...,i P DO         [Update weight and sum up] 

        BEGIN 

                    IF  1iaIndex   THEN 

                    BEGIN 

   ;i
i i

sum

l

l
     

   ;isum sum      

        ENDIF 

       ENDFOR  

                  FOR 1,2,...,i P                         [Normalize weight] 

         IF  1iaIndex   THEN  ;i
i

sum


    

      ENDFOR      

                  FOR 1,2,...,i P    [Making model selection for next round] 

       BEGIN 

         IF  i   && 1iaIndex  THEN 

          BEGIN 

            0;ipCount    
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            0;iaIndex   

              IF ( 1)ilrt pStep   THEN 

                        BEGIN 

       2 * ;i i  

                              1;isTrap   

  ENDIF 

                      ENDTHEN 

          ELSE 

  1;i  

           ENDIF 

          ;i ilrt pStep    

         ENDIF 

      ENDFOR 

     1;pStep pStep                    [Go for next prediction] 

ENDWHILE 

 

The algorithm first receives the p  GP models. Each model is defined by its 

initial hyperparameters hyp  and covariance kernel cov  (here mean is assumed 

to be zero for all model). In each round of prediction, the training data and query 

point are obtained by the function ()getData . All ensemble members are trained 

on these inputs to obtain their optimised hyperparameters using the function

 
1

( , ov ,X, y)
P

i i i
trainModel hyp c


. At the beginning of a prediction round a 

check is made to find out those members who will be awakened or recovered 

from last sleep. If there is at least one member to be recovered, then its weight 

in the ensemble vector is first set and then proceeds for prediction along with 

all other members who are not put to sleep in the previous round. Prediction by 

each member is done by calling the function *
ˆ ˆgp( ,cov , , , )i ihyp X y x . Weighted 

sum of the all predictions and finally the ensemble prediction is formed in *f . 

Using this predicted value our service consumer will interact with the service 

provider to obtain the real QoS value y. For the next round of interaction, the 

ensemble weights are updated based on the likelihood value l . At the same time 

which member model will be put to sleep at the end of  just concluded round is 

done by checking the validity of the condition i  . If a model is to sleep, 
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first we check its last recovery time lrt . If ( 1)lrt pStep  then the model is 

going to sleep immediately after the last recovery, therefore it will fall into a 

sleep trap. Consequently its sleep trap flag, sTrap  will be set and sleep counter, 

 will be doubled. 

 

4.3.2.4 Incremental update of the Ensemble Members 

 

In our set up, the predictions are performed sequentially as shown in the Figure 

4.3. By the time the prediction for time t  is over, the service user has to predict 

the trust value for time 1t  , so we need to have the query regime vector 1NX

To obtain this we have to gather the observation 1ty  . Either the direct trust value 

generated by using Eq. (3.26) or the recommended trust value generated using 

Eq. (3.33) can be used to form 1ty  . Once we obtain 1ty  , the query regime vector 

for time 1N as Eq. (4.19) 

 

 1 1 ( 1)[ ,...., ]t t t t mX y y y                                              (4.19) 

 

The update of the observation vector 1 2 1[ , ,....., , ]t ty y y yy  and its associated 

course time series 1 2 1[ , ,....., , ]t tX x x x x  can be done sequentially in this 

manner. However, if we do not update Markov model and ensemble, the 

proposed models will fail to produce desirable results. On the other hand, 

retraining of   R P  members will be highly costly.  Therefore, we adopted the 

online update method of [160] for the covariance matrix of all GPR experts.  

 

All R P members are not updated at the end of each prediction session. We 

followed the following step for the update. 

Step 1: Insertion of new pair 1 1[ , ]t tyx . 

We first insert the pair 1 1[ , ]t tyx   to one of the R  regimes (clusters). The target 

cluster is identified from the future state vector fV  created in Activity-2 of the 
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prediction phase of model-1. As this vector has only one non-zero entry, the 

column index of this non-zero entry is the regime where the pair must be 

inserted.  

For the case of extended model-2, we identified the regime by using the 

posterior probability vector
1 2, ,[ ....., ]

Rs s sp p p . We selected the target regime as the 

regime that has the maximum probability value in
1 2, ,[ ....., ]

Rs s sp p p . 

 

Step 2: Update of ensemble members 

 

Once the target regime is selected, the update of the covariance matrices of the 

P  GPR experts is done by using the method explained in [160]. 

The predictor vector 2 1( )j nK I  of Eq. (4.12) can be incrementally 

updated by directly adjusting Cholesky decomposition of the Gram matric 

2 1( )j nK I . For this purpose the predictor vector can be rewritten as Ty LL

, where the lower triangular matrix L  is a Cholesky decomposition of the Gram 

matrix. Incremental insertion of a new point is achieved by adding a an 

additional row to the matrix L .  newL  and newK are obtained by adding an 

additional row and column, such that  

,new new
* *

K
l k

T
new new new
T

new

L 0 K K
L

l k
 

where ( )knew newk X, x  and ( )newk k new newx , x  then l  and *l can be computed 

by solving 

2

* newand l knewLl k l  

 

Now the update steps are as follows: 

 

 Compute l  after computing the kernel vector newk and by substituting it 

back in newLl k  
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 Compute *l from 
2

* newl k l  

 Compute new by twice back-substitution  while solving 

T
new new new newy = L L  

 

After the update of the covariance matrices the Markov model can be either 

retrained or continue for prediction with the previously trained 

hyperparameters. 

 

 

4.4 Experiments and Results 
 

 

To evaluate the effectiveness of our proposed models, we compare them with 

one of the popular state of the art reputation trust models [80]. The simulated 

experiment was conducted in MATLAB. The MATLAB functions were used to 

simulate the behavior of Web service providers and service consumers. First we 

explain the simulation environment in the following. 

 

 

Experimental Environment Set Up 

 

Our simulation environment is a community of  Web service providers, Service 

consumers and Service raters (Figure 4.8). Service raters are also service 

consumers, but they are the sources of recommendation in our experiments. 

 

We have created an environment of 200 raters, five service providers of 

different behaviours and two service consumers. We ran three rounds of 

simulation (for each value of k ) consisting of 1000 transactions. In each round, 

a particular type of Web service provider from the pool is selected and all the 

models performed the assessment of its behavior from 1000 transactions. Final 

comparison among the performance of models is performed taking the average 
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of these three rounds. In one transaction of each round the following events are 

designed to occur: 

 

 

Figure 4.8: Simulation Environment where ( , )js u  is the experienced 

QoS of a service provider 
js  by a user in a transactionu . Dishonest 

users add a noise term (0, )k   to their experienced QoS to form 

recommendation.  k is a scaling factor in the range (1-3) and  0.01   

is the standard deviation. 

 

   

 First, a random number of service raters interact with one of the four 

service providers. The experienced QoS value from this selected service 

provider is then recorded.  

 Second, these service raters exchange the experienced QoS among 

themselves and to update two counters #, #n p  to asses each other’s 

reputation feedback trust by using Eq.3.27. If received QoS value differs 

from the actual value by a threshold, #n  increased 1; otherwise #p  is 

increased by 1. We used a threshold value of 0.02 in our experiment. 

 Third, the two service consumers collect the rating values tagged with 

their time of interaction from these service raters. Rating values were 
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then used to evaluate the trust value of the service provider using their 

own trust models (TR1 and TR2). In case of consumer-1, for each rater, 

from which the rating is collected, a check is made to see whether the 

rater is in its reputation range using a value of the threshold thR . If the 

rater is not in the reputation range, then the values of the two counters 

#, #n p  corresponding to this rater are also collected from other raters 

to assess the reputation trust of the rater. From the collected information, 

Eq. (3.28) to Eq.(3.30) is used for the evaluation of reputation trust of 

the rater.   

 Finally, two service consumers interact with the service provider 

selected in this round to get their own assessment of its quality. This 

self-assessed quality value is recorded. 

In order to cover all possible scenarios, we considered the following types of 

Web service providers in our provider pool.  

Consistently High performer (P1): This category of provider does not engage 

in any malicious activity. They deliver consistently high QoS. We modeled this 

type of service provider by using MATLAB function to produce a QoS values 

in the range (0.8-1.0). For generation of QoS values we used MATLAB’s 

random number generator function.  

Consistently Low performer (P2): This category of provider is same as the 

above category, however they consistently deliver low QoS values in the range 

(0.0-0.2). These type of providers are the ones who always take advantage of 

the consumer. 

Malicious High to Low performer (P3): The providers in this category, 

perform honestly at the beginning to derive a good reputation trust and then start 

‘milking’ the derived reputation value. We model them by another MATLAB 

function which generated the QoS values in the range (0.8-1.0) initially in the 

first half of the interactions and then generated low QoS values in the range 

(0.0-0.2) in the latter half of the interactions. 
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Malicious Low to High performer (P4): The forth category behaves in an 

opposite manner to the malicious High to Low performer. They are the ones 

who learn from their previous mistakes.  

Oscillatory Performer (P5): The last category of providers who sometimes 

perform satisfactorily and unsatisfactorily at other times. Our MATLAB 

function generates the QoS values in the range (0.0-1.0) for this type of 

provider. 

Our service consumers, who were designed to act as raters behaved in one of 

the following models. 

Honest Rater(R1):  Rater of this type always provides the values of QoS as 

their experienced QoS values without any modification. 

Dishonest Rater(R2): They always do not provide the QoS values experienced 

without modification. They generate the rating QoS values by adding a noise to 

the QoS value experienced, ( , )js u . In our simulation, we added to the 

experienced QoS value, ( , )js u  a white noise term, (0, )k  , that follows 

a zero-mean Gaussian distribution. The variance of the distribution is set to be

k  , where k a scaling factor in the range (1-3) and    is the standard 

deviation. To accommodate subjective inaccuracy in the recommended QoS 

values, we set 0.01  , which means a relatively big deviation noise. Hence, 

for different values of k , each feedback QoS  value will have a different 

deviation that follows a zero mean normal distribution with variance in the 

range (0.01- 0.03).  

Consumer-1 is equipped with our trust model. Consumer-2 is loaded with 

RATEWeb [80] trust model. These two consumers collect the ratings from the 

group of service raters. Then they combine these feedbacks along with their 

personal experience to derive the final trust value for each interaction with any 

selected service provider.  

Consumer-2 uses a trust model based on RATEWeb. RATEWeb trust model is 

multi-attribute trust model. On the other hand our proposed models are single-

value trust models. Therefore, for equitable comparisons with our models, we 

considere only one QoS attribute of the service provider while implementing 
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RATEWeb. In other words, our consumer-2 and all service raters will evaluate 

the reputation of Web service provider based on single QoS attribute. The 

original metric for reputation of a service 
js  given in Eq.(4.20). 

 
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Here ( , )x

h js u  is the rating assigned to the QoS attribute h   by the service rater 

x  for the service provider 
js  in transaction u , hRSV  is the preference of the 

service consumer for the attribute, m  is the number of QoS attributes, and L  

is the set of service consumers. 

For a single QoS attribute Eq. (4.20), has been reduced to Eq. (4.21). 
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Here ( , )js u  is the rating assigned to the single QoS attribute by the service 

rater x  for the service provider 
js  in transaction u . It may be noted that when 

1m   , hRSV  cancels out.  

 

The trust model of the consumer-2 is given in Figure 4.9. A loop is iterated over 

a list of service rates that have personal assessment of the service provider  
js  

in question and reputation feedbacks are collected. The collected reputation 

feedbacks Vi’s are used to compute majority rating M, Then the credibility Cr of 

each rater is computed by using the majority rating M¸ last assessed reputation 

A and rating usefulness factor Ufr . 
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Figure 4.9: Trust model for consumer-2 based on RATEWeb[80] 

 

Finally, the reputation of the service provider 
js  is computed using Eq.( 4.21). 

The reputation value is diluted by a time-dependent decay factor df .   

Consumer-1 used all the trust model proposed in Chapter-3 and their extended 

versions explained earlier in this Chapter. The short names of the models that 

we used in the description are summarized in the following Table-4.2. 

 

Table -4.2: Short names for the four proposed models 

Short name Model Details 

M1 Markov chain based Local GPR  (MLGPR) 

M2 Markov Chain Local Ensemble Predictor Model 

M3 Coarse Grained Hidden Markov GPR (CHMMGPR) 

M4 Course grained HMM ensemble predictor model 

To implement the ensemble models M2 and M4, we use seven GPR models. 

The corresponding covariance functions used to contrast the seven members are 

given Table 4.3. 

 

 

 

 

Input: Ratings of service provider                       

                                                                Output: Reputation trust of the service provider 

Collect Ratings 

Vi’s 

Compute M 

Compute R Compute Cr          Get A 

Get Uf Past Self Experiences 

Get fd 
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Table 4.3: Models with their kernels 

Ensemble 

Member 

Corresponding Kernel used 

P1 SE 

P2 RQ 

P3 Lin 

P4 Lin x SE 

P5 C+Lin+WN 

P6 Lin+SE+WN 

P7 SExPer 

 

Table-4.4: Parameters Settings for Simulation  

Parameter Name Value 

Time Horizon, hT   100 time instances 

Time spot, T   1 time instance 

Weighting factor,   of  Eq.(3.25) 0.5 

Reputation range threshold, thR  0.5 

Advisor usability threshold, athR  0.9 

Regime vector selection threshold, thxC  0.9 

Model order, m   1 

Number of regimes (clusters), R   3 

 

 

The opened parameters of the models M1-M4 in the simulation were set 

according to the Table 4.4. 

We need to fill up two buffers each of length equals to the Time horizon hT  

with direct trust values from the personal direct experiences of our consumer-1 

and reputation feedbacks from the raters respectively. This is the booting period 

to use the proposed prediction mechanisms. Evaluation of the final trust value 

of each service provider at different time instances by service consumer-1 was 

done according to following. 
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First transaction:  
 

The final trust value of the Web service provider is assessed using Choice-1 of 

our direct trust algorithm 3.2 given in Chapter-3. This is because there is no 

transaction recorded in the direct trust table of our service consumer. So trust 

value is calculated from only the indirect trust component of Eq. (3.25) using 

Eq. (3.31) to Eq. (3.33) 

 

From second transaction up to the th

hT  transaction: 

 
 

This is the booting period for the prediction models. Final trust values during 

this period are calculated using Eq. (3.25). Its direct trust component was 

evaluated using Eq.3.26 and the indirect trust component was obtained from Eq. 

(3.31) to Eq. (3.33). 
 

From ( 1)th

hT   transaction up to 1000th transaction: 

 

Trust evaluation during this period was done using Eq. (3.25). However the 

direct trust and indirect trust components were estimated using the prediction 

mechanism proposed in models M1-M4 given in Table 4.3. 

  

When the buffers are full, every time a transaction happens, the actual 

experience of QoS value and recommended reputation value are saved and the 

oldest values from both the buffers are discarded. This is done to maintain only 

the records of the last hT   transactions. Since RATEWeb does not use the 

context information, in the simulation we assume that all interactions happened 

for only one context and hence only the Type 2 of information sources given in 

Table-3.3 of Chapter 3 are used.  

 

In our implementation, the value of df  and time decay factor for  Eq. (3.26) and 

Eq.(3.31)-Eq.(3.33) are decided from an exponential decay model  
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1( )n nk u uk te e       where  k  is the decay rate and t is time difference between 

two transactions.  Figure 4.10 displays the effect of decay rate over transactions. 

We have divided the time horizon hT  into equal halves. All feedbacks in the 

first half are given a decay factor of k = 0 and last half is associated with a decay 

factor of 0.01k  .  

 

 

Figure 4.10: Exponential Time Decay Model 

 

Experimental Results 

 

We performed two sets of experiments. In the first experiment, we maintained 

the ratio of dishonest raters to honest raters at 75:25. In the second experiment, 

we reversed this ratio. In all experiments, we conducted three rounds of 

simulations with the noise variance 1 , 2  and 3 . The average behaviours of 

all the models are presented below.  

The comparison of the four proposed models with the RATEWeb [8] is shown 

in Table 4.5 and Table 4.6.  The comparison is done using the average of Root 

Mean Square Errors (RMSE) and average Normalized Mean Square Error 

(NMSE). Given N  trust predictions, the RMSE and NMSE are calculated from 

the Eq. (4.22) and Eq.(4.23). 

 
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Here, T̂  and T  are the predicted and the real trust values, T̂  and T  are the 

means of the predicted trust and real trust values. Average of RMSE and NMSE 

are calculated by taking the average of Eq. (4.23)-(4.24) over N predictions. 

 

Results presented in these two tables clearly show that our proposed models 

except M1 have smaller values of average Root Mean Square Error (RMSE) 

and average Normalized Mean Square Error (NMSE) as compared to 

RATEWeb model. Therefore it can be concluded that Models M2, M3, M4 

outperformed the RATEWeb model in trust prediction. The best model is M4 

followed by M2, M3, RATEWeb and M1.    

 

Table-4.5: Comparison of prediction performance of all models when the 

honest raters outnumbered the dishonest raters.  

Model 

Provider Model 

P1 P2 P3 P4 P5 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

M1 0.0020 0.0039 0.0021 0.0156 0.00103 0.0089 0.00457 0.0047 0.0069 0.0287 

M2 0.0005 0.0023 0.00115 0.00288 0.00090 0.0071 0.00021 0.0020 0.0032 0.0057 

M3 0.00011 0.0025 0.00121 0.00335 0.00089 0.0068 0.00026 0.00198 0.0076 0.0348 

M4 0.0001 0.0018 0.0011 0.0022 0.00012 0.00017 0.00017 0.00088 0.0011 0.0045 

RATEWeb 0.0011 0.0022 0.0014 0.0037 0.00094 0.0067 0.00029 0.0020 0.0078 0.0357 
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Table-4.6: Comparison of prediction performance of all models when the 

dishonest raters outnumbered the honest raters.  

Model 

Provider Model 

P1 P2 P3 P4 P5 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

N
M

S
E

 

R
M

S
E

 

M1 0.0043 0.0058 0.00301 0.6235 0.0036 0.0645 0.0235 0.0287 0.0898 0.0632 

M2 0.0013 0.0032 0.0011 0.2845 0.002 0.0068 0.0016 0.0132 0.0085 0.0207 

M3 0.00128 0.0034 0.0013 0.3105 0.003 0.0065 0.0019 0.0129 0.0802 0.0396 

M4 0.0011 0.0030 0.0015 0.1212 0.0010 0.0032 0.0016 0.0124 0.0040 0.0134 

RATEWeb 0.0013 0.0034 0.0011 0.0550 0.0010 0.0070 0.0018 0.0133 0.0432 0.0835 

 

Further, to visualize graphically the performance of prediction, we selected M4 

and RATEWEb and showed their prediction performances in Figure-4.11-

Figure-4.15. In all the figures, the two left most plots are made from 100 

samples selected out of 1000 transactions. The rightmost plots show the 

cumulative distribution function of prediction errors from 1000 transactions. 
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Figure 4.11: Performance of M4 and RATEWeb in prediction of behavior of 

an oscillatory Web service provider 
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(a) Honest raters = 75% and Dishonest Raters = 25%
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(b) Honest raters =25% and Dishonest Raters=75%
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Figure 4.12: Performance of M4 and RATEWeb in prediction of behavior of 

consistently good Web service provider 
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Figure 4.13: Performance of M4 and RATEWeb in prediction of behavior of 

consistently bad Web service provider 
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RMSE=0.0014, NMSE=0.00037

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

T
ru

s
t 

V
a
lu

e

 

 

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transaction

P
re

d
ic

ti
o

n
 E

rr
o

r

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prediction Error

C
u

m
m

u
la

ti
v
e
 D

is
tr

ib
u

ti
o

n

 

 

True Value

RATEWeb

RMSE=0.0550, NMSE=0.0011

(d) Honest Raters = 25% and Dishonest Raters=75%



147 

  
 

 
 

 

 

 

Figure 4.14: Performance of M4 and RATEWeb in prediction of behavior of 

Web service provider who swings from high to low performance 
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Figure 4.15: Performance of M4 and RATEWeb in prediction of behavior of 

Web service provider who swings from low to high performance 

 

In all the figures, it can be observed that when the honest raters outnumbered 

the dishonest raters in the environment, the predicted trust values by all models 

are fairly consistent and close to the real trust values. However when the number 
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(a) Honest Raters = 75% and Dishonest Raters=25%
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(b) Honest Raters = 25% and Dishonest Raters=75%
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of dishonest raters is more than the honest raters, the predicted trust values 

deviate from the actual behavior of the Service provider. This is due to the 

reason that most of the reputation feedbacks are obtained from dishonest 

sources. However, in all the models, due to incorporation of the direct 

experience of the service consumer, the assessed trust values are still close to 

the actual values. The difference is around a margin of 0.2. Among the models, 

M4 showed better prediction accuracy compare to RATEWeb in their 

performance. This can be justified from the cumulative distribution plots of the 

prediction errors over 1000 transaction in all cases. 

 

Experiment with real data set-1 

 

We performed one experiment on the real life dataset obtained from Cloud 

Armor Project. The same dataset is used in chapter 3. In this experiment, we 

make a comparison of our proposed models with one HMM based trust 

prediction model for Web services [161]. They modeled reputation as a time 

series and used a Hidden Markov Model (HMM) to predict future reputation. 

Reputation is derived from a set of Quality of Web Service (QoWS) parameters 

such as performance, availability, reliability and response time. Thus, the 

reputation of a service in their model is represented by a single value or a vector 

representing a value for each QoWS attributes. A HMM with a mixture of 

Gaussian distributions is used as the emission probability function of every 

state. 

 

Training Data Preparation 

 

We have selected a service called “BlueHost” for the study. The details of the 

QoS values of the selected Web service are given in the Table 3.4. There are 

455 feedback sessions recorded for this service. Only the values for QoS 

attributes availability, price, accessibility, ease of use and technical service are 

recorded. The value of each QoS attribute is an integer in the range 1-5 while 
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the final trust value is real vale in the range [1,5].  In 43 sessions the value of 

one or more of the QoS attributes are found missing. We removed these sessions 

from the data set.   

Table 4.7: Details of data set selected from Cloud Armor dataset 
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Experimental Results 

The number of states R of the HMM model is decided by using the Elbow 

method. The plot of the total within cluster sum of squares against the number 

of clusters is shown in the Figure 4.16. We used 4R  for the experiment. 50% 

of the data points were used for initial training of all models.  
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Figure 4.16: Selection of number of clusters by Elbow method. 

 

The trained models are then used on the remaining 50 % of the reputation time 

series data to ascertain the accuracy of all models. The models are compared by 

using the percentage error given by the Eq. (4.24). 

 

100
predicted value actual value

PerErr
actual value


                       (4.24) 

 

Figure (4.17) shows the percentage errors in prediction using all the models. 

The results in all the figures show the comparison of actual trust data with 

predicted trust data. As can be seen, all the proposed methods are able to 

compete with the Gaussian Mixture HMM model. Except models M1 and M2, 

all other models performed better than Gaussian Mixture HMM model. 

 

The experimental results clearly show that statistical techniques and machine 

learning techniques focus on providing a sound theory for trust management. 
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Figure 4.17 : Predicted Vs actual trust values and prediction performance in 

the form of  percentage error for all models 
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Experiment with real dataset-2 

 

Another set of experiments was conducted with the data set [161,162]. The 

dataset describes real-world QoS evaluation results from 339 users from 30 

countries on 5,825 Web services in 73 countries. The data set consists of two 

339 by 5,825 real-world matrices for response time and throughput, 

respectively. Each entry in the matrix represents the response-time or 

throughput value observed by a user on a web service. We used in this 

experiment the matrix of response-time to investigate the prediction quality and 

consistency of our proposed models. The mean and standard deviation of 

response time are 1.43 and 31.9 seconds, respectively. The large deviation 

indicates that response time has a wide range of values.  

 

For the purpose of our investigation, we have selected randomly 10 Web 

services. Each of these Web services exhibits different behavioral pattern with 

respect to response time values. The plots of response time values across 339 

users are provided in Figure 4.18.  

 

Figure 4.18: Response time values and country of origin of 10 randomly 

selected Web services 
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We  used 50%  of the 339 response time values in all the Web services to train 

our models and remaining points are used for the prediction. A value of 1m   

is used for all cases. To measure the performance of our models, Mean Squared 

Error (MSE) ( in Eq. (4.22)), Mean Absolute Error (MAE ) , and Symmetric 

Mean Absolute Percentage Error (SMAPE) are used as the key performance 

indicators. 

1

1 ˆ
N

t t

t

MAE T T
N 

                                            (4.25) 

1

ˆ
100

ˆ

N
t t

t t t

T T
SMAPE

N T T





                                       (4.26) 

Here, tT  and T̂  are the real and predicted values, respectively. MSE and MAE 

represent the difference between the actual value and the predicted value. 

SMAPE is an accurate measure based on percentage error. Its value belongs to  

the range 0% and 100%. If the practical value of SMPAE is near 0%, the 

predicted results are quite accurate. 

It can be seen from Table 4.8 that model M4 has consitently low values for the 

three indicators – MAE, SMAPE and MAE.  SMAPE  values of  M4 are within 

the range of  3%  to 5%. SMAPE values of M1, M2, and M3 are within the 

range of 4% to 60%, 2% to 7%, 7% to 25% respectively.   Next to M4,  model 

M2 has otperformed the other models. Finally M3 superceeds M1 in terms of 

prediction performance. We have ploted the indicator values for all models 

against the selected 10 Web services in Figure 41.19 to Figure 4.21. 

This observation we have maded can be further verified from the three plots. 

The experiment clearly indicates that our proposed models can be used for 

prediction of  Web service QoS or trust values under varied behavioral 

conditions. 
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Table: 4.8 : Performance indicators values for for models M1,M2,M3 and M4 
M

o
d

el
 

In
d

ic
a
to

r 
Web service 

#1 #2 #7 #14 #33 #42 #50 #96 #242 #339 

M1 

MSE 0.2884 0..2630 1.2502 0.8088 0.4645 0.2650 1.1014 0.3545 1.2504 0.1925 

SMAPE 9.6461 10.6742 5.9185 59.1265 13.3595 10.7712 5.9035 11.4904 5.9210 5.9452 

MAE 0.9120 0.1252 0.2433 1.5555 0.1210 0.1223 0.2093 0.0834 0.2413 0.2087 

M2 

MSE 0.0985 0.0921 0.1284 0.1987 0.1042 0.0991 0.1284 0.1030 0.1284 0.1251 

SMAPE 3.7679 3.8099 5.7534 6.3373 3.7477 3.8815 5.6575 3.8011 5.6462 5.624 

MAE 0.0836 0.0974 0.03417 0.1925 0.1001 0.0941 0.2550 0.1141 0.2814 0.0724 

M3 

MSE 0.0776 0.0804 0.3622 0.3000 0.1523 0.0825 0.3543 0.0795 0.4547 0.0792 

SMAPE 11.4854 11.5154 15.3365 11.1517 8.1605 8.3654 12.9832 11.4780 14.7926 20.234 

MAE 0.1048 0.1031 0.1927 0.1925 0.1367 0.1021 0.1076 0.1048 0.1925 0.1854 

M4 

MSE 0.0150 0.0147 0.0186 0.0140 0.0137 0.0152 0.0187 0.0150 0.0187 0.0146 

SMAPE 3.6746 3.5931 3.3879 3.3390 3.3142 3.9078 3.4277 3.6755 4.4299 4.5421 

MAE 0.0144 0.0154 0.0154 0.0129 0.0151 0.0145 0.0155 0.0144 0.0154 0.0144 

 

 

Figure 4.19: Plot of  Mean Square Error (MSE) values for all models accorss 

10 selected Web services. 
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Figure 4.20: Plot of  Symmetric Mean Absolute Percentage Error (SMAPE) 

values for all models accorss 10 selected Web services. 

 

 

 

Figure 4.21: Plot of  Mean Absolute Error (MAE) values for all models 

accorss 10 selected Web services. 
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4.5 Conclusion 
 

In this chapter, we have proposed an ensemble prediction using different GP 

models as its members. While using GP model, the selection of the kernel is 

very important as it is our prior knowledge about the input data. Using our 

model selection approach based on the likelihood measure, we can select the 

ensemble members to participate in the next prediction step. One of the main 

concern about GP model is its computation time, which is O(n3). To reduce the 

computational cost, a novel sleep and recovery mechanism and online update 

technique of the covariance matrix of a GPR are used. The application of our 

ensemble models and as well as the other two models proposed in Chapter 3 in 

the sequential prediction has been experimentally shown. All the models are 

tested in dynamic environment, where the Web service provider and the third 

party information sources exhibit different behaviours over the transactions. 

The dynamic characteristics of trust and reputation values over time have also 

been considered in the experiment by using a time decay factor. 

 

The experimental evidences show that the proposed framework can compete 

with the existing models Except for one model, all proposed models are found 

to have better prediction accuracy than the state of the art trust model. Further, 

the superiority of the framework of our ensemble model over the prediction 

model in Chapter 3 has also been experimentally established. 
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