TABLE OF CONTENTS

		Page
Dedication		
Abstract		i-iv
Declaration		V
Certificate		vi
Acknowledg	ement	vii
Table of Con	ntents	viii-xiii
List of Tables		xiv-xvi
List of Figur	res	xvii-xix
Nomenclatu	re	xx-xxii
Abbreviation	Abbreviations	
Chapters:		
1. INTROD	UCTION	
1.1 Cogene	eration	1
1.2 Need for cogeneration		1
1.3 Benefits of usage of Cogeneration		2
1.4 Cogeneration systems		3
1.4.1	ST based cogeneration systems	3
1.4.2	GT based cogeneration systems	5
1.4.3	ICE based cogeneration systems	6
1.4.4	Fuel cell based cogeneration systems	8
1.4.5	MGT based cogeneration systems	9
1.4.6	Hybrid FC-GT/MGT based cogeneration systems	10
1.5 ST bas	sed vapor power cycle	11
1.6 Refrige	eration systems	13
1.7 Combi	ned power and cooling (CPC) system	19
1.8 Energy and exergy analyses of thermal systems		20
1.9 Motivation		22
1.10 Research objectives		24
1.11Chapte	24	
Bibliography		26

2. LITERATURE REVIEW

2.1 Introduction	35
2.2 Heat driven vapor absorption refrigeration system	36
2.2.1 Working fluid pairs of refrigerant and	
absorbent/mixture of absorbent	36
2.2.2 VARS performance analysis with various solution pairs	38
2.2.3 Second law (exergy) analysis of VARS	40
2.2.3.1 Exergy analysis of single effect VARS	41
2.2.3.2 Exergy analysis of double/triple effect VARS	42
2.2.4 Thermo-economic analysis and optimization of VARS	47
2.3 Review on VCRS analysis with conventional and alternate refrigeran	nts
	48
2.4 Review on combined absorption–compression refrigeration systems	50
2.5 Review on comparative analysis of VCRS and VARS	51
2.6 Thermodynamic analysis of VPC based steam power plants	52
2.7 Thermodynamic analysis of CPC system	55
2.7.1 Thermodynamic analysis on binary mixture based	
CPC system	55
2.7.2 Thermodynamic analysis on waste heat driven	
CPC system	58
2.7.2.1 Review on thermodynamic analysis of ICE exhaust	
driven ARS	58
2.7.2.2 Review on thermodynamic analysis GT/MGT	
exhaust driven ARS	60
2.7.2.3 Review on thermodynamic analysis of solar	
powered ARS	62
2.8 Review summary	65
2.9 Scope of present work	67
List of References	69

3. MODELLING AND ANALYSIS OF COMBINED REHEAT RENEGERATIVE VAPOUR POWER CYCLE (RRVPC) AND SINGLE EFFECT H_2O -Libr VARS

	-	
3.1 Introduction		
3.2 Desc	ription of the combined RRVPC and single effect	
H_2O	-LiBr VARS	81
3.3 Assumptions and few preliminary calculations		82
3.4 Them	modynamic modeling of the RRVPC and VARS based	
CPC	system	86
3.4.1	Thermodynamic modeling of the topping RRVPC	86
3.4.2	Thermodynamic modeling of the bottoming single	
	effect H ₂ O-LiBr VARS	87
3.4.3	CT side pumping power and system efficiency calculation	89
3.5 Valid	lation of VPC and single effect VARS models	92
3.6 Therr	modynamic analysis of the combined VPC and VARS	94
3.6.1	Effect of boiler pressure on ST cycle power,	
	efficiency and steam generation rate	95
3.6.2	Effect of fuel mass flow rate on ST cycle power,	
	efficiency and steam generation rate	96
3.6.3	Effect of evaporator cooling capacity on performance	
	of ST cycle and VARS	97
3.6.4	Effect of generator temperature on performance of	
	ST cycle and VARS	99
3.6.5	Effect of VARS condenser temperature on performance	
	of ST cycle and VARS	101
3.6.6	Effect of evaporator temperature on performance of ST	
	cycle and VARS	103
3.6.7	Effect of absorber temperature on performance of	
	ST cycle and VARS	105
3.6.8	Sensitivity analysis	106
3.6.9	Performance comparison of the combined power	
	and VARS with the power cycle without VARS	108

	3.6.10 Performance comparison of the ST cycle (without VARS) with CWH a	
	without CWH	109
	3.7 Summary	110
	List of References	115
4.	EXERGY ANALYSIS OF COMBINED REHEAT RENEGERATIVE (RRVPC) AND SINGLE EFFECT H ₂ O-Libr VARS	E VPC
	4.1 Introduction	116
	4.2 Assumptions	117
	4.3 Energy and exergy based thermodynamic modeling	118
	4.3.1Toping RRVPC	118
	4.3.2 H ₂ O-LiBr VARS	122
	4.4 Exergy analysis of the combined RRVPC and single	
	effect H ₂ O-LiBr VARS	125
	4.4.1 Effect of fuel mass flow rate on exergetic	
	performance of the combined system	125
	4.4.2 Effect of boiler pressure on exergetic performance	
	of the combined system	127
	4.4.3 Effect of evaporator cooling capacity on exergetic	
	performance of the combined system	130
	4.4.4 Effect of VARS generator temperature on exergetic	
	performance of the combined system	132
	4.4.5 Effect of VARS condenser temperature on	
	exergetic performance of the combined system	135
	4.4.6 Effect of VARS evaporator temperature on exergetic	
	performance of the combined system	137
	4.4.7 Effect of VARS absorber temperature on exergetic	
	performance of the combined system	140
	4.4.8 Irreversibility distribution among various system components	142

4.5 Summary			144
List of References			148
5. THERMODYNAMIC PERFORMANCE ANA AS BOTTOMING CYC		AND TEM WITH	COMPARATIVE VCRS AND VARS
5.1 Introduction	LES		149
5.2 Highlight of the work	s presented in Chapter 3	and Chapter 4	149
5.3 Motivation and object	tive of the work presente	d in this chapt	ter 150
5.4 Description of combin	ned RRVPC and VCRS		150
5.5 Assumptions			151
5.6 Thermodynamic calcu	ulations		153
5.6.1 Calculation	ns: topping RRVPC		153
5.6.2 Calculation	ns: bottoming VCRS		156
5.7 Performance comparis	son of the CS with VARS	S and VCRS	
as bottoming cycles			158
5.7.1 Performance	ce comparison as function	n of evaporato	or CL 159
5.7.2 Performance	ce comparison at fixed C	L of 14000	
kW at T_E =	÷5°C		163
5.8 Summary			166
List of References			169
6. THERMODYNAMIO	C MODELLING AND	ANALYSIS (OF COMBINED
RRVPC AND BOILER	R FLUE GAS DRIVE	N DOUBLE	EFFECT H ₂ O-
LiBr VARS			
6.1 Introduction			170
6.2 Model description of t	he combined VPC and d	ouble	
effect H ₂ O-LiBr VARS	S		171
6.3 Governing equations f	or thermodynamic mode	ling of RRVP	C 175
6.4 Governing equations f	for thermodynamic mode	elling of the	
double effect H ₂ O-I	LiBr VARS		176
6.5 Validation of double e	effect H ₂ O–LiBr VARS r	model	179

6.6 Thermodynamic analysis of combined VPC and single-double	
effect water LiBr VARS operated by boiler flue gas exhaust	181
6.7 Summary	191
List of References	193
7. CONCLUSIONS AND SCOPE FOR FUTURE WORK	
7.1Conclusions	199
7.2 Scope for future work	206