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Chapter 5 
 

Heteroscedastic Gaussian Process Trust 

Model for Reputation Sources with 

Independent Error Distribution 

 
 

Introduction 
 

Reputation-based trust systems are deployed as a popular approach to mitigate 

the risk by giving a prediction of the degree to which the service provider can 

be trusted. 

Reputation is based on the recommendations provided by other service users. 

The collection, aggregation and distribution of recommendations  about a 

service provider to be trusted, that can, in turn, be used to characterise and 

predict that provider’s future is the major parts of any reputation system. 

Reputation is context-dependent and relies on contextual information to give 

the data a meaning. There is no common definition of context used by 

researchers. While estimating reputation, more recent transaction behaviour 

should have a greater impact on a peer's score than older transactions, e.g. 

weights or aging factors can be used to give more importance to recent 

experience. Therefore, in many trust and reputation systems [21],[110] the time 

at which the feedbacks were measured is incorporated into  modelling of the 

reputation. Reputation is a statistical value about the trust probability derived 

from the behaviour history. While estimating this probability, the prediction 

variance plays a major role to counter the effect of malicious feedbacks. 

Prediction variance depicts how much the feedback may deviate from the real 
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reputation or trust value. In [111], the feedback is considered as a tuple ,z c ; 

where z is the feedback value, and c is the prediction variance. Values received 

from different sources are aggregated in the feedback system using a Kalman 

filter. Kalman filter also produces the prediction variance. This variance is used 

to predict the reputation of the target node. In [121], their study argued that this 

system might not give good result when the correlation is less between different 

observed samples. So a proper mechanism for selecting the feedbacks in the 

final aggregation is necessary. Again, the age of the feedback and credibility of 

the feedback source are not considered in the final aggregation. Incorporating 

these two factors into the aggregation process will help the reputation evaluator 

to take care of the changing nature of the provider behavior and malicious intent 

of the dishonest recommenders. Further, sources of reputation feedbacks are 

independent of each other. So the amount of noise introduced in the feedback 

cannot be modeled by a single noise distribution. We propose, in this chapter, a 

kernel based mechanism for collecting and weighting the feedbacks from 

independent sources by their age and by the trust value of the sources using 

Gaussian Process Regression (GPR).   

Finally, hypothesis testing method of [113] is used to build a multilayered 

mechanisms to filter malicious feedbacks. 

5.1 Heteroscedastic GP 
 

We keep the notation of   section 3.2.3 for convenience and recall the 

definitions. There are observed target values yi, given by the true underlying 

function value f and some i.i.d. noise 2(0, )nN   as ( ) , yi i iy f Rx  Given 

the data sets of n training inputs  
n

D x yi, i i=1
  and test point *x  the Gaussian process 

predictive distribution given by   

* *

2 1
* ( )T T

nf k K I y k                                     (5.1) 
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2
* *, * * *cov( ) ( ) ( )T

nf k x x k K I k x   
 

                                     (5.2) 

From these equations, it can be seen that the noise is independent of the inputs 

with the value 2
n  . Such GP model is termed as homoscedastic GP. While 

homoscedastic GP model is still able to correctly estimate the mean, it totally 

fails to approximate the variance for the system where the input itself is also 

noisy. If the global noise level is too small, the variance is underestimated at the 

beginning. On the other hand, if the noise level is too big, the variance is 

overestimated at the end. Taking input-dependent noise into account the 

problem can be solved. Such models are said to be heteroscedastic. In such a 

system where the input, x   is a noisy measurements of the actual input, x    we 

model : 

xx x    (0, )x xN   

Here each input dimension is independently corrupted by a zero-mean Gaussian 

noise, so x  is diagonal. Due to x , now the level of noise varies at different 

locations of the input x . Under this assumption, the Eq(5.1)-(5.2) are 

respectively changed to 

* *

1
* ( )T T

xf k K y k                                    (5.3) 

  
1

* *, * * *cov( ) ( ) ( )T
xf k x x k K k x


                                     (5.4) 

However, unlike the standard GP case, heteroscedasticity leads to an intractable 

integral for the posterior updates. There are approximate solutions for such GP 

models [114], [115], [116].  A tractable solution under the assumption of 

independency between the noise present in all dimensions of the input x, is 

given in [113]. 

5.2 Proposed Model 
 

5.2.1 Problem Formulation 
 

We start with some definitions to explain the proposed reputation model.  
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Definition 1:  The reputation feedback is the reputation information of the 

service provider collected by the evaluator from a third party source. 

Here the evaluator is a service user. Evaluation of the reputation is based on the 

interactions carried out directly between the service provider and the evaluator 

(direct experience) and the recommendations made by other evaluators. This 

evaluation finally generates reputation as a statistical value. Let us denote 

reputation evaluation as a 3-tuple , ,R P t , where R  is the predicted 

reputation value during the evaluation, P  is the reputation prediction variance, 

given by the square error between the predicted reputation value R  and the 

real reputation R and t  is the time instance at which reputation evaluation is 

done.  When a tuple , ,R P t  is obtained by an evaluator, it can be used either 

to form a decision for interaction with the service provider or to communicate 

to other peer service users as reputation feedback. Depending on the nature of 

the evaluator, the feedback might not be exactly same as the tuple , ,R P t . In 

other words, if the evaluator is a dishonest one, the feedback he communicates 

will be different from the true value  , ,R P t .  So we denote the feedback as

, ,z c t . Now we formally define a feedback session. 

Definition 2:  A feedback session is a mapping from , ,R P t  to , ,z c t .  

In this mapping, z  is coming from R  and c  from P . Here c is the feedback 

variance, which serves as the measure of reliability of the feedback. At the same 

time, it is an indication to other evaluators about how to intelligently aggregate 

the feedback reputation value z . While evaluating the reputation of a service 

provider, feedbacks are continually collected through feedback sessions. A 

feedback received at a session s  is denoted , ,s s
f z c t . Here we assume that

t s  because the feedback received in a session might have been formed earlier 

than k . After each reception of a feedback sf , the evaluator tries to predict the 

real-time reputation sR of the service provider. During the prediction process 
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we need to consider the changing nature of the service behavior over time and 

the reliability of the feedback source. Therefore, the age of the feedback and the 

credibility of the feedback source are to be accounted for. For this purpose we 

introduced accounted reputation feedback. 

Definition 3:  An accounted reputation feedback is the reputation value of the 

service provider generated by the evaluator, from the reputation feedback, after 

considering the age of the feedback, and the trustworthiness of the source. 

The accounted reputation feedback value is used to predict the real reputation 

of the service provider in our model. For a feedback , ,s s
f z c t  from a source 

i, the accounted reputation feedback is calculated as  

*T*zk t

s ir e                                                          (5.5) 

where  t s t    and k  in the range [0,1]  represents the exponential decay 

factor and Ti  is the trustworthiness of the feedback source. Decay rate for 

various values on k  is shown in the Figure 5.1. 

 

Figure 5.1: Effect of time decay factor k . 

It can be observed that aged reputation feedback will have less contribution to 

the accounted reputation feedback and that less trustworthy source will have 

less influence on it too. 

Definition 4:  The reputation history D   is a collection of 3-tuples. Each 3-

tuple is defined as , , , , Ri sz c t T  where , ,z c t is the reputation feedback 

value, iT  is the trustworthiness of reputation feedback source and R s  is the 
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associated estimated real reputation from reputation feedback , ,z c t  in a 

session s . 

It may be mentioned here that in the reputation history the estimated reputation 

R s  may be replaced by the real reputation R s . The reason is that in an 

assessment of the reputation of a service provider based on a reputation 

feedback , ,z c t , the obtained estimated reputation R s  will help service user 

to decide whether to interact with the service provider at time s  . The service 

user will interact if R s is within her expected reputation range. For example, 

if her expectation is 0.5 and R 0.5s   then she will interact with the service 

provider. After the interaction the actual reputation value R s will be obtained. 

This value R s  may replace R s  in the tuple , , , , Ri sz c t T  to form the tuple

, , , ,i sz c t T R . 

.Definition 5: The reputation query is the reputation feedback , ,s s
f z c t

which initiates the prediction of the real reputation to obtain R s  by using the 

proposed model. 

With these definitions, we now formulate the problem that we want to solve. 

Problem Definition:  Given the reputation history D  and a reputation query

sf , how to predict the real reputation sR  value of the service provider. 

5.2.2. Generative  Model 
 

Essentially reputation is a statistical value derived from feedbacks from 

recommenders. Let us assume that a service user wants to evaluate the real-time 

reputation value tR  of a service at time t . The value of tR  is not known to the 

evaluator. It can only be predicted by using a prediction model. Let this 
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predicted reputation value be represented by a tuple ,t tR P , where tR  is the 

predicted reputation value and tP  is the prediction variance, which is an 

estimation about the square error between tR  and the real reputation tR . The 

variance tP  can be taken as the evaluator’s confidence in her prediction because 

it is an evaluation about the accuracy of the predicted reputation value tR . A 

smaller (larger) value of tP represents a higher (lower) confidence. 

In a reputation session, when another evaluator asks for recommendation at 

another time s , the first evaluator will map tuple ,t tR P  to , ,
s

z c t  and send 

as reputation feedback. The recipient evaluator, then tries to predict the real-

time reputation sR  from the reputation feedback , ,s s
f z c t received from a 

source and also evaluates the prediction variance sP . Due to the incomplete 

knowledge of the recommender (may be honest or dishonest) and dynamic 

nature of the service behaviour, the feedback reputation value usually has a 

deviation from the real reputation.  

The   proposed system models the deviation as a zero mean Gaussian noise. In 

other words, the reputation feedback z   is defined as a noisy measurement of 

the real reputation contaminated by a zero-mean normal Gaussian distribution 

i.e.  

1; (0,c )s s s s sz R q q N                                                 (5.6) 

By this formulation, reputation feedback of an untrustworthy estimate is 

downgraded by increasing its uncertainty proportionally to cs .   

5.2.3  Model prediction 
 

Let D be the reputation history of size n   available at time s   when a new 

reputation query value , ,s s
f z c t  is obtained from a reputation source. Our 
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interest is to predict (recover) the value of the function in Eq.(5.7) from this 

reputation history. 

    )(z ) ; (0,Ps ssR f N                                                    (5.7) 

Eq. (5.6) and (5.7) completely represent the system as a heteroscedastic GP. 

The input to the function f  is a noisy measurement of the real-time reputation 

sR and noise term in zs represents uncorrelated precisions between individual 

reputation feedbacks. Equivalently, we are trying to recover the real reputation 

sR  from the available history of past behavior. This is the general regression 

setting as we are going to regress sR  on zs . To prepare the heteroscedastic 

Gaussian process regression (HGPR), we need to define its mean and 

covariance K.  

Since we do not have any information about the provider, we set the mean to 0.  

The covariance kernel   is selected as  

     
'

'

2

2

( , )
( , ) exp( )

2

s s
s fs

d r r
k z z

l
                                          (5.8)     

where 
f  is the signal variance, l is the length scale, (.,.)d  is the distance 

function, sr and 's
r are the accounted reputation feedback values for  sz and 's

z . 

It may be noted that covariance of any two reputation feedback values is 

calculated in terms of their accounted reputation feedback values generated by 

using Eq.(5.5).. The covariance function captures the correlation between any 

two reputation feedback samples in their value domain, time domain and as well 

as in trust domain. It can be shown that the samples that are collected, very close 

to each other in any of these domains, are more correlated as their distance 

'

2( , )s s
d r r  will be less.  

In order to derive the prediction equation for HGPR model, we need to assume 

the mutual independence between the noise terms in Eq. (5.6) i.e. 's s
q q in 
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order to have a tractable likelihood [114]. This assumption implies 's s
c c . Let 

y be the vector of time discounted values of all R  components and z  be the 

vector of accounted reputation feedbacks computed from all z  components in 

all n  tuples in the reputation history D . Under our HGP model, the likelihood 

of  y  is a normal p.d.f. expressed as Eq. (5.9). 

( | ) ( | , )sp f N f qy y                                                 (5.9) 

Let *z  be the z component in the reputation query  , ,s s
f z c t  about which 

the real reputation is going to be predicted in the session s   and  *y  be this 

corresponding predicted output. Then the joint distribution of *y  and y  is a 

normal p.d.f. given by Eq. (5.10). 

*

* * * *

( ) ( , )
0,

( , ) ( , )

K K z

y K z K z z

     
    

    

zy z,z z

z
                                          (5.10) 

          1( )sdiag c z
                                                                (5.11) 

z  is the diagonal matrix of the noise terms which defined the variability of 

each reputation feedback value in D  . If we set such noise terms constantly to 

  then Eq. 5.10 reduces to standard homoscedastic GP. 

The prediction of f  can be obtained by conditioning *z  to the set of reported 

observations z  and y  in the reputation history D . By the marginalization 

properties of the Gaussian distributions, the predictive distribution of *( )f z  at 

the reputation query point in defined as Eq. (5.12). 

2

* * * *(y | , , ) ( [ ], ( ))p z N E y yz y                                            (5.12) 

where 

 1

* * *[ ] ( , )[ ( ) ]f E y K z K   zz z,z y                                       (5.13) 
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2

* * * * *cov( ) ( ) ( , ) ( , )[ ( ) ]f y K z z K z K   zz z,z                      (5.14) 

It must be noted that * *( , )K z z , *( , )K z z  , ( )K z,z  measure the correlations on 

accounted reputation feedback values. These are defined as 

* * * *( , ) ( , )K z z k r r                                              (5.15) 

* * 1 *( , ) [ ( , ),..., ( , )]nK z k r r k r rz                                          (5.16) 

1 1 1

1

( , ) ... ( , )

( ) ... ... ...

( , ) ... ( , )

n

n n n

k r r k r r

K

k r r k r r

 
 


 
  

z,z                                            (5.17) 

where ir  is the discounted reputation feedback value calculated using Eq. (5.5) 

from the corresponding reputation feedback value iz  of the thi  tuple in D . 

. 

5.2.4 Parameter Training 
 

A Gaussian process can represent  f z  obliquely, but rigorously, by letting the 

data ‘speak’ more clearly for themselves. As such, GP is not completely free 

from parameters. Eq. (5.13)-(5.14) are conditioned on the set of hyperparameters 

( , )f l  . Since their values are typically unknown, they need to be estimated 

from the reputation history as a part of model selection. They can be estimated 

by marginal likelihood optimization method, which sets their values by 

maximizing the evidence of observations in the reputation history according to 

the marginal likelihood of the model.   

Using the marginalization property of the Gaussian distribution, the log 

marginal likelihood of the predictive density of GP is defined by Eq. (5.18). 
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1

*

1 1
( ( | , , ) ln( ( | , ) ( | ) ln( ) ln(2 )

2 2 2

T n
L p f z f f p f df C C     z y y z z y y  

(5.18) 

where ( )C K zz,z . Taking the partial derivatives of Eq. (5.18) over 

( , )f l   we can obtain the following. 

1 1 11 1
( )

2 2

TL C C
C C tr C    

 
  

y y                            (5.19) 

Now factoring in the expression of the kernel of Eq.(5.5) we can obtain the 

following equations. 

2

2
2 exp( ))

2
f

f

L d

l





 


                                              (5.20) 

2 2 2

3 2
exp( )

2

f dL d

l l l


  


                                               (5.21) 

The set of the values of the hyperparameters is: 

 , ,, argmax (ln( ( | , , , )
fML f ML ML l fl p l    y z θ                       (5.22) 

where 1{ ,..., }nc cθ is the vector of all 'ic s  from D . 

The standard Polak-Ribiere conjugate descend method provided by the GPML 

Matlab toolbox can be used to solve Eq. (5.22) and hence the hyper parameters 

can be estimated. The training algorithm is given in Algorithm 5.1. 

Algorithm 5.1: HGP training 

Inputs: 

:y  time discounted predicted reputation vector. 

z :  accounted reputation feedback vector 
0 :f  Initial guess of signal noise 

0 :l  Initial guess of the length scale. 

:err  Error bound. 

max :Iter  Maximum no. of iterations. 
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Outputs: 

max :Iter Estimated hyperparameters  

 

Steps: 

1. 0 0 0, ;f l    

2. 0 0(ln( ( | , ));p


  


y z   

3. 0;h    

4. while ( 1 && max )h h err h Iter  do 

5. Begin 

6.   1;h h    

7.   
1(ln( ( | , ));h hp 

   


y z   

8.   
   

 

1

1 1

T
h h h

h

T
h h





 

  


 
  

9.   1 1;h h h h      

10.     1 1argmax ,h h hp    y | z   

11.   1 ;h h h h      

12. End 

13. return , ;h h h

f l    

 

After initializing the hyperparameters in steps 1, the conjugate gradient loop 

from steps 4-12 computes the gradient with respect to the hyperparamets of the 

previous iteration and line search direction given by   and   parameters. 

When the algorithm terminates, it returns the values of the hyperparameters in 

the last iteration. 
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5.2.5 Malicious feedback Detection Mechanism 
 

Once the HGPR model is trained prediction can be done from Eq.(5.13)-(5.14). 

To make the model more robust against the malicious feedbacks, we built into 

it the last line of defence based on the hypothesis testing method of [111]. We 

briefly describe the method in the following. 

Let 0H  be the hypothesis that reputation feedback z  of a reputation query 

, ,s s
f z c t  is honest. Eq. 5.14 provides the prediction variance 2

*( )y . In an 

environment without malicious recommenders, the deviation between the 

prediction *f  and z  must follow a zero-mean normal distribution with variance 

2

*( ) sy Q  where sQ  is yielded by Eq. (5.23) from the all predictions   up to 

session s .  

 
2

1

1 n

s i s

i

Q z R
n 

                                                        (5.23) 

Hypothesis testing method is to test whether the deviation between the *f  and 

z  is normal enough.  For a desired confidence level of the test , the hypothesis 

testing is to find the a threshold value maliTH  such that 

*(| z | )P f maliTH                                             (5.24) 

Under the hypothesis 0H , the deviation, *(z )f follows a zero-mean normal 

distribution with the variance 2

*( ) sy Q  , so we can also have that 

 
2

* 0 *(| z | | ) 2 ( / ( ) sP f maliTH H maliTH y Q                         (5.25) 

where (.) 1 (.)   , with (.)  being the cumulative distribution function of a 

zero-mean unit variance normal distribution. Solving Eq. (5.24) –(5.25), we get 

that 

           
2 1

*( ) ( / 2)smaliTH y Q                                           (5.26) 
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If the deviation *(z )f exceeds the threshold maliTH  then the hypothesis 0H  

is rejected and therefore the feedback z  of sf  is reported as malicious.  

5.2.6. Final Algorithm 
 

After having described the training algorithm and malicious detection 

mechanism, we now present the final algorithm for our proposed heteroscedastic 

Gaussian Process trust model for reputation sources with independent error 

distribution (HGPTrust). We know present our prediction model in the form of 

an algorithm: 

Algorithm 5.2: HGPTrust. 

Inputs: 

:D  Reputation history. 

Output: 

 :isMali  Malicious indication. 

* :f  Predicted reputation value. 

:D Reputation history after update. 

Steps: 

1. ( );GenYvec Dy   

2. ( );GenZvec Dz  

3. , , ;s s
f z c t      [Reputation query] 

4. ();T getTrust      [Trust of the source of reputation query] 

5. ( )

* ;k s tr z T e             [From Eq. (5.5)] 

6. Train the HGP using Algorithm 5.1; 

7. Obtain the predicted value *f  using Eq.(5.13); 

8. Obtain the prediction variance 2

*( )y using Eq.(5.14); 

9. Calculate sQ using Eq.(5.23); 

10. Calculate maliTH using Eq.(5.26); 

11. if *(z ) maliTHf then 

12.   ;isMali true   

13. else 

14.   ;isMali false  

15.   Insert *, , , ,
s

z c t T f to ;D   

16. endif 

17. return isMali , *f , ;D  
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First we generate the accounted reputation feedback vector z and time 

discounted predicted reputation vector y  using tuples of reputation history D . 

Next reputation feedback from a reputation source is collected at time s  in step 

3. The trustworthiness value of the reputation source is then obtained from the 

environment. Training and subsequent prediction are done in steps 5-9. Using 

the prediction variance the malicious threshold is then computed in step 10. 

Using the threshold value, malicious feedback is detected in step 11-12. If the 

feedback is not malicious, then a new tuple is formed and inserted into the 

reputation history in step 15. At the end, the malicious flag, predicted value and 

updated reputation history are returned. 

The algorithm requires 3( )O n  time to compute the output due to the inversion 

of the covariance matrix in Step-1 of algorithm 3.1 in Chapter-3. However, after 

the inversion of the covariance matrix, prediction only takes ( )O n  time for *f  

and 2( )O n   for the predictive variance 2

*( )y . In practice, while training our 

model with 1000 data points, it approximately takes 1.8 minutes on a 4 Core i5 

2.3 GHz CPU, 3GB RAM architecture. The time increases as we add more data 

points to the training set. 

  

5.3 Experiment and Results 
 

5.3.1 Data Set 
 

The model is tested on the Epinions data obtained from the first author of [119]. 

Epinions is an online community website where users write reviews of products 

from different categories. Users also read and rate other reviews on a numerical 

scale based on their usability. Statistics of the data set is reflected in the Table 

5.1. 
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Table 5.1: Statistics of the Dataset [119] 

# of Users 22166 

# of Products 296277 

# of Categories 27 

# of Rating 922267 

Ave Rating  4.05 

 

In our experiment, we consider a product category analogous to a Web service 

provider and different products under this category as the Web services 

provided by this provider (Category). The rating of a product (Web service) 

from a user is considered as the real reputation value R   of the Web service. As 

reputation feedback value is a nosy measurement of the real reputation value, 

we, therefore, simulate the reputation feedback by adding a deviation which 

follows a zero-mean Gaussian distribution. The variance of the distribution is 

randomly picked up from the set {0.01, 0.02, 0.03}. Further in our model the 

reputation feedback values from independent sources are associated with 

independent noise distributions. Therefore, the percentage of rating under these 

three noise distributions are divided as 20%, 30% and 50%. We use two random 

integers to pick up the variance value and distribution % value to form random 

combinations of them. For example, if the value of the first random integer is 2 

and that of the second random inter is 1, then we randomly add to 20% of the 

ratings a deviation which is generated by a zero-mean Gaussian distribution 

with variance value equal to 0.02. Finally, the usability value of each rating from 

a user is considered as the trustworthiness value T  of the reputation feedback 

source. The category we select from the dataset is 1 which is “Online Stores and 

Service”. The product number 122 (no information for its name is available) 

under this category is selected in the experiments. There are 921343 ratings 

available for this product in the dataset. 
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5.3.2 Experimental Results 
 

We perform two experiments to evaluate the prediction accuracy and robustness 

of the malicious detection mechanism. We compare our model against RLM 

[111]. In the first experiment, we do not use the malicious detection mechanism 

in both the models and compare the prediction accuracy by using the following 

performance indicators. 

 

2

1

1
( ) ( )

n

i i

t

MeanSquare Error MSE R R
n 

                  (5.27) 

               
1

1
( )

n

i i

t

Mean Absolute Error MAE R R
n 

                   (5.28) 

1

100
( )

n
i i

t i i

R R
SymetricMean Absolute Percentage Error SMAPE

n R R







(5.29) 

where iR  is the real reputation and iR is the predicted real reputation. 

 

For booting our model we require the reputation history D . As reputation 

history D , we take from the dataset, the first 90 combinations of noise 

contaminated rating, variance value used in generating the added noise, time 

point at which the rating has been created, usability value of the rating and 

corresponding value of original rating. These values, in order, play the roles of 

, , ,z c t T  and R  of a tuple in the history D .  

In the dataset, the usability rating is done by using an integer in the range 1 to 

5. Since, we use this usability value as the trust of the feedback source,we 

convert it into a real values as {1 0.1,2 0.25,3 .5,4 0.75,5 1}     . 

Reputation queries are continuously constructed from the 99th record onwards 

and 1000 predictions are made using them. The RLM model is also executed 

from the 101th data point onwards. Every time a prediction is made our 

reputation history is extended by one more tuple as explained in step 15 of 
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Algorithm 5.2. To incorporate the time dependent behavior of the Web service 

reputation, we use the exponential time decay principle used in Chapter 4. The 

most recently added 100 points in D  are decayed with a  k  value of 0.01 and  

older points are decayed with k  value of 0.02  in our experiments. Thus we give 

more importance to the latest reputation sessions that older sessions. The results 

of the prediction performance by the models are given in Table 5.2. 

Table 5.2: Error measurements for 1000 prediction sessions: MSE, MAE and 

SMAPE 

 MSE MAE SMAPE 

Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. 

HGPTrust 0.0 2.3 1.02 0.0 1.2 0.75 0.0 8.0 5.34 

RLM[111] 0.82 4.54 3.86 0.0 12.03 8.89 0.0 13.03 9.23 

  

We can observe from Table 5.2 that our model has better values of the metrics 

compare to the RLM model. The predictions from RLM model are noisy. One 

reason of the noisy prediction of RLM is due to the effect of having a single 

noise variance parameter in the model.  

 

In our next experiment, we compare the robustness of the two models in the 

presence of malicious feedbacks. We simulate a malicious feedback in this way. 

The raters whose usability value is less than or equal to 0.25 are considered as 

low trustworthy recommenders. We selected 10%, 20% and 30% of these users 

at random and the true variance (any value from the set {0.01, 0.02, 0.03}) 

values used for the generation of the noise components in their ratings are 

replaced by a very low value i.e.10-4. The principle behind this setting is that 

these raters provide a very low value of variance in their reputation feedbacks 

to increase the precision level of their feedbacks.   
 

The feedbacks from these selected untrustworthy recommenders are the positive 

feedbacks that the malicious detection mechanism must filter. Whereas the rest 

are the negative feedbacks that must be accepted. Now we define the following. 
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False positive: A negative feedback that has been reported as malicious 

True positive: A positive feedback that has been correctly marked as malicious. 
 

We compare the two models by using false positive rate (FPR) and true positive 

rate (TPR). They are defined as: 

 

.    ( )

.       ( )

No of false positives nfp

No of negative reputation feedbacks in the dataset
FPR

nf
       (5.30) 

.    ( )

.       ( )

No of true positives ntp

No of positive reputation feedbacks in the dataset
TPR

np
        (5.31) 

 

We use 5   in the experiment. The results obtained in the three runs of the 

experiment for different proportion of the untrustworthy recommenders are 

presented in the Figure.5.2. 

 

Figure 5.2: False positive Rate and True Positive Rate 

 

Figure.5.2 shows that the detection mechanism of our model is much better than 

that of RLM. Specifically when the number of malicious feedback sources is 

10%, HGPRTrust has a significant FPR value of 0.255 and higher TPR value of 

0.895. However when the number of malicious raters increases, the advantage 

of HGPRTrust decreases as we can see in the bar graphs of 20% and 30% of 

malicious feedback sources.  

The duration of a prediction of the proposed model is shown in the Figure 5.2 

for the 1000 training points. Computational time is plotted with respect to the 

number of training examples. The plot shows that the computation time 
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requirement of GP based regression model rises fast with the size of the training 

set as expected.  

 
Figure 5.3: Time in second needed for prediction of one query point.  

 

So the application of the proposed model on the online scenario is 

computationally expensive especially when the size of reputation history D  

becomes larger. One remedy is to use a moving window, so that the number of 

points in the history D  is always bounded by the size of the window. Another 

one can be to localize the GP by learning local linear structure present in the 

sequential feedback sessions [156]. Once such structures are identified, each 

local region represented by a subset of the history D with lesser number of 

training points can be used to fit a version of the proposed model so that 

computational time can be reduced. The final prediction can be obtained by 

taking the average of all local models selected by the reputation query. 

 

5.4 Conclusion 
 

We propose a time and trust aware reputation prediction framework using the 

heteroscedastic Gaussian process model. The model is found to be effective to 

handle the time variant and independently noise contaminated reputation values. 

In other words, the model is able to tackle the problem of dealing with 
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heterogeneous data reliabilities in reputation evaluation by using trust parameters 

i.e. trustworthiness and level of confidence in the feedback for the recommenders 

to scale the data noise rates of the HGP. In this way, the model has the ability to 

flexibly increase the noise around reports associated with untrustworthy users. 

Then, by training the model with the feedbacks gathered from the 

recommenders, we are able to evaluate a feedback and learn its trustworthiness. 

We show that our method is more accurate than other exiting model with an 

extensive experimental evaluation on real-word data.  
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