
Chapter 4

Optimization of annular fin array

This chapter presents a simultaneous optimization procedure optimizing various fin

array related performance parameter. The objective functions are designed taking

into account the three important factors, the heat transfer rate, the total fin volume

and the maximum thermal stress developed. A set of constraints related to geometric

parameter of the fin array configuration consisting of a number of identical fins are

imposed. Design variables in the optimization problem are parameter related to

profile of an individual fin and total number of fins in the array.

The variation of thermal conductivity k with temperature Ti given by Eq. (3.1)

is also adopted here for the analysis of annular fin array.

For air flowing through two consecutive fins, the average natural convective heat

transfer coefficient (h) can be estimated by the correlation expressed by Eq. (4.1) [78]

with sm being the mean fin inter-spacing and Ra the Rayleigh number in the laminar

range of 5 � Ra � 108 with properties evaluated at the film temperature of Tb+T∞

2
.
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where, Ra = gβe(Tb−T∞)s4m
2νsαsro

c0 = −3.827 ; c1 = 0.047 ; c2 = 1.039 ; c3 = 2.548

a0 = 0.348 ; a1 = 0.173 ; a2 = 0.175 ; a3 = 0.009
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It is to be mentioned that the correlation given by Eq. (4.1) was proposed by

Senapati et al. [78] for uniform thickness annular fin array. Since no such correlation

for an annular stepped or continuously varying thickness fin array could be found

in specialized literature, it is adopted here considering sm being the mean fin inter-

spacing.

The thickness of a fin is considered to be very small, so that the temperature dif-

ference in its lateral direction would become negligible and the flow of heat through

the fin can be treated as one-dimensional. Since the heat transfer by radiation can

be neglected for a low temperature difference [53], the heat loss from the fin surface

as well as from the fin inter-spacing is considered to be taken place by natural con-

vection only. Steady state heat transfer without internal heat generation is made

another assumption. Moreover, the fin array is taken in the horizontal orientation

so as to make the gravity forces parallel to the fins. Considering the temperature

at the base of the fins, Tb as constant, the steady state analysis for the studied fin

arrays based on Eq. (3.1) are discussed as follows:

4.1 Stepped fin array

An annular fin array consisting of identical fins with two-stepped rectangular cross-

sectional area, which is attached to a heat exchanger of cylindrical primary surface

with uniform fin inter-spacing is taken up for analyses.

The schematic diagram of such an annular fin array is shown Fig. 4.1(a). In

Fig. 4.1(a), rb and ro are respectively the inner and outer radii of a fin with r1

as the radius at its point of step change in thickness, t1 and t2 are respectively the

cross-sectional half-thickness at the base and tip of the fin, sb is the fin inter-spacing

at the base, W is the total length of the primary surface, and nfin is the number of

fins in the fin array.

Note in Fig. 4.1(a) that the attachment of the fin array on the primary surface is
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Symmetric sector
(Fin & spacing)

r

sb/2

2t2

r1

rb

ro

sb 2t1

(a) Schematic diagram of the fin array. (b) Transverse section of a fin (heat trans-
fer module).

Figure 4.1: Array of annular stepped fins.

actually a repetitive surface containing one fin and some spacing (fin inter-spacing).

Hence, the thermal analysis of the whole fin assembly can be done by analyzing a

repetitive symmetric sector (heat transfer module) only. A schematic diagram of

such a module is shown in Fig. 4.1(b).

4.1.1 Formulation for heat transfer equation

Having Eqs. (3.1) and (4.1), the steady state energy balance governing equation for

an individual fin of the fin array can be expressed by Eq. (4.2).

d

dr

�

r {1 + β (Ti − T∞)} dTi

dr

�

− hr

kati
(Ti − T∞) = 0

where, rb ≤ r ≤ r1 ; for i = 1

r1 ≤ r ≤ ro ; for i = 2























(4.2)

In this study, it is considered that the temperature at the base of a fin (i.e.,

Tb) is constant and heat is transferred from the tip of the fin to the surrounding by

natural convection only. Also, there must be a continuity of temperature as well as
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energy balance at the interface of the two steps of a fin. Hence, Eq. (4.2) will be

subjected to the boundary conditions given by Eq. (4.3).

T1 =











Tb ; if r = rb

T2 ; if r = r1

(4.3a)

−ka {1 + β (T2 − T∞)} dT2

dr
=h (T2 − T∞) ; at r = ro (4.3b)

−t1ka {1 + β (T1 − T∞)} dT1

dr
=− t2ka {1 + β (T2 − T∞)} dT2

dr

+ hs (t1 − t2) (T1 − T∞) ; at r = r1 (4.3c)

In order to normalize the temperature distribution and fin dimensions shown in

Fig. 4.1(a), some non-dimensional parameters are defined as given by Eq. (4.4).

R1 =
rb
ro

Ro =
r1
ro

R = r
ro
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t2
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α = (Tb − T∞) β



























(4.4)

Finally, in terms of the non-dimensional parameters of Eq. (4.4), the thermal

model governing Eqs. (4.2) and (4.3) are normalized in dimensionless forms as ex-

pressed by Eqs. (4.5) and (4.6).

(1 + ακ) d2κ
dR2 +

�

α dκ
dR

+ 1
R
(1 + ακ)

�

dκ
dR

− Z2κ = 0

where, κ = θ , Z = Z0

R1
; if R1 ≤ R ≤ Ro

κ = φ , Z = Z1√
ys

; if Ro ≤ R ≤ 1

Z0 =
�

Bi
ξ

Z1 =
Z0
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θ =











1 ; at R = R1

φ ; at R = Ro

(4.6a)

− (1 + αφ)
dφ

dR
=

Bi

R1

φ ; at R = 1 (4.6b)

R1 (1 + αθ)
dθ

dR
= ysR1 (1 + αφ)

dφ

dR
− Bi (1− ys) θ ; at R = Ro (4.6c)

4.1.2 Optimization modeling

In the present study, the performance of the annular fin array having fins of step

profile is evaluated in different combination of the four parameters, which are the

total heat transfer rate from the fin array (f1), total fin volume (f2), surface ef-

ficiency (f3) and augmentation factor (f4) of the fin array. The configuration of

the fin array as shown in Fig. 4.1(a) can be defined in terms of five independent

parameters, which are the radius of an individual fin at the point of step change

in thickness (r1), outer radius of the fin (ro), cross-sectional half thickness of the

thick (first) step of the fin (t1), cross-sectional half thickness of the thin (second)

step of the fin (t2) and the total number of fins in the fin array (nfin). Any change

in the values of any of these five independent parameters will give rise to a new fin

array configuration with new values of the four functions considered for measuring

the performance of the array. Hence, the present problem at hand can be formu-

lated as a multi-objective optimization problem as expressed by Eq. (4.7) by treating

the five independent parameters as the design variables and the four performance
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parameters as the objective functions.

Determine x ≡ (r1, ro, t1, t2, nfin)
T

to maximize z(x) ≡ {f1(x), f3(x), f4(x)}
minimize f(x) ≡ {f2(x)}
subject to g1(x) ≡ r1 > rb

g2(x) ≡ ro > r1

g3(x) ≡ t1 �
W
4

g4(x) ≡ t1 > t2

g5(x) ≡
�

W
2t1+smax

�

� nfin �

�

W
2t1+smin

�

r1, ro, t1, t2 ≥ 0 .



























































































(4.7)

In Eq. (4.7), constraints g1(x), g2(x) and g4(x) are related to the geometry of the

individual fins, while constraints g3(x) and g5(x) are related to the configuration of

the fin array. Constraint g1(x) ensures the existence of the fins by making the radius

at step change in thickness (r1) greater than the predefined radius at the base (rb),

and constraint g2(x) ensures the existence of two steps in a fin by making the outer

radius (ro) greater than radius at step change in thickness (r1) while constraint g4(x)

ensures that the inner step of the fin is thicker than its outer step. On the other

hand, constraint g3(x) restricts the fin half-thickness at the base (t1) to such a value

that an array of fins can be formed by accommodating at least two fins within the

limited predefined length (W ) of the primary surface, and constraint g5(x) forms

the fin array with the lower limit for two fins and the upper limit avoiding the

excess number of fins over the length (W ) of the primary surface ((smin, smax) is the

allowable range of fin inter-spacing at base). The last line in Eq. (4.7) makes the

design variable non-negative.

The maximization of the heat transfer rate, f1(x), surface efficiency, f3(x) and

augmentation factor, f4(x) would enhance the overall thermal performance of the

fin array, while the minimization of the total fin volume, f2(x) of the array will

reduce the fin material cost. These objective functions, in terms of the notations

and formulations of the thermal model of the fin array presented in Section 4.1.1,
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can be expressed by Eq. (4.8).

f1(x) = nfin ×
�

−kAb
dT1

dr

�

�

�

�

r=rb

+ hAsp (Tb − T∞)

�

(4.8a)

f2(x) = nfin × 2π
�

t1
�

r21 − r2b
�

+ t2
�

r2o − r21
��

(4.8b)

f3(x) =
1

nfin

× f1(x)

hAs (Tb − T∞) + hAsp (Tb − T∞)
(4.8c)

f4(x) =
1

nfin

× f1(x)

hAb (Tb − T∞) + hAsp (Tb − T∞)
(4.8d)

where, Ab = 4πrbt1

As = 2π
�

r2o − r2b
�

+ 4π {r1 (t1 − t2) + rot2} (4.8e)

Asp = 2πrbsb

4.1.3 Solution procedure

The multi-objective optimization model of the fin array design problem, formu-

lated in Eq. (4.7), is solved by using the non dominated sorting genetic algo-

rithm II (NSGA-II).

4.1.3.1 Constraints handling through variable bounds

Though the design of the studied fin array is formulated in Eq. (4.7) as a constrained

optimization problem, it can easily be handled as an unconstrained optimization

problem.

Since rb (radius of a fin at its base) is a predefined fixed parameter, constraints

g1(x) and g2(x) can be made satisfied by generating two values in the range of

(rb, rmax] and then sorting them in ascending order as the values of r1 (radius at

step change in thickness) and ro (outer radius of the fin), respectively (rmax is the

allowable upper limit of r1 and ro). Similarly, constraints g3(x) and g4(x) can be
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made satisfied by generating two values in the range of
�

tmin,
W
4

�

and then sorting

them in descending order as the values of t1 (fin half-thickness at the base) and t2 (fin

half-thickness at the tip), respectively (tmin is the allowable lower limit of t1 and t2).

Note that the maximum half-thickness of a fin could be W
4
, but it may be taken to

be tmax ≪ W
4

if the heat flow through the fin is to be treated as one-dimensional.

The process for satisfying constraint g5(x) is slightly different. In this case, the

range [smin, smax] for the fin inter-spacing at the base is to be so chosen that the

air flowing through two consecutive fins would maintain the Rayleigh number in the

laminar range of [5, 108]. Accordingly, the range [smin, smax] may be obtained through

a reserve calculation. Since the Rayleigh number (Ra) as expressed in Eq. (4.1) is

a function only of the fin mean inter-spacing (sm) and the fin outer radius (ro)

keeping all other terms constant for a given scenario, sm can be computed as smin by

replacing ro by rmax and Ra by its lower limit of 5. Similarly, sm can be computed as

s′max (maximum fin inter-spacing at the tip) by replacing ro by rmin (rmin (rmin > rb)

is the allowable minimum value of ro) and Ra by its upper limit of 108, and then to

estimate smax by deducting 2(tmax − tmin) from s′max.

Once all the five constraints are made satisfied automatically as above, the equal

fin inter-spacing (sb) at base for all the adjacent pairs of fins can be obtained using

Eq. (4.9).

sb =
W

nfin

− 2t1 . (4.9)

4.1.3.2 Evaluation of objective functions

In every iteration of the employed optimizer, the values of the four objective func-

tions given by Eqs. (4.8a)–(4.8d) will be required, which are to be evaluated numer-

ically. The critical one is the heat transfer rate, f1 given by Eq. (4.8a), which is to

be evaluated by solving the problem governing Eq. (4.5) along with its boundary

conditions given by Eq. (4.6). For this, the hybrid spline difference method (HSDM)

is used. The results of HSDM for annular step fin are already validated with pub-

lished exact results in Section 3.1.3. The HSDM method is based on a discretization
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scheme as given in Eq. (A.9).

The following is the detail procedure for evaluating f1 through the HSDM scheme

expressed by Eq. (A.9):

(a) Discretize Eqs. (4.5) and (4.6) using Eq. (A.9).

(b) Evaluate pn (n = 0, 1, . . . , N) by solving the discretized forms of Eqs. (4.5)

and (4.6), which can be done through the variant of the Thomas algorithm

proposed by Martin and Boyd [64].

(c) At all the grid points, evaluate the dimensionless temperature distribution and

their derivatives up to the second order (i.e., θn, φn, θ
′
n, φ

′
n, θ

′′
n and φ′′

n) using

the values of pn in Eq. (A.9).

(d) Evaluate the temperature gradient at the base of the fin, i.e., dT1

dr

�

�

r=rb
, using

the dimensionless temperature gradient θ′o at the base of the fin.

(e) Finally, evaluate the heat transfer rate from the fin array using the value of

dT
dr

�

�

r=rb
in Eq. (4.8a).

4.1.4 Numerical experimentation and discussion

An annular fin array with identical fins of rectangular cross-section having a step

change in thickness is taken up in the present study. It is assumed that the tem-

perature at the base of the fins is constant, thermal conductivity of the fin material

varies linearly with temperature, and heat is dissipated from the fin array by natural

convection only.

The operating condition, the thermal properties of the fin material, and the fin

array configuration with reference to Fig. 4.1(a), considered for numerical experimen-

tation, are listed in Table 4.1, while the opted user-defined algorithmic parameter

settings for NSGA-II (the applied optimizer) are given in Table 3.3. With those

input parameters, NSGA-II is applied to Eq. (4.7) for studying the problem at hand
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Table 4.1: Operating conditions, fin material properties, and fin array geometry for
stepped fin array.
Parameter Value/ range of value
Ambient temperature, T∞ 300 K
Fin temperature at the base, Tb 373 K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Fin base radius, rb 2.0 cm
Outer radii of two steps of a fin, [rmin, rmax] for r1 and ro [2.5–6.0] cm
Half-thickness of two steps of a fin, [tmin, tmax] for t1 and t2 [0.01–0.2] cm
Length of the primary cylinder, W 40.0 cm
Fin inter-spacing at base, [smin, smax] [0.36, 18.0] cm

under two scenarios. In the first scenario, the objective functions f1–f4 given by

Eq. (4.8) are optimized in different pairs, while all the four objective functions are

optimized simultaneously in the second scenario.

4.1.4.1 Scenario I

At the first instance, the fin array design problem is studied for maximizing the total

heat dissipation rate (f1) from the fin array and simultaneously minimizing the total

fin volume (f2) of the array. Fig. 4.2(a) shows the obtained Pareto optimal front
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Figure 4.2: Pareto fronts of f1 separately paired with f2 and f3.

containing a set of trade-off solutions in terms of f1 and f2, which clearly depicts the

conflicting nature between the two objective functions. The efficient fin geometries

corresponding to six selective trade-off solutions marked by A–F in Fig. 4.2(a) are

shown in Fig. 4.3, where the variations in the pattern of the individual fins and the

total number of fins in the fin array are most noticeable. Apart from the optimum

values of the five design variables (r1, ro, t1, t2 and nfin) and optimized two objective
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f4 = 9.86

r1 = 3.20 cm

r2 = 5.93 cm

t1 = 0.02 cm
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3
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f4 = 14.55

r1 = 2.5 cm

Figure 4.3: Selective efficient fin geometries (corresponding to trade-off solutions
A–F of Fig. 4.2(a).)

functions (f1 and f2), the corresponding values of the surface efficiency (f3) and

augmentation factor (f4) are also computed and shown in Fig. 4.3.

Notice in Fig. 4.3 that the pattern of variation of f3 with respect to those of

f1 and f2 is not very clear. Hence, the fin array design problem is studied in the

second step for maximizing the heat dissipation rate f1 from the fin array and

simultaneously maximizing the surface efficiency f3 of the fin array. The obtained

Pareto front is shown in Fig. 4.2(b), where it is seen that f1 conflicts with f3 also,

i.e., an improvement in f1 degrades f3 by some amount and vice-versa.
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Computing the augmentation factor values of the trade-off solutions of the

Pareto front of Fig. 4.2(b), they are plotted against the surface efficiency values.

The plot shown separately in Fig. 4.4, where the surface efficiency and augmenta-
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Figure 4.4: Surface efficiency and augmentation factor (of the trade-off solutions of
Fig. 4.2(b).)

tion factor is found conflicting with each other, i.e., an increase in the augmentation

factor decreases the efficiency of utilization of the fin material. Note that the surface

efficiency of the fin array is the ratio of the actual heat transfer rate from the fin

array to the heat transfer rate when all the surfaces of the fin array is at the base

temperature, while the augmentation factor of the fin array is the ratio of the actual

heat transfer rate from the fin array to the heat transfer rate from the base surface

of the fin array when there are no fins.

4.1.4.2 Scenario II

In Section 4.1.4.1, studying the considered four objectives functions of the prob-

lem at hand in pairs, it is observed that their variations are arbitrary leading to no

common pattern of the heat transfer rate. Hence, in order to arrive at a general con-

clusion, all the four objective functions, i.e., f1–f4 given by Eq. (4.8), are optimized

here simultaneously. The obtained four-dimensional Pareto front is visualized in a

parallel coordinate system (refer [88]) as shown in Fig. 4.5, where the conflicting
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Figure 4.5: Four-dimensional Pareto in parallel coordinate system.

nature among all the optimized objective functions could be observed clearly. As

an example, the solution corresponding to the highest heat transfer rate from the

fin array have a moderately low fin volume and a moderately high surface efficiency,

while the highest augmentation factor. With such information, it is now up to a

designer to adopt suitable solution(s) based upon the availability and accessibility

of resources at hand. One such compromise solution is shown in Fig. 4.5 by a thick

crossing line.

4.1.5 Sensitivity analysis

In order to study the influence of the design variables on the heat transfer rate,

a sensitivity analysis is performed. For this, an intermediate solution is chosen,

whose various values are as follows: r†1 = 3.35 cm, r†o = 5.11 cm, t†1 = 0.05 cm,

t†2 = 0.01 cm, n†
fin = 20, f †

1 = 178.46 W and f †
2 = 3.36 cm3. The problem is solved

here five times, each time allowing a design variable to vary ±15% from the chosen

value while keeping the other four design variable fixed. Fig. 4.6 shows the plots of

the deviations of the heat transfer rate from the fin array against the corresponding

variations in the design variables, where it is observed that the outer radius (ro)

of the fins has more influence on the heat transfer rate, followed by the number of
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Figure 4.6: Sensitivity analysis of the heat transfer rate in terms of design variables.

fins (nfin) in the fin array. On the other hand, the influences of the cross-sectional

half-thickness (t1 and t2) and the radius of the step change in thickness (r1) of the fins

are comparatively very less. With this information at hand, a designer can adjust

the design variables of the fin array in order to achieve the desired heat transfer

effect based upon the availability and accessibility of information and resources.

4.2 Fin array of linearly varying thickness fins

The multi-objective optimization of an annular fin array with individual fins of

linearly varying thickness, attached to a cylindrical surface, is studied here with

the assumptions that Poisson’s ratio, coefficient of thermal expansion, and modulus

of elasticity of the fin material remain constant irrespective of any variation in

temperature and the inner and outer radii of the fin are free of traction.

The schematic diagram of an array of identical annular fins, having plane fin

profile and equal fin inter-spacing, is shown Fig. 4.7(a) with a centrally located

circular support cylinder as the primary surface. A transverse section of a fin is

also shown in Fig. 4.7(b). In Fig. 4.7(a), nfin is the number of fins in the array, rb

and ro are respectively the inner and outer radii of each fin, t is the representing
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(a) Schematic diagram of the fin array. (b) A transverse section of a fin (heat
transfer module).

Figure 4.7: Array of annular fins having linearly varying thickness fins.

cross-sectional half thickness of a fin with tb and to being its values respectively at

the base and outer radius of the fin, and sb is the inter-spacing at the base of two

fins and W is the total length of the primary surface. It is to be noted that to < tb

which will result in an array of tapered fins as shown in Fig. 4.7(a).

4.2.1 Formulation for heat transfer equation

Since a fin array is composed of a repetitive sector containing a fin and some spac-

ing (i.e., fin inter-spacing) as shown in Fig. 4.7(b), it is considered that the ther-

mal behavior of the entire fin array will be equivalent of that of such a repetitive

sector (heat transfer module). Accordingly, the thermal model of the fin array is

formulated here based on a single fin and single fin inter-spacing.

The one-dimensional energy balance (i.e., heat transfer) equation in an axi-

symmetric thin fin of an annular fin array under steady state condition can be given
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by Eq. (4.10).

d

dr

�

rk
dT

dr

�

t+

�

rk
dT

dr

�

t′ − hr (T − T∞)
�

1 + t′
2
�

1
2
= 0 (4.10)

Using the value of k as defined by Eq. (3.1), Eq. (4.10) can be rearranged as

shown in Eq. (4.11).

d

dr

�

r {1 + β (T − T∞)} dT
dr

�

+

�

r {1 + β (T − T∞)} dT
dr

�

t′

t

− hr

kat
(T − T∞)

�

1 + t′
2
�

1
2
= 0 (4.11)

Since it is assumed that the fin base temperature (Tb) is constant and heat

from the tip of the fin is dissipated by natural convection only, Eq. (4.11) would be

subjected to the boundary conditions given by Eq. (4.12).

T = Tb ; at r = rb (4.12a)

−ka {1 + β (T − T∞)} dT
dr

= h (T − T∞) ; at r = ro (4.12b)

In order to simplify the analysis, the dimensions of the fin array as well as the

temperature distribution can be normalized by defining some dimensionless param-

eters as given by Eq. (4.13).

X = r
rb

Xo = ro
rb

ζ = tb
rb

δd = βT∞ γc = t
tb

Bi = hrb
ka

ω = T
T∞

ωb = Tb

T∞

δc = βT∞

(1−βT∞)

γ =
hr2

b

tbka(1−βT∞)







































(4.13)

In terms of the dimensionless parameters defined in Eq. (4.13), Eqs. (4.11) and
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(4.12) can be normalized as expressed by Eqs. (4.14) and (4.15), respectively.

γc

�

(1 + δcω)
d2ω

dX2
+ (1 + δcω)

1

X

dω

dX
+ δc

�

dω

dX

�2
�

+ γc
′(1 + δcω)

dω

dX

− γ(ω − 1)
�

1 + γc
′2ζ2

�
1
2
= 0 (4.14)

ω = ωb; at X = 1 (4.15a)

(1 − δd + δdω)
dω

dX
+ Bi(ω − 1) = 0; at X = Xo (4.15b)

4.2.2 Formulation of the thermal stress model

The formulation of the thermal stress model of an individual fin of the fin array has

already been discussed in Section 3.2.2.

4.2.3 Optimization modeling

As shown in Fig. 4.7(a), the configuration of an annular fin array of identical fins

having plane profiles can be defined by four independent parameters. Three of

those parameters are required to define the geometry of a fin, which are the outer

radius (ro), cross-sectional half thickness at the base (tb) and cross-sectional half

thickness at the outer radius (to) of the fin. The fourth parameter is the total

number of fins (nfin) forming the fin array. A change in the value of any of these four

parameters will give rise to a new configuration of the fin array with new values of

the four functions considered for measuring the performance of the array, which are

the heat transfer rate (f1) from the fin array, maximum thermal stress (f2) developed

in a fin, total volume of the fins (f3) of the array and the surface efficiency (f4) of

the fin array.
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In view of above, the design of the annular fin array of identical fins having plane

profiles of tapered shape, as shown in Fig. 4.7(a), can be defined as a multi-objective

optimization problem for determining ro, tb, to and nfin as four design variables by

simultaneously optimizing f1, f2, f3 and f4 as four objective functions. Accordingly,

the optimization model can be formulated mathematically as given by Eq. (4.16).

Determine x ≡ (ro, tb, to, nfin)
T

to maximize z(x) ≡ {f1(x), f4(x)}
minimize f(x) ≡ {f2(x), f3(x)}

subject to g1(x) ≡ ro > rb

g2(x) ≡ tb �
W
4

g3(x) ≡ to < tb

g4(x) ≡
�

W
2tb+smax

�

� nfin �

�

W
2tb+smin

�

ro, tb, to � 0 .



















































































(4.16)

In Eq. (4.16), constraints g1(x) and g3(x) are related to the geometry of the

individual fins, while constraints g2(x) and g4(x) are related to the configuration

of the fin array. Constraint g1(x) ensures the existence of the individual fins by

making the outer radius (ro) greater than the predefined radius at the base (rb), while

constraint g2(x) restricts the half thickness of the individual fins at the base (tb) to

such a value that an array of fins can be formed by accommodating a minimum of

two fins within the limited predefined length (W ) of the primary surface. Constraint

g3(x) makes to (half-thickness at the tip of the individual fins) smaller than tb

ensuring that the fins are tapered in shape with the thickness gradually decreasing

in the radially outward direction. On the other hand, constraint g4(x) forms the fin

array with the lower limit for two fins and the upper limit avoiding the excess number

of fins over the length (W ) of the primary surface (smax and smin are, respectively,

the minimum and maximum fin inter-spacing). Finally, the last line in Eq. (4.16)

ensures the non-negativity of ro, tb and to.

In order to avoid any safety hazard resulting from a weak slender tip, the half
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thickness of the fins at the tip (i.e., to) may be maintained at some specified minimum

value. Also, the outer radius of the fins may be made sufficiently larger than the

fin thickness (i.e., ro ≫ 2tb) so that one-dimensional heat transfer by conduction

through each fin can be assumed.

In Eq. (4.16), the maximization of the heat transfer rate (f1) and the surface

efficiency (f4) would enhance the overall performance of the fin array, while the

minimization of the induced maximum thermal stress in a fin (f2) would increase

the life span of the fin array and the minimization of the total volume of the fins (f3)

will lower the production cost by reducing the required amount of fin material. These

objective functions, in terms of the notations and formulation of the thermal model

of the fin array as presented in Section 4.2, can be formulated as given by Eq. (4.17).

f1(x) = nfin ×
�

−kAb

dT

dr

�

�

�

�

r=rb

+ hAsp (Tb − T∞)

�

(4.17a)

f2(x) =
�

�

σ2
r − σrσθ + σ2

θ

�
1
2

�

max
(4.17b)

f3(x) = nfin ×
4

3
π

N
�

n=2,4,...

rn−1 (rn − rn−1) (tn−2 + 4 tn−1 + tn) (4.17c)

f4(x) =
1

nfin

× f1(x)

hAs (Tb − T∞) + hAsp (Tb − T∞)
(4.17d)

where, Ab = 4πrbtb (4.17e)

Asp = 2πrbsb (4.17f)

As = 4πroto + 2π
N
�

n=1

(rn + rn−1)
�

(rn − rn−1)
2 + (tn−1 − tn)

2�
1
2 (4.17g)

In Eq. (4.17c), the volume (i.e., f3) of a fin is evaluated using the Simpson’s 1
3

rule for numerical integration. Further, the heat transfer surface area (i.e., As) of a

fin is evaluated in Eq. (4.17g) from the geometry of the fin.
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4.2.4 Solution procedure

The multi-objective formulation of the design of an array of identical annular fins

having plane fin profiles with trapezoidal shape, as expressed by Eq. (4.16), is solved

by real-coded multi-objective optimizer, the non-dominated sorting genetic algo-

rithm II (NSGA-II).

4.2.4.1 Constraints handling through variable bounds

Though the design of a fin array is formulated in Eq. (4.16) as a constrained optimiza-

tion problem, it can easily be handled as an unconstrained optimization problem.

Since rb (radius of a fin at its base) is a predefined fixed parameter, constraint

g1(x) can be made satisfied automatically by fixing (rb, rmax] as the range of ro (outer

radius of the fin), where rmax is the allowable upper limit of ro.

Similarly, constraint g2(x) can be made satisfied simply by fixing tb (fin half-

thickness at the base) in the range of
�

tmin,
W
4

�

, where tmin is the allowable lower

limit of tb. It is to be noted that the maximum half-thickness of a fin could be W
4
,

but it may be taken to be tmax ≪ W
4

such that one-dimensional heat flow through

the fin can be considered.

Since both to (fin half-thickness at the tip) and tb are variables, constraint g3(x)

can be made satisfied by sorting their distinct values in ascending order, i.e., gen-

erating two distinct values for both variables in the range of [tmin, tmax] and then

assigning the smaller value to to and the other one to tb.

The satisfaction of constraint g4(x) automatically is a little bit tricky. For this,

the range [smin, smax] for fin inter-spacing is to be so chosen that the air flowing

through two consecutive fins would maintain the Rayleigh number in the laminar

range of [5, 108]. Accordingly, the range [smin, smax] may be obtained through a

reserve calculation. Since the Rayleigh number (Ra) as expressed in Eq. (4.1) is
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a function only of the fin mean inter-spacing (sm) and the fin outer radius (ro)

keeping all other terms constant for a given scenario, sm can be computed as smin by

replacing ro by rmax and Ra by its lower limit of 5. Similarly, sm can be computed

as s′max by replacing ro by rmin and Ra by its upper limit of 108, where s′max is the

maximum fin inter-spacing at the tip and rmin (rmin > rb) is the allowable minimum

value of ro. The value of smax is finally obtained by deducting 2(tmax − tmin) from

s′max.

Once all the four constraints are made satisfied automatically as above, the

equal fin inter-spacing (sb) for all the adjacent pairs of fins can be obtained using

Eq. (4.18).

sb =
W

nfin

− 2tb . (4.18)

4.2.4.2 Evaluation of objective values

In every loop (iteration) of an optimizer, the values of the four objective functions

given by Eqs. (4.17a)–(4.17d) will be required, which are to be evaluated numeri-

cally. The heat transfer rate, f1 given by Eq. (4.17a) is to be evaluated by solving

the problem governing Eq. (4.14) along with its associated boundary conditions ex-

pressed by Eq. (4.15). Similarly, the induced maximum thermal stress, f2 given by

Eq. (4.17b) is to be evaluated by solving the problem governing Eq. (3.19) along

with its associated boundary conditions expressed by Eq. (3.20). For these pur-

pose, the hybrid spline difference method (HSDM) can be employed for evaluating

the dimensionless temperature field (ω) by solving Eqs. (4.14) and (4.15), and the

displacement field (ψ) by solving Eqs. (3.19) and (3.20). The results of HSDM for

annular fin with continuously varying thickness are already validated with published

results of another numerical method in Section 3.2.4.

In HSDM, the region of study can be discretized as given by Eq. (A.9).

The following is the detail procedure for evaluating f1 and f2 through the HSDM

scheme expressed by Eq. (A.9):
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(a) Discretize Eqs. (4.14) and (4.15) using Eq. (A.9).

(b) Evaluate pn (n = 0, 1, . . . , N) by solving the discretized forms of Eqs. (4.14)

and (4.15), which can be done through the variant of the Thomas algorithm

proposed by Martin and Boyd [64].

(c) At all the grid points, evaluate the dimensionless temperature distribution and

their derivatives up to the second order, i.e., ωn, ω
′
n and ω′′

n, using the values

of pn in Eq. (A.9).

(d) Evaluate the temperature gradient at the base of the fin, i.e., dT
dr

�

�

r=rb
, using

the dimensionless temperature gradient ω ′
o at the base of the fin.

(e) Evaluate f1 using the value of dT
dr

�

�

r=rb
in Eq. (4.17a).

(f) Repeat Steps (a) and (b) for Eqs. (3.19) and (3.20), and then evaluate the

dimensionless displacement and their derivatives up to the second order (i.e.,

ψn, ψ
′
n and ψ′′

n) using the obtained values of pn in Eq. (A.9).

(g) Throughout the fin length in the radial direction, evaluate the displacement

field (u), along with their first order gradient ( du
dr

) using the values of ψn and

ψ′
n.

(h) Evaluate the radial and circumferential thermal stresses (i.e., σr and σθ, re-

spectively) throughout the fin length using the temperature distribution, and

the displacement field and its first order derivative in Eq. (3.14).

(i) Calculating the resultants of σθ and σr throughout the fin length, take their

maximum value as f2.

4.2.5 Numerical experimentation and discussion

The present study revolves around the analysis of an array of identical annular

trapezoidal fins, considering a constant temperature at the base of the fins, heat

dissipation from the fin surfaces to the surroundings by natural convection only,

and variable thermal conductivity of the fin material.
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The operating conditions, thermal properties of the fin material and the fin array

configuration with reference to Fig. 4.7(a), considered for numerical experimenta-

tion, are given in Table 4.2. Further, selecting NSGA-II (Deb et al. [23]) as the

Table 4.2: Operating conditions, fin material properties, and fin array configuration
for linearly varying thickness fin array.
Parameter Value/ range of value
Ambient temperature (T∞) 300 K
Temperature at the base of the fins (Tb) 373 K
Thermal conductivity of the fin material at T∞ (ka) 186 W/mK
Parameter for variable thermal conductivity (β) -0.00018 K−1

Base radius of the fin (rb) 2.0 cm
Length of the primary cylinder (W ) 40.0 cm
Fin inter-spacing (smin, smax) [0.45, 18.0] cm
Outer radius of the fins ((rmin, rmax) for ro) [2.5, 15.0] cm
Fin half thickness at the base and tip ((tmin, tmax) for tb and to) [0.01, 0.2] cm

optimizer, its algorithmic parameter values are given in Table 3.3. With such input

values, the optimization of the fin array configuration, as formulated in Eq. (4.16),

is analyzed under two scenarios. In the first scenario, all the objective functions,

f1(x)–f4(x) given by Eq. (4.16), are optimized in various pairs, while all the four

objective functions are optimized simultaneously in the second scenario.

4.2.5.1 Scenario I

The primary aim of the present study is to optimize the fin array configuration by

simultaneously maximizing the total heat transfer rate (f1) from the fin array and

minimizing the thermal stress (f2) induced in an individual fin of the array. Further,

the fin array configuration at hand is optimized for maximizing the total heat transfer

rate (f1) of the fin array separately with minimizing the fin volume (f3) of the fin

array and maximizing the surface efficiency (f4) of the fin array. The final Pareto

fronts obtained in the respective cases are shown in Figs. 4.8(a)–4.8(c), respectively.

In Fig. 4.8(a), the solutions of the Pareto front depict the conflicting nature between

the total heat transfer rate and the thermal stress induced in an individual fin of the

fin array. Similar conflicting nature of the total fin volume and the surface efficiency

of the fin array with the total heat transfer rate from the fin array can be seen in

Figs. 4.8(b) and 4.8(c), respectively.
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Figure 4.8: Pareto fronts for pairwise objective functions.

Corresponding to trade-off solutions A–F of Fig. 4.8(a), six selective efficient

fin array configurations are shown in Fig. 4.9, where the variations in the patterns

of the individual fin profiles as well as in the number of fins in the fin array are

noticeable (since the length of the primary cylindrical surface is fixed, a variation

in the number of fins in the fin array implies a variation in the fin inter-spacing

also). The values of the other two objective functions, f3 and f4, for these fin array

configurations are also calculated and shown in Fig. 4.9 alongside the optimized

values of f1 and f2. It is observed in these particular six fin array configurations

that, f3 also increases continuously with increasing f1 and f2, but f4 decreases.

4.2.5.2 Scenario II

It is found in Section 4.2.5.1 that when the objective functions are optimized in var-

ious pairs, the heat transfer rate varies differently with different objective functions,

without following any certain pattern. Hence, in order to arrive at a general conclu-
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Figure 4.9: Selective efficient fin geometries (corresponding to trade-off solutions
A–F of Fig. 4.8(a). In these plots, the scale along the axial (vertical) direction is 15
times larger than that along the radial (horizontal) direction.)

sion, all the four objective functions, i.e., f1–f4 given in Eq. (4.16), are optimized

here simultaneously.

The four-dimensional Pareto front obtained in the present case is plotted in a

parallel coordinate system as shown in Fig. 4.10, where the conflicting nature of

various objective functions is clearly visible. For instance, the solution of the Pareto

front having the lowest thermal stress value (i.e., the f2 value) exhibits the lowest

fin volume (i.e., the f3 value) and heat transfer rate (i.e., the f1 value) and a very

high surface efficiency (i.e., the f4 value).

The simultaneous optimization of all the considered four objective functions is

well justified by the fact that a practical scenario would always desire to optimize the

possible maximum number of objective functions. Further, from the Pareto front
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obtained by optimizing a number of objective functions simultaneously, as shown in

Fig. 4.10, a designer can clearly understand the relationships among different objec-

tive functions. Thus, the designer can enjoy the flexibility of adopting a compromise

solution from the Pareto front, based upon his or her accessibility and practicabil-

ity of the available information and resources for the problem at hand. One such

compromise solution, bearing some balanced values of the considered four objective

functions, is also shown in Fig. 4.10.

4.2.6 Sensitivity analysis

Finally, a sensitivity analysis is performed in order to investigate the responses of

the total heat transfer rate from the fin array and the maximum thermal stress

developed in an individual to any change in the design variables of the studied fin

array.

For this purpose, an arbitrary fin array configuration of (t†b, t
†
o, r

†
o, n

†
fin) = (0.06 cm,

0.016 cm, 9.25 cm, 20) is considered, corresponding to which the heat transfer

rate (f †
1) from the fin array and the developed maximum thermal stress (f2†) in

an individual fin will be 342.14 W and 25.53 MPa, respectively. To carry out the
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sensitivity analysis, the problem at hand is solved four times, each time allowing

a distinct design variable to vary by 40% in either directions from its value in the

considered fin configuration, while keeping the other three design variables fixed.

The plots of the corresponding variations in the total heat transfer rate from the fin

array and the maximum thermal stress developed in an individual fin are shown in

Figs. 4.11(a) and 4.11(b), respectively.
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Figure 4.11: Sensitivity analysis of heat transfer rate and maximum thermal stress
in terms of design variables.

It is observed in the plots of Fig. 4.11 that both heat transfer rate and thermal

stress are highly sensitive to the outer radius (ro) of the fins. In the case of the heat

transfer rate, the next highly sensitive design variable is the number of fins (nfin),

followed by the fin cross-sectional half thickness at the base (tb). On the other hand,

for the developed maximum thermal stress, the fin cross-sectional half thickness at

the base (tb) is more sensitive than the number of fins (nfin). The influence of

the fin cross-sectional half thickness at the outer radius (to) is comparatively very

less in both cases. Accordingly, in order to acquire the desired heat transfer effect

maintaining the maximum thermal stress to a minimum, a designer will have the

freedom to choose economic combinations of the design variables based upon the

accessibility and practicability of the available information and resources.

It may also be noticed in Fig. 4.11 that with an increase in tb, the heat transfer

rate in the fin array increases, while the induced maximum thermal stress decreases.

Since problem related all other parameter values were kept constant, this happened

because of the fact that an increase in tb decreases the conductive resistance to
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heat flow, thus the heat transfer rate increases. Further increased heat transfer rate

results in a more uniform temperature distribution along the radial direction of a

fin, which leads to a decrease in the thermal stress in the fin.

4.3 Fin array of non-linearly varying thickness

fins

In the present study, an annular fin array with individual fins of non-linearly varying

thickness defined by a B-spline curve is investigated here with the assumptions that

Poisson’s ratio, coefficient of thermal expansion, and modulus of elasticity of the fin

material remain constant irrespective of any variation in temperature and the inner

and outer radii of the fin are free of traction

Fig. 4.12(a) shows the schematic diagram of an annular fin array with individual

(Fin & spacing)
Symmetric sector

r

sb/2

rb

2to

2t

ro

sb 2tb

(a) Schematic diagram of the fin array. (b) Transverse section of a fin (heat trans-
fer module).

Figure 4.12: Array of identical annular fins with nonlinear varying profile (and equal
fin inter-spacing.)

fins having nonlinear profiles. In Fig. 4.12(a), nfin is the number of fins in the fin
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array, r represents the radius of a fin with ro and rb as its values respectively at the

tip and base of the fin, t represents the half-thickness of a fin with to and tb as its

values respectively at the tip and base of the fin, sb is the spacing between the bases

of two adjacent fins (fin inter-spacing), and W is the total length of the primary

surface.

The fin array shown in Fig. 4.12(a) is actually a repetitive surface containing one

fin and spacing as shown separately in Fig. 4.12(b). Hence, the thermal analysis for

the entire fin array will be equivalent to that for such a single repetitive symmetric

sector (heat transfer module).

4.3.1 Formulation for heat transfer equation

The formulation for heat transfer equation of non-linearly varying thickness annular

fin array is similar to that of linearly varying thickness annular fin array as given in

Section 4.2.1.

4.3.2 Formulation of the thermal stress model

The formulation of the thermal stress model of non-linearly varying thickness an-

nular fin array is similar to that of linearly varying thickness annular fin array as

given in Section 4.2.2.

4.3.3 Optimization modeling

In the present study the performance of the considered fin array is evaluated in

terms five objective functions in different combinations, which are the heat transfer

rate from the fin array, maximum thermal stress induced in an individual fin, total

fin volume of the array, surface efficiency, and argumentation factor of the fin array.

The fin array configuration is defined in terms of the control points of the B-spline
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curve forming the profile of a fin and the total numbers of fins in the fin array.

Hence, any change in the value of any of these control points and the total number

of fins in the fin array will change the fin array configuration with some new values

of the five performance functions.

Hence, the design of the considered annular fin array is modeled as a multi-

objective optimization problem with the five performance functions as the objective

functions, while the control points of the B-spline curve and the total number of fins

in the array as the design variables. The control points are so taken that the extreme

two will be at the two ends (base and tip) of the fin and the intermediate ones are

distributed along the radial direction of the fin, while they in the axial direction

will give the half-thickness of the fin at different points. In other words, say, the

x-coordinates of the control points are distributed along the radial direction of the

fin and their y-coordinates are the half-thickness of the fin. Further, in order to have

a practical nonlinear fin profile, the y-coordinate values are gradually decreased with

their increasing x-coordinate values, i.e., in the radially outward direction of the fin.

Accordingly, the optimization model of the annular fin array design problem can be

formulated as expressed by Eq. (4.19).

Determine x ≡ (nfin, P1, P2, P3, · · · · · · , Pm)
T

to maximize z(x) ≡ {f1(x), f4(x), f5(x)}
minimize f(x) ≡ {f2(x), f3(x)}
subject to g1(x) ≡ x1 < x2 � · · · � xm

g2(x) ≡ W
4
� y1 � y2 � · · · � ym

g3(x) ≡
�

W
2y1+smax

�

� nfin �

�

W
2y1+smin

�

smax, smin � 0 .



































































(4.19)

In Eq. (4.19), Pi = (xi, yi) is the ith control point and m is the total number

of control points of the B-spline curve defining the profile of individual fins of the

fin array. Constraint g1(x) makes the control points of the B-spline curve (i.e.,

their x-coordinate values) distributed along the radially downward direction of a

fin and constraint g2(x) ensures that their corresponding y-coordinate values are
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non-increasing, where x1 = rb, y1 = tb, xm = ro and ym = to as considered in the

schematic diagram of the fin array configuration shown in Fig. 4.12(a). In constraint

g2(x), the upper limit of y1 (i.e., y1 �
W
4
) restricts the half thickness of the individual

fins at the base (tb) to such a value that fin array can be formed by accommodating

a minimum of two fins within the limited predefined length (W ) of the primary

surface (in practice, y1 ≪ W
4

if the heat transfer from the fins is to be studied

as one-dimensional). Since a sharp thickness at the edge of a fin may pose safety

hazard, the value of ym may also be restricted to a finite value within a reasonable

range as widely practiced in real-life applications. Finally, constraint g3(x) ensures

the existence of an fin array by setting the lower limit of the number of fins to be

two and the upper limit to such a value to avoid the excess number of fins over

the length (W ) of the primary surface. The range of fin inter-spacing at the base,

(smin, smax), is to be chosen in constraint g3(x) in such a way that Ra remains within

the laminar range (see Eq. (4.1)).

In Eq. (4.19), f1(x)–f5(x) are the five objective functions, which represent re-

spectively the heat transfer rate from the fin array, maximum thermal stress devel-

oped in an individual fin of the array, total fin volume of the array, surface efficiency

of the fin array, and augmentation factor of the fin array. The overall thermal per-

formance of the fin array will be enhanced on maximizing f1(x), f4(x) and f5(x),

while its life expectancy would be enhanced by minimizing f2(x) and the cost of

the fin material will be reduced by minimizing f3(x). These objective functions, in

terms of the notations and formulations of heat transfer equation of the fin array and

the thermal stress model as presented in the Sections 4.3.1 and 4.3.2 respectively,

can be expressed by Eq. (4.20).

f1(x) = nfin ×
�

−kAb

dT

dr

�

�

�

�

r=rb

+ hAsp (Tb − T∞)

�

(4.20a)

f2(x) =
�

�

σ2
r − σrσθ + σ2

θ

�
1
2

�

max
(4.20b)

f3(x) = nfin ×
4π

3

N
�

n=2, 4, ...

rn−1 (rn − rn−1) (tn−2 + 4 tn−1 + tn) (4.20c)

f4(x) =
1

nfin

× f1(x)

{hAs (Tb − T∞) + hAsp (Tb − T∞)} (4.20d)
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f5(x) =
1

nfin

× f1(x)

{hAb (Tb − T∞) + hAsp (Tb − T∞)} (4.20e)

where, Ab = 4πrbtb (4.20f)

Asp = 2πrbsb (4.20g)

As = 4πroto + 2π
N
�

n=1

(rn + rn−1)
�

(rn − rn−1)
2 + (tn−1 − tn)

2�
1
2

(4.20h)

In Eq. (4.20c), the volume (i.e., f3) of a fin is evaluated using the Simpson’s 1
3

rule for numerical integration. Further, the heat transfer surface area (i.e., As) of a

fin is evaluated in Eq. (4.20h) from the geometry of the fin.

4.3.4 Solution procedure

The fin array design formulated in Eq. (4.19) as a multi objective optimization prob-

lem is optimized using the non-dominated sorting genetic algorithm II (NSGA-II).

4.3.4.1 Constraints Handling Through Variable Bounds

The design of the fin array is formulated in Eq. (4.19) as a constrained optimiza-

tion problem. However, it can easily be handled as an unconstrained optimization

problem.

Since x1 (= rb, the radius of a fin at the base) is predefined, constraint g1(x) can

be made satisfied by generating (m−1) number of data in the range of (rb, rmax] and

then sorting them in ascending order as the x-coordinate values (i.e., x2, x3, · · · , xm)

of the remaining (m−1) number of control points of the B-spline curve defining the

profile of the fin, where rmax is the allowable maximum value of xm (outer radius of

the fin). Similarly, constraint g2(x) can be made satisfied by generating m number

of data in the range of (tmin, tmax) and then sorting them in descending order as the
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corresponding y-coordinate values (i.e., y1, y2, · · · , ym) of the m number of control

points of the B-spline curve, where (tmin, tmax) is the allowable range of the fin half-

thickness (tmax �
W
4
).

On the other hand, constraint g3(x) can be made satisfied automatically through

a reserve computation. Here, the range (smin, smax) for fin inter-spacing at the base

is to be so chosen such that the flow of air through two consecutive fins maintains

the Rayleigh number in the laminar range of [5, 108]. Since for a given scenario,

the Rayleigh number (Ra) as expressed in Eq. (4.1) is a function of the fin mean

inter-spacing (sm) and the fin outer radius (ro) only, sm can be computed as smin by

replacing ro by rmax and Ra by its lower limit of 5. Similarly, sm can be computed

as s′max by replacing ro by rmin and Ra by its upper limit of 108, where s′max is the

maximum fin inter-spacing at the tip and rmin (rmin > rb) is the allowable minimum

value of ro. Finally, smax can be obtained by deducting 2(tmax − tmin) from s′max.

Once all the three constraints are satisfied automatically as above, for all the

adjacent pairs of fins, the equal fin inter-spacing at the base (sb) can be computed

using Eq. (4.21).

sb =
W

nfin

− 2y1 . (4.21)

4.3.4.2 Evaluation of Objective Functions

The evaluation of the objective functions for non-linearly varying thickness annular

fin array is similar to that of linearly varying thickness annular fin array as given in

Section 4.2.4.2.

4.3.5 Numerical experimentation and discussion

A cubic curve with open uniform knot vector and of order 4 is considered for the

B-spline curve representing the fin profile of an individual fin of the fin array sys-

tem investigated in this work. Further, five control points are considered here to
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approximate the fin profile. The coordinates of the five control points along with

the number of fins in the studied fin array are considered as the design variables.

Further, a constant temperature at the base of the fins along with temperature de-

pendent variable thermal conductivity are considered. Also, heat is transferred to

the surrounding from the fin array surface by natural convection only.

With reference to Fig. 4.12(a), Table 4.3 lists the considered operating condi-

Table 4.3: Operating conditions, fin material properties, and fin array geometry for
non-linearly thickness fin array.

Parameter Value/ range of value
Ambient temperature (T∞) 300 K
Temperature of the fin at the base (Tb) 373 K
Thermal conductivity of the fin material at T∞ (ka) 186 W/mK
Parameter for variable thermal conductivity (β) -0.00018 K−1

Base radius (rb) 2.0 cm
Length of the primary cylinder (W ) 40.0 cm
Fin inter-spacing at base (smin, smax) [0.45, 18.0] cm
Outer radius of the fins ((rmin, rmax) for ro) [2.5–15.0] cm
Half thickness of the fin ((tmin, tmax) for t) [0.01–0.2] cm

tions and thermal properties of the fin material along with fin array configuration

geometry. The user-defined algorithmic parameter settings for NSGA-II are given

in Table 3.3. With the sets of input parameters as above, the fin array optimiza-

tion problem formulated in Eq. (4.19) is investigated under two scenarios. In the

first scenario, the objective function f1–f5 given by Eq. (4.20) are optimized in var-

ious pairs, while all the five objective functions are optimized simultaneously in the

second scenario.

4.3.5.1 Scenario I

At the first instance, the fin array configuration is optimized considering maxi-

mization of the heat transfer rate (f1) and minimization of the maximum ther-

mal stress (f2) developed in individual fins. The obtained Pareto front, shown in

Fig. 4.13(a), contains a set of trade-off solutions in terms of f1 and f2. The con-

flicting nature of the two chosen objective functions is clearly depicted in the figure.

Six number of selective efficient fin array configurations, corresponding to trade-off
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Figure 4.13: Pareto fronts for pairwise objective functions..

solutions A–F of Fig. 4.13(a), are shown in Fig. 4.14, where the patterns of variation

of the individual fin profiles are noticeable. The values of other three objective func-

tions, f3–f5, for these fin configurations are also evaluated and shown in Fig. 4.14.

It is observed that f3 and f5 continue to increase with increasing f1 and f2, while

f4 shows the reverse trend.

In view of above, the fin array configuration is studied in the second step for

maximization of f1 separately with minimization of f3 and maximization of f4. The

obtained final Pareto fronts for these two cases are shown respectively in Figs. 4.13(b)

and 4.13(c), where also f1 is found conflicting with both f3 and f4. Next, for the

points in Fig 4.13(c), the surface efficiency and augmentation factor are plotted in

Fig 4.15, where these two objective functions are also found conflicting.
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Figure 4.14: Selective fin array geometries (corresponding to trade-off solutions A–F
of Fig. 4.13(a). In these plots, the scale along the axial (vertical) direction is fifteen
times larger than that along the radial (horizontal) direction.)
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4.3.5.2 Scenario II

Optimizing the objective functions in pairs, it is observed in Section 4.3.5.1 above

that the variation of the heat transfer rate with other objective functions does not

follow any common pattern. In such a situation, in order to arrive at a general

scenario, all the five objective functions, i.e., f1–f5 given by Eq. (4.20), are optimized

here simultaneously. Since it is difficult to analyze a five-dimensional plot on a

two-dimensional page, the parallel coordinate system [88] is used to visualize the

objective functions as shown in Fig. 4.16.
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Figure 4.16: Five-dimensional Pareto in the parallel coordinate system.

The overall nature of an objective function with reference to other objective

functions can be observed from the plots in the parallel coordinate system as shown

in Fig. 4.16. For example, the solution corresponding to the developed minimum

thermal stress bears a very low heat transfer rate, fin volume and augmentation

factor, while a very high surface efficiency. Hence, it is up to a designer to adopt a

balanced solution, out of multiple trade-off solutions of a Pareto front, based upon

the availability of information and resources for the problem at hand. Such a com-

promise solution, having some intermediate objective values, is shown in Fig. 4.16

by a thick crossed line.
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4.4 Comparison of different fin arrays

The comparative analysis of annular fin arrays of various profiles (namely step

change in thickness, non-linearly varying thickness, and uniform thickness) attached

to heat exchangers of cylindrical primary surfaces is the problem taken up in the

present study. The schematic diagrams of annular fin arrays with fins having uni-

form thickness is shown in Fig. 4.17 whereas fin array with fins of step change in

thickness and non-linearly varying thickness are already shown as in Figs. 4.1(a) and

4.12(a) respectively. Here, the radial distance is represented by r with its values at

(Fin & spacing)
Symmetric sector

r

sb/2

rb

ro

sb 2tb

Figure 4.17: Schematic diagrams of annular fin arrays with fins of uniform thickness.

the inner and outer surfaces of each fin being rb and ro respectively. The cross-

sectional half-thickness of uniform thickness fin is represented by t(= tb = to). On

the other hand, sb is the inter-spacing of the fins (i.e., the gap between two adjacent

fins) at the base.



4.4. Comparison of different fin arrays 95

4.4.1 Common formulation for heat transfer equation

The formulation for heat transfer equation of annular stepped fin array and non-

linearly varying thickness fin array is already discussed in Section 4.1.1 and Sec-

tion 4.3.1 respectively. For uniform thickness fin array, t′ = 0 in Eq. (4.11).

4.4.2 Common Optimization modeling

In the present study the performance of the considered annular fin arrays will be

studied in various combination of the considered three objective functions, which

for each fin array are the total heat transfer rate (f1(x)), total fin volume (f2(x))

and surface efficiency (f3(x)). The overall thermal performance of a fin array will

be enhanced upon maximizing the heat transfer rate and surface efficiency, while

the fin material cost will be reduced upon minimizing fin volume. Accordingly, a

general multi-objective optimization problem can be formulated for simultaneously

optimizing these objective functions.

4.4.2.1 Stepped fin array

The stepped fin array as shown in Fig. 4.1(a) is defined in terms of five parameters.

Out of that, four parameters are related to individual fin, which are the radius at the

point of step change in thickness (r1), outer radius (ro), cross-sectional half thickness

of the thick (first) step (t1) and cross-sectional half thickness of the thin (second)

step (t2). The fifth parameter is the number of fins (nfin) in the fin array. Considering

these five parameters as the design variables, the optimization model of the stepped
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fin array can be as given by Eq. (4.22).

Determine x ≡ (r1, ro, t1, t2, nfin)
T

to maximize z(x) ≡ {f1(x), f3(x)}
minimize f(x) ≡ {f2(x)}
subject to g1(x) ≡ r1 > rb

g2(x) ≡ ro > r1

g3(x) ≡ t1 �
W
4

g4(x) ≡ t1 > t2

g5(x) ≡
�

W
2t1+smax

�

� nfin �

�

W
2t1+smin

�

r1, ro, t1, t2 ≥ 0 .



























































































(4.22)

In Eq. (4.22), constraints g1(x), g2(x) and g4(x) are related to the geometry of

the individual fins, while constraints g3(x) and g5(x) are related to the configuration

of the fin array. Constraint g1(x) ensures the existence of the fins by making the

radius at step change in thickness (r1) greater than the predefined radius at the

base (rb), and constraint g2(x) ensures the existence of two steps in a fin by making

the outer radius (ro) greater than radius at step change in thickness (r1) while

constraint g4(x) ensures that the inner step of the fin is thicker than its outer step.

On the other hand, constraint g3(x) restricts the fin half-thickness at the base (t1)

to such a value that an array of fins can be formed by accommodating at least two

fins within the limited predefined length (W ) of the primary surface, and constraint

g5(x) forms the fin array with the lower limit for two fins and the upper limit avoiding

the excess number of fins over the length (W ) of the primary surface ((smin, smax) is

the allowable range of fin inter-spacing at base). The last line in Eq. (4.22) makes

the design variable non-negative.

4.4.2.2 Non-linearly varying and uniform thickness fin arrays

The profile of the non-linearly varying thickness fin, as shown in Fig. 4.12(a), is

represented here by a B-spline curve that can be defined by some control points.
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Considering that the B-spline curve is defined by m number of control points, their

coordinated Pi(xi, yi) (i = 1 to m) are taken as the design variables, where the x

values will represent the radial distances from the base of a fin and the corresponding

y values will represent the half-thickness of the fin. In the same way, the uniform

thickness fin profile, as shown in Fig. 4.17, can be represented by a single point

P1 = (x, y), where x and y will represent respectively the outer radius and half-

thickness of the fin. Accordingly, optimization of both fin profiles (non-linearly

varying and uniform thickness) can be modeled by a common formulation as given

in Eq. (4.23).

Determine x ≡ (nfin, Pi(xi, yi)|Pi(xi, yi) ; i = 1 to m)
T

to maximize z(x) ≡ {f1(x), f3(x)}
minimize f(x) ≡ {f2(x)}
subject to g1(x) ≡ x1 < x2 � · · · � xm

g2(x) ≡ W
4
� y1 � y2 � · · · � ym

g3(x) ≡
�

W
2y1+smax

�

� nfin �

�

W
2y1+smin

�

smax, smin � 0 .



































































(4.23)

In Eq. (4.23), Pi = (xi, yi) is the ith control point and m is the total number

of control points of the B-spline curve defining the profile of individual fins of the

fin array. Constraint g1(x) makes the control points of the B-spline curve (i.e.,

their x-coordinate values) distributed along the radially downward direction of a

fin and constraint g2(x) ensures that their corresponding y-coordinate values are

non-increasing, where x1 = rb, y1 = tb, xm = ro and ym = to as considered in the

schematic diagram of the fin array configuration shown in Fig. 4.12(a). In constraint

g2(x), the upper limit of y1 (i.e., y1 �
W
4
) restricts the half thickness of the individual

fins at the base (tb) to such a value that fin array can be formed by accommodating

a minimum of two fins within the limited predefined length (W ) of the primary

surface (in practice, y1 ≪ W
4
if the heat transfer from the fins is to be studied

as one-dimensional). Since a sharp thickness at the edge of a fin may pose safety

hazard, the value of ym may also be restricted to a finite value within a reasonable
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range as widely practiced in real-life applications. Finally, constraint g3(x) ensures

the existence of an fin array by setting the lower limit of the number of fins to be

two and the upper limit to such a value to avoid the excess number of fins over

the length (W ) of the primary surface. The range of fin inter-spacing at the base,

(smin, smax), is to be chosen in constraint g3(x) in such a way that Ra remains within

the laminar range (see Eq. (4.1)).

For the uniform thickness (rectangular) fin array, m = 1 in Eq. (4.23), indicating

a single design point,P1 = (x1, y1) as stated above. Here, x1 and y1 represents re-

spectively the outer radius and half-thickness of the fin. Note that constraints g1(x)

and g2(x) are not applicable in the case of the uniform thickness fin array

4.4.2.3 Formulation of objective functions

In terms of the notations and formulations of heat transfer equation of the fin arrays

as presented in Section 4.4.1, the three objective functions in Eqs. (4.22) and (4.23),

f1(x)–f3(x), can be expressed by Eq. (4.24).

f1(x) = nfin ×
�

−kAb

dTi

dr

�

�

�

�

r=rb

+ hAsp (Tb − T∞)

�

(4.24a)

f2(x) =







































nfin × 2π {t1 (r21 − r2b ) + t2 (r
2
o − r21)} ; for step fins.

nfin × 4
3
π
�N

n=2, 4, ... rn−1 (rn − rn−1)

× (tn−2 + 4 tn−1 + tn) ; for non-linearly varying thickness fins

nfin × 2πtb (r2o − r2b ) ; for uniform thickness fins

(4.24b)

f3(x) =
1

nfin

× f1(x)

hAs (Tb − T∞) + hAsp (Tb − T∞)
(4.24c)



4.4. Comparison of different fin arrays 99

where, Asp = 2πrbsb (4.24d)

Ab =











4πrbt1 ; for step fin.

4πrbtb ; for non-linearly varying and uniform thickness fins

(4.24e)

As =











































2π (r2o − r2b ) + 4π {r1 (t1 − t2) + rot2} ; for step fins.

4πroto + 2π
�N

n=1 (rn + rn−1)×
�

(rn − rn−1)
2 + (tn−1 − tn)

2�
1
2 ; for non-linearly varying thickness fins

2π (r2o − r2b ) + 4πrotb ; for uniform thickness fins

(4.24f)

Ab in Eq. (4.24a) is the base area of the fin. In Eqs. (4.24b) and (4.24f), n and

N are respectively the grid index of space and total number of grid.

4.4.3 Solution procedure

The fin design problem formulated by Eqs. (4.22) and (4.23) as a multi-objective op-

timization model is solved using the non-dominated sorting genetic algorithm II (NSGA-II).

In the cycles of NSGA-II, the total heat transfer rate f1(x) is computed using

Eqs. (4.5) and (4.6) for the stepped fin array, while using Eqs. (4.14) and (4.15)

for the non-linearly varying and uniform thickness fin arrays as discussed in Sec-

tions 4.1.3 and 4.3.4 respectively.

4.4.4 Numerical experimentation and discussion

In the present study, annular fin arrays with individual fins of various profiles,

namely step change in thickness, non-linearly varying thickness, and uniform thick-

ness, are analyzed under the assumptions that the temperature at the base of the fins
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is constant, thermal conductivity for the fin material is variable, and heat dissipation

from the surface of fin array surface by natural convection only.

The operating conditions and thermal properties of the fin material as well as

the fin array geometry with reference to Fig. 4.1(a), 4.12(a) and 4.17 considered here

for numerical experimentation, are given in Table 4.4. The user-defined algorithmic

Table 4.4: Operating conditions, material properties, and fin array geometry for
annular fin arrays.

Parameter Value/range of value
Ambient temperature, T∞ 300 K
Temperature of the fin at the base, Tb 373 K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Base radius of fins, rb 2.0 cm
Outer radius of fins, ro 2.5–6.0 cm
Fin half-thickness, t (for uniform/non-linearly varying thickness fin) 0.01–0.2 cm
Radius of step change in thickness, r1 (for step fin) 2.5–6.0 cm
Half thickness of the first step, t1 (for step fin) 0.01–0.2 cm
Half thickness of the second step, t2 (for step fin) 0.01–0.2 cm
Length of the primary cylinder, W 40.0 cm
Fin inter-spacing at base, sb [0.36, 18.0] cm

parameter settings for NSGA-II are given in Table 3.3. A cubic curves with open

uniform knot vector and of order 4 is considered for the B-spline curve to represent

the profile of the non-linearly varying thickness fins. Accordingly, the B-Spline

curve is defined here by five control points (i.e., for non-linearly varying thickness

fins, m = 5 in Eq. (4.23)).

Using the above input information and randomly generated NSGA-II popula-

tion, the fin array design problem formulated in Eq. (4.23) is studied under different

combinations of the three objective functions, f1–f3, given by Eq. (4.24).

Fig. 4.18 shows the Pareto fronts for the three fin array configurations obtained

by maximizing the total heat transfer rate (f1) and minimizing total fin volume (f2)

of each fin array. The conflicting nature between the heat transfer rate and fin

volume is clearly visible. It is also seen that the heat dissipation rate from all the

fin arrays are almost same at low fin volume. However, at higher fin volume, the

non-linearly varying thickness fin array has a better performance than those of the

other two fin arrays, followed by stepped fin array. Nine selective efficient fin array
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Figure 4.18: Pareto fronts in terms of f1 and f2.

configurations corresponding to solutions A–I of Fig. 4.18 (three configurations from

each category of fin arrays) are shown in Fig. 4.19, where it is seen that all the fin

D
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nfin = 48

f3 = 0.85

nfin = 66

f2 = 69.90 cm
3
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3
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Figure 4.19: Selective efficient fin array configurations corresponding to solutions A–
I of Fig. 4.18 (a larger scale in the direction of thickness is used to make the variation
prominent in that direction).

profiles at low fin volume tend to acquire rectangular shape, while they become

significantly different at higher fin volume. The values of the third objective (f3)
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for those configurations are also computed and shown in Fig. 4.19.

For further assessment of performance, the fin arrays are studied in the sec-

ond step for simultaneously maximizing the heat transfer rate (f1) and surface ef-

ficiency (f3). The obtained Pareto fronts are shown in Fig. 4.20, where the heat
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Figure 4.20: Pareto fronts in terms of f1 and f3.

transfer rate and surface efficiency are found conflicting with each other. It is also

seen in Fig. 4.20 that the uniform thickness fin array configuration has the lowest

surface efficiency for similar heat transfer rate among the three fin array configura-

tions whereas the Pareto fronts of the other two fin arrays overlap with each other,

indicating almost the same surface efficiency in both the cases.


