LIST OF TABLES

<u>Tables</u>	Page
Table 3.1: Assumed values of parameters	85
Table 3.2: Assumed values of parameters used for CT side pumping	
power calculation	91
Table 3.3 Validation of results obtained from the computer code written for simula	iting a
reheat steam power cycle with those of Ref. [11] at same operating cond	_
(Pump and turbine isentropic efficiency=90%)	93
Table 3.4 Validation of results obtained from simulation of the single effect water	r-LiBı
VARS with those of Ref. [7] at same operating conditions (Evaporator hea	at load
$\dot{Q}_E = 3.5112$ kW, $T_G = 90$ °C, $T_E = 7$ °C, $T_A = 40$ °C and $T_C = 40$ °C,	SHE
efficiency = 80%)	93
Table 3.5 Variation of performance parameters of the water-LiBr VARS with	
evaporator cooling capacity	98
Table 3.6 Variation of performance parameters of the water-LiBr VARS with	
generator temperature	101
Table 3.7 Variation of performance parameters of the water-LiBr VARS with	
condenser temperature	103
Table 3.8 Variation of performance parameters of the water-LiBr VARS with	
evaporator temperature	105
Table 3.9 Variation of performance parameters of the water-LiBr VARS	
with absorber temperature	106
Table 3.10 Sensitivity of COP and net power with respect to change in	
VARS operating temperatures, fuel flow rate and boiler pressure (%)	108
Table 3.11 Comparison of results between the combined power-VARS and the	
power cycle without VARS	112
Table 3.12 Comparison of results between the ST based power cycle	
(without VARS) and the power cycle without CWH	112
Table 4.1 System performance and component irreversibility variation	
with fuel flow rate	126
Table 4.2 System performance and component irreversibility variation with	
boiler pressure	129

Table 4.3 System performance and component irreversibility variation with	
evaporator cooling capacity	131
Table 4.4 System performance and component irreversibility variation with	
VARS generator temperature	134
Table 4.5 System performance and component irreversibility variation with	
VARS condenser temperature	136
Table 4.6 System performance and component irreversibility variation	
with VARS evaporator temperature	139
Table 4.7 System performance and component irreversibility variation with	
VARS absorber temperature	141
Table 5.1 Assumed values of parameters	154
Table 5.2 Comparison of performance of the CS with VARS and VCRS at	
various cooling loads	161
Table 5.3 Comparison of component irreversibility of the CS with VARS	
and VCRS at various cooling loads	162
Table 5.4 Performance comparison of the CS with VARS and VCRS as	
bottoming cycles ($T_E = 5^{\circ}\text{C}$ and $\dot{Q}_E = 14000 \text{ kW}$)	165
Table 5.5 Comparison of component irreversibility of the CS with	
VARS and VCRS as bottoming cycles ($T_E = 5$ °C and $\dot{Q}_E = 14000$ kW)	166
Table 6.1 Operating parameters of the ST based power cycle	174
Table 6.2 Operating parameters of the double effect water-LiBr ARS	175
Table 6.3 Comparison of present results with those of Gomri and Hakimi	
[13] and Farshi et al. [3] for the double effect series configuration	180
Table 6.4 Comparison of component heat loads, SP power and COP of present study	
with those of Gomri and Hakimi [13] and Farshi et al. [3] at $T_C = T_A =$	35°C,
$T_E = 4$ °C, $T_{HPG} = 130$ °C, $T_{LPG} = 80$ °C, 70% SHE-I and SHE-II efficiencies a	and 95
% SP efficiency for the double effect series configuration	180

Table 6.5 Performance of the combined power and double effect water-LiBr	
ARS at various HPG temperatures	182
Table 6.6 Components' irreversibility of the combined power and double effect	
water-LiBr ARS at various HPG temperatures	184
Table 6.7 Comparison of the double effect ARS ($T_{HPG} = 120^{\circ}$ C,	
$T_{fg,HPGi}$ = 130 °C, $T_{fg,HPGo}$ = 123.61°C) integrated CS with and single effect ARS	
$(T_G = 80^{\circ}\text{C}, T_{fg,Gi} = 130^{\circ}\text{C}, T_{fg,Go} = 118.85^{\circ}\text{C}) \text{ integrated CS}$	187
Table 6.8 Comparison of components' irreversibility of the double effect ARS	
integrated CS with single effect ARS integrated CS	189

LIST OF FIGURES

Figures	Page
Fig. 1.1 ST based cogeneration systems (back pressure type)	4
Fig. 1.2 ST based cogeneration systems (extraction type)	4
Fig. 1.3 GT based cogeneration system	6
Fig. 1.4 ICE based cogeneration system	7
Fig. 1.5 Engine exhaust driven absorption refrigeration system	8
Fig. 1.6 MGT based cogeneration system	9
Fig. 1.7 Combined SOFC-GT-ORC hybrid power system	11
Fig. 1.8 A typical RRVPC	12
Fig. 1.9 Single effect VARS	15
Fig. 1.10 Double effect VARS (series configuration)	15
Fig. 1.11 Double effect VARS (parallel configuration)	16
Fig. 1.12 Double effect VARS (reverse parallel configuration)	16
Fig. 1.13 Ejector refrigeration system	18
Fig. 1.14 Thermoelectric refrigerator	19
Fig. 1.15 A typical binary mixture based CPC cycle	20
Fig. 3.1 Schematic of the combined RRVPC and single effect	
H ₂ O-LiBr VARS	82
Fig. 3.2 Rankine cycle T-s diagram	84
Fig. 3.3 Effect of boiler pressure on (a) power and SGR	
(b) efficiency of the topping ST cycle	95
Fig. 3.4 Effect of fuel mass flow rate on (a) power, SGR and	
(b) efficiency of the topping ST cycle	97
Fig. 3.5 Effect of VARS evaporator CL on (a) power, steam	
extraction rate (SER) and (b) efficiency of the	
topping ST cycle	98
Fig.3.6 Effect of VARS generator temperature on (a) power,	
SER and (b) efficiency of the topping ST cycle	99
Fig. 3.7 Effect of VARS condenser temperature on	
(a) power, SER and (b) efficiency of the topping ST cycle	102

```
Fig. 3.8 Effect of VARS evaporator temperature on (a) power,
          SER and (b) efficiency of the topping ST cycle
                                                                                                   104
Fig. 3.9 Effect of VARS absorber temperature on (a) power,
          SER and (b) efficiency of the topping ST cycle
                                                                                                   106
Fig. 4.1 Total system irreversibility variation with fuel flow rate
          at P<sub>b</sub>=150 bar, evaporator cooling capacity= 4000 TOR,
          T_G = 80^{\circ}\text{C}, T_C = 35^{\circ}\text{C}, T_E = 10^{\circ}\text{C}, T_A = 35^{\circ}\text{C} and SHE=75%.
                                                                                                   127
Fig. 4.2 Total system irreversibility variation with boiler pressure
         at \dot{m}_f = 20 kg/s, evaporator cooling capacity= 4000 TOR,
          T_G = 80^{\circ}\text{C}, T_C = 35^{\circ}\text{C}, T_E = 10^{\circ}\text{C}, T_A = 35^{\circ}\text{C} and SHE=75%.
                                                                                                   128
Fig. 4.3 Total system irreversibility variation with evaporator cooling
          capacity at P<sub>b</sub>=150 bar, \dot{m}_f = 20 \text{ kg/s}, T_G = 80^{\circ}\text{C}, T_C = 35^{\circ}\text{C},
          T_E = 10^{\circ}\text{C}, T_A = 35^{\circ}\text{C} \text{ and SHE} = 75\%.
                                                                                                   132
Fig. 4.4 Total system irreversibility variation with T_G at P_b=150
          bar, \dot{m}_f = 20 \text{ kg/s}, evaporator cooling capacity= 4000 TOR,
          T_C = 35^{\circ}\text{C}, T_E = 10^{\circ}\text{C}, T_A = 35^{\circ}\text{C} and SHE=75%.
                                                                                                   133
Fig. 4.5 Total system irreversibility variation with T_C at P_b=150 bar,
          \dot{m}_f = 20 kg/s, evaporator cooling capacity= 4000 TOR,
          T_G = 80^{\circ}\text{C}, T_E = 10^{\circ}\text{C}, T_A = 35^{\circ}\text{C} and SHE=75%.
                                                                                                   136
Fig. 4.6 Total system irreversibility variation with T_E at P_b=150
          bar, \dot{m}_f = 20 \text{ kg/s}, evaporator cooling capacity= 4000 TOR,
          T_G = 80^{\circ}\text{C}, T_C = 35^{\circ}\text{C}, T_A = 35^{\circ}\text{C} and SHE=75%.
                                                                                                   138
Fig. 4.7 Total system irreversibility variation with T_A at P_b=150 bar,
          \dot{m}_f = 20 \text{ kg/s}, evaporator cooling capacity= 4000 TOR, T_G = 80^{\circ}\text{C},
          T_C = 35^{\circ}\text{C}, T_E = 10^{\circ}\text{C} and SHE=75%.
                                                                                                   142
Fig. 4.8(a) Irreversibility distribution among the topping cycle
          components at P<sub>b</sub>=150 bar, \dot{m}_f = 20 kg/s, evaporator cooling
         capacity= 4000 TOR, T_G = 80^{\circ}\text{C}, T_C = 35^{\circ}\text{C}, T_E = 10^{\circ}\text{C},
```

xviii

$T_A = 35^{\circ}$ C and SHE=75%.	143
Fig. 4.8(b) Irreversibility distribution among the major VARS	
components at P _b =150 bar, $\dot{m}_f = 20$ kg/s, evaporator cooling	
capacity= 4000 TOR, $T_G = 80^{\circ}\text{C}$, $T_C = 35^{\circ}\text{C}$, $T_E = 10^{\circ}\text{C}$, $T_A = 35^{\circ}\text{C}$	
and SHE=75%	144
Fig. 5.1 Schematic of the combined RRVPC and VCRS	152
Fig. 5.2 T-s diagram of the power cycle corresponding to Fig.5.1	152
Fig. 5.3 Total system irreversibility variation of the VAR and	
VCR based CS with evaporator CL	163
Fig. 6.1 Layout of combined vapor power cycle and double	
effect water-LiBr ARS	172
Fig. 6.2 Layout of combined vapor power cycle and single	
effect water-LiBr ARS	173
Fig. 6.3 Variation of total irreversibility of the combined	
power and cooling system with HPG temperature	186

Nomenclature

 C_p Specific heat (kJ/kgK) DPipe diameter (m) Ė Energy loss rate (kW) Ėx Exergy rate (kW) Specific exergy (kJ/kg) exEffective utilization factor **EUF** Friction factor Specific enthalpy (kJ/kg) h h^0 Specific enthalpy at the reference state (kJ/kg) Irreversibility rate (kW) LHVLower heating value (kJ/kg) Molecular weight (kg/kmol) M \dot{m} Mass flow rate (kg/s) N No of feed water heater, Nitrogen Molar coefficients of products and reactants (kmol/100 kg of fuel) n Pressure (bar) pReference pressure (bar) p_0 QHeat load rate (kW) Universal gas constant (8.314 kJ/kmol.K) R Re Reynolds number Specific entropy (kJ/kgK) S Specific entropy at the reference state (kJ/kgK) Temperature (°C) TTemperature (K) Reference temperature (K) T_0 WSpecific work (kJ/kg) \dot{W} Power (kW) Concentration (kg LiBr/kg solution) X

Mole fraction

y

Y Mass fraction

Greek Letters

 ε Pipe roughness height (m)

 ρ Density (kg/m³)

 ν Kinematic viscosity (m²/s)

 ω Specific humidity (kg of water vapor/kg of dry air)

 η_s Isentropic efficiency (%)

 η_I Energy efficiency (%)

 η_{II} Exergy efficiency (%)

 η_{SP} Solution pump efficiency (%)

Subscripts

a Air

A Absorber

AC Air conditioning

BFP Boiler feed pump

C VARS condenser

ch Chemical

COP Coefficient of performance

COMP Compressor

CS Combined system

CT Cooling tower

CTP Cooling tower pump

CWH Closed water heater

db Dry bulb

E Evaporator

ExV Expansion valve

f Fuel or saturated liquid water

fg Flue gas

G Generator

HPG High pressure generator

i Inlet

LPG Low pressure generator

MC Mixing chamber

o Outlet

OWH Open water heater

PCC Power cycle condenser

r Refrigerant

RS Refrigeration system

RSC Refrigeration system condenser

s Isentropic/steam

SHE Solution heat exchanger

SP Solution pump

ss Strong solution

ST Steam turbine

tm Thermo-mechanical

Water, water vapor

ws Weak solution

Abbreviations

AC Air conditioning

AEHRS Absorption—ejector hybrid refrigeration system

AFR Air flow rate (kg/s)

AFC Alkaline fuel cell

ANN Artificial neural network

ARS Absorption refrigeration system

BCHP Building cooling, heating and power

BFP Boiler feed pump

BP Boiler pressure (bar)

CFC Chlorofluorocarbon

CHP Combined heat and power

CL Cooling load

COP Coefficient of performance

CPC Combined power and cooling

CT Cooling tower

CTP Cooling tower pump

CS Combined system

CWH Closed water heater

DBT Dry bulb temperature

DMFC Direct methanol fuel cell

EAC Equivalent annual cost

ERS Ejector refrigeration system

ExV Expansion valve

EUF Energy utilization factor

FC Fuel cell

FFR Fuel flow rate (kg/s)

FWH Feed water heater

GCRS Gas cycle refrigeration system

GWP Global warming potential

GT Gas turbine

HAT Humid air turbine

HC Hydro carbon

HCFC Hydro fluorocarbon

HP High pressure

HPG High pressure generator

HRSG Heat recovery steam generator

ICE Internal combustion engine

LP Low pressure

LPG Low pressure generator

MC Mixing chamber

MCFC Molten carbonate fuel cell

MGT Micro gas turbine

ODP Ozone depletion potential

ORC Organic Rankine cycle

OWH Open water heater

PC Power cycle

PCC Power cycle condenser

PCFC Protonic ceramic fuel cell

PEMFC Proton exchange membrane fuel cell

PER Primary energy ratio

PMFC Phosphoric acid fuel cell

PWV Present worth value
RH Relative humidity(%)

RS Refrigeration system

RRVPC

RSC Refrigeration system condenser

SAFC Sulfuric acid fuel cell

SER Steam extraction rate (kg/s)

SFEE Steady flow energy equation

SGR Steam generation rate (kg/s)

SHE Solution heat exchanger

SOFC Solid oxide fuel cell

SP Solution pump

Reheat regenerative vapour power cycle

STIG Steam injected gas turbine

STIT Steam turbine inlet temperature (°C)

ST Steam turbine

TIT Turbine inlet temperature (°C)

TOR Tones of refrigeration

TTD Terminal temperature difference (°C)

VARS Vapour absorption refrigeration system

VCRS Vapour compression refrigeration system

VMETS Variable mass energy transformation and storage

VPC Vapour power cycle