
Appendix A

Techniques for solving the problem

A highly accurate numerical methods, i.e., the hybrid spline difference method (HSDM)

is used to solve the direct problem. On the other hand, a customized form of the

highly popular and widely applied multi-objective GA, the Non-dominated Sort-

ing Genetic Algorithm-II (NSGA-II) [23] is considered for solving the optimization

problem.

A.1 Numerical methods for solving the direct prob-

lem

A.1.1 Origin of parametric spline

Since in most of the studies [86], the spline function is considered to be a cubic

polynomial, its curvature after the second differential is assumed to be a linear

relationship as given by Eq. (A.1).

θ̄′′n(ξ̄)− θ̄′′n−1

ξ̄ − ξ̄n−1

=
θ̄′′n − θ̄′′n(ξ̄)

ξ̄n − ξ̄
(A.1)

In Eq. (A.1), θ̄n−1(ξ̄) and θ̄n(ξ̄) are the cubic spline approximation curves in the

interval [ξ̄n−2, ξ̄n−1] and [ξ̄n−1, ξ̄n] respectively, where ξ̄ is the dimensionless radius.

θ̄′′n−1 and θ̄
′′
n are the second order derivatives of θ̄n−1 and θ̄n on the computational

grid point ξ̄n−1 and ξ̄n, respectively.

To increase the accuracy of the values, a random undetermined parameter τ̄ is
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added in the traditional spline assuming the relationship of quadratic differential to

be as given by Eq. (A.2)

θ̄′′n(ξ̄, λ̄) + τ̄ θ̄n(ξ̄, λ̄) = [θ̄
′′
n(ξ̄n−1, λ̄) + τ̄ θ̄n(ξ̄n−1, λ̄)]

�

ξ̄n − ξ̄

Δξ̄n

�

+ [θ̄′′n(ξ̄n, λ̄) + τ̄ θ̄n(ξ̄n, λ̄)]

�

ξ̄ − ξ̄n−1

Δξ̄n

�

; for ξ̄ ∈ [ξ̄n−1, ξ̄n] (A.2)

In Eq. (A.2), ξ̄ ∈ [ξ̄n−1, ξ̄n], ξ̄n is the discrete grid points in computation space

[ξ̄0, ξ̄N ], λ̄ ≥ 0 is a free parameter, the spacing Δξ̄ is defined as ξ̄n − ξ̄n−1, θ̄n(ξ̄, λ̄) is

the unknown function defined in [ξ̄0, ξ̄N+1]. The end point relation of Eq. (A.2) is

given by Eq. (A.3).

θ̄n
�

ξ̄n−1

�

= θ̄n−1 (A.3a)

θ̄n
�

ξ̄n
�

= θ̄n (A.3b)

Solving Eq. (A.2) with the help of Eq. (A.3), Eq. (A.4) is obtained.

θ̄n(ξ̄, λ̄) = z̄ θ̄n + ¯̄z θ̄n−1 +Δξ̄
2
n

�

ḡ(z̄)θ̄′′n + ḡ(¯̄z)θ̄′′n−1

�

/ω̄2 (A.4)

where,

ω̄ = Δξ̄/
√
λ̄

z̄ =
�

ξ̄ − ξ̄n
�

Δξ̄

¯̄z = 1− z̄

ḡ(z̄) = z̄ − sin(ω̄z̄)/sinω̄

θ̄′′n = θ̄′′n
�

ξ̄n
�

Here, θ̄′′n and θ̄
′′
n

�

ξ̄n
�

are the second differential values at the end points.

In Eq. (A.4), the subscript n is replaced by n + 1 to obtain the relationship of

θ̄n+1(ξ̄, λ̄). Since there is a continuity of the first and second derivatives at cross-

point, the fundamental relation of the parameter spline function given by Eq. (A.5)

can be deduced from the function θ̄n(ξ̄, λ̄) and θ̄n+1(ξ̄, λ̄).

θ̄′n =



























θ̄n+1−θ̄n
Δξ̄

−Δξ̄
�

β̄θ̄′′n + ᾱθ̄′′n+1

�

; n = 0

θ̄n+1−θ̄n−1

2Δξ̄
− ᾱΔξ̄(θ̄′′n+1−θ̄′′n−1)

2
; n = 1, 2, · · · , N − 1

θ̄n−θ̄n−1

Δξ̄
+Δξ̄

�

ᾱθ̄′′n−1 + β̄θ̄′′n
�

; n = N

(A.5a)
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ᾱθ̄′n−1 + 2β̄θ̄
′
n + ᾱθ̄′n+1 =

ᾱ+ β̄

Δξ̄

�

θ̄n+1 + θ̄n−1

�

(A.5b)

ᾱθ̄′′n−1 + 2β̄θ̄
′′
n + ᾱθ̄′′n+1 =

1

Δξ̄2
�

θ̄n+1 − 2θ̄n + θ̄n−1

�

(A.5c)

where, ᾱ = [ω̄csc(ω̄)− 1] /ω̄2, β̄ = [1− ω̄cot(ω̄)] /ω̄2. (A.5d)

A.1.2 The concept of spline difference

The approximate function of the differential equation is given by Eq. (A.6) assuming

it to be composed of multiple different parameter spline Ω̄(ξ̄, λ̄)

θ̄(ξ̄, λ̄) =

N+1
�

n=−1

pnΩ̄

�

ξ̄ − ξ̄n
Δξ̄

, λ̄

�

(A.6)

In Eq. (A.6), pn is the value of the spline size at the grid point n. The discrete

relationship at the grid point given by Eq. (A.7) is obtained by substituting Eq. (A.6)

in Eq. (A.5).

θ̄n =ᾱpn−1 + 2β̄pn + ᾱpn+1 (A.7a)

θ̄′n =
pn+1 − pn−1

2Δξ̄
(A.7b)

θ̄′′n =
pn−1 − 2pn + pn+1

Δξ̄2
(A.7c)

A.1.3 Concept of hybrid spline

For practical equation solving, the evaluation of the parameter {ᾱ, β̄} are difficult.
In order to reach the accuracy of fourth order for the first and the second derivative

of the approximate function at the same time, the concept of hybrid spline is used
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and the discrete relationship is defined as given by Eq. (A.8).

θ̄n =
pn−1 + 10pn + pn+1

12
(A.8a)

θ̄′n =
pn+1 − pn−1

2Δξ̄
−Δθ̄′n (A.8b)

θ̄′′n =
pn−1 − 2pn + pn+1

Δξ̄2
(A.8c)

where, Δθ̄′n =























(−3θ̄′′n+4θ̄′′n+1−θ̄′′n+2)Δξ̄

24
; n = 0

(θ̄′′n+1−θ̄′′n−1)Δξ̄

24
; n = 1, 2, · · · , N − 1

(3θ̄′′n−4θ̄′′n−1+θ̄′′n−2)Δξ̄

24
; n = N

(A.8d)

The concept of hybrid spline is as follows: using the parameters (ᾱ, β̄)→ (1/12, 5/12)

and cooperating with Eqs. (A.7a) and (A.7c), Eqs. (A.8a) and (A.8c) are obtained.

Eqs. (A.8a) and (A.8c) are substituted in Eq. (A.5a) and considering (ᾱ, β̄)→
�

1
6
, 1
3

�

,

Eqs. (A.8b) and (A.8d) are obtained through reorganization.

In accordance with the problem discussed in this thesis, Eq. (A.8) is modified

as given in Eq. (A.9), where Δr,
�

N (i) + 1
�

, n and p represent the grid size, total

number of grid points, grid index of space, and spline parameter, respectively.

θ̄n =
p
(i)
n−1 + 10p

(i)
n + p

(i)
n+1

12
(A.9a)

θ̄′n =
p
(i)
n+1 − p

(i)
n−1

2Δr
−Δθ̄′n (A.9b)

θ̄′′n =
p
(i)
n−1 − 2p

(i)
n + p

(i)
n+1

Δr2
(A.9c)

where, Δθ̄′n =























(−3θ̄′′n+4θ̄′′n+1−θ̄′′n+2)Δr

24
; n = 0

(θ̄′′n+1−θ̄′′n−1)Δr

24
; n = 1, 2, · · · , N (i) − 1

(3θ̄′′n−4θ̄′′n−1+θ̄′′n−2)Δr

24
; n = N (i)

(A.9d)

i ∈ {1, 2} .

In Eq. (A.9), p(i) = p and N (i) = N in uniform and variable thickness fins, while i

in p(i) and N (i) indicates the steps in the fin with step change in thickness (i = 1 in

the first step and i = 2 in the second step). Further, θ̄ = ω for uniform and variable

thickness fins while θ̄ = κ for step fin.
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A.2 NSGA-II for solving the optimization prob-

lem

An individual or a solution representation which represent a complete solution of

a problem is the basic component of an EA which is usually an array of some el-

ements. A single element or a sub-array of elements constitutes design variable or

variables of the problem. For coding the design variables in a solution, there are

four techniques which are {0,1} binary-coded, real-coded, integer-coded, and per-
mutation representation. For binary-coded representation, a sub-array of elements

is used to represent a variable, the size of whose depends on the desired accuracy

of the variable. For the other three representations, a single element is used to

represents a variable, the only difference being the element be allowed to have a

real value, an integer value, and a unique integer value, respectively. In any of the

above mentioned four representation, a population is formed by a set of solutions,

which by applying some algorithm-specific operators, is gradually improved toward

the optima. A termination criteria is then applied to obtained the solutions which is

usually the desired objective values are obtained or a predefined maximum number

of generations (iterations) are performed [21].

Each of the EA differing from each other in the specific mechanisms through

which a population is evolved toward the optima. Genetic algorithm (GA) is one

of the search technique, wherein by repeated application of three major operators,

namely selection, crossover, and mutation operators, a population is evolved toward

the optima. A mating pool with above-average solutions of the GA population is

formed by the selection operator, with the help of the solutions of the mating pool,

the offspring (children solutions) are generated by the crossover operator whereas

the neighborhood of an offspring are explored by the mutation operator. The lit-

erature is available with a good number of variants of GA. A very popular and

widely applied multi-objective GA, the Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) proposed by Deb et al. [23] is considered in the present work. The

following subsections is dedicated to address the different steps of NSGA II, cus-

tomized for solving the present problem at hand.

A.2.1 Solution representation and population initialization

In the formulation, all the design variables being the real valued variables, they

are represented by two real-coded elements of the solution array. After the total

number of elements in the solution array is determined, each of them is initialized
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by a random real number in the range specified in Chapters 3 and 4.

A.2.2 Solution comparison in multi-objective optimization

In a multi-objective optimization, two solutions are compared through the concept

of dominance. The solution zi is said to be dominated by solution zj if and only if

zj is not worse than zi in any objective value and zj is strictly better than zi in at

least one objective value. If there is a violation of any of these two conditions the

solutions are called non-dominated solutions.

However, irrespective of their objective values, the presence of constraints makes

an infeasible solution always dominated by any feasible solution. On the other

hand, between two infeasible solutions, the solution with lesser total amount of

constraint violation will dominate the other solution. However, if their total amounts

of constraint violation are equal, the solutions are non-dominated with respect to

one another.

Once the dominance relations between each pair of solutions is obtained, the

sorting of the population is done according to the non-domination levels of the solu-

tions. The set of the best non-dominated solutions is called the first non-dominated

front. This front is also known as the Pareto front. The non-dominated fronts of the

subsequent solutions are identified from the rest of the population. This is done by

excluding the solutions of the preceding non-dominated fronts (in a non-dominated

front, the characteristic of the solutions are such that the value of an objective func-

tion cannot be improved until unless the value of at least one of the other objective

functions is degraded). Finally, in accordance to their levels of non-domination, the

solutions are ranked. As for example, each of the solutions of the first front has a

rank of 1, the second front has a rank of 2, and so on [22].

In addition to the non-dominated ranking, maintaining the diversity among the

solutions of a non-dominated front is another primary requirement in multi-objective

optimization. The present study adopts the crowding distance-based diversity mea-

sure, proposed by Deb et al. [23]. By applying Eq. (A.10) to the perimeters of

the cuboid formed by the nearest neighbors of a solution, crowding distance-based

diversity measure can be estimated.

d
(I)
i =

q
�

j=1

f̄

�

I(j)
i+1

�

j − f̄

�

I(j)
i−1

�

j

f̄max
j − f̄min

j

(A.10)

In Eq. (A.10),
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I = index of the non-dominated front

I(j)
i = ith solution of I in the direction of the jth objective function
f̄
(I(j)

i )
j = jth objective value of I (j)

i

d
(I)
i = crowding distance (diversity) of the ith solution of I

�

f̄min
j , f̄max

j

�

= range of the jth objective function in the entire population

q = number of objective functions in the problem

If zi has a better (smaller) non-dominated rank than that of zj, or both have

the same rank but zi has a better (higher) crowding distance than that of zj , then

solution zi can be said to be better than solution zj .

A.2.3 Working principle of NSGA-II

The binary tournament selection operator, a crossover operator, a mutation operator

and an elite preserving mechanism are the major operators used in NSGA-II.

At the first instance, two random solutions from the GA population are picked

at a time by the binary tournament selection operator out of which a copy of the

best one, obtained using the measures addressed in Section A.2.2, is stored in a

temporary population. The process is repeated until the size of the temporary

population, known as a mating pool equals to that of the GA population.

Once the mating pool is formed, the crossover operator is applied, which select

two random parent solutions at a time from the mating pool and generates two

children solutions. This is done by crossing the two selected parent solutions with a

predefined crossover probability (p̄c). In case of real-coded variables, the simulated

binary crossover (SBX) operator is applied as given by Eq. (A.11).

x̄
(c1)
j = 1

2

��

1 + ¯̄β
�

x̄
(p̄1)
j +

�

1− ¯̄β
�

x̄
(p̄2)
j

�

; j = 1, 2, · · · , n̄r

and x̄
(c2)
j = 1

2

��

1− ¯̄β
�

x̄
(p̄1)
j +

�

1 + ¯̄β
�

x̄
(p̄2)
j

�

; j = 1, 2, · · · , n̄r







(A.11)

In Eq. (A.11),

x̄j = j-th real-coded variable

n̄r = number of real-coded variables

p = parents

c = children
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¯̄β = ordinate of a probability distribution

The ordinate of a probability distribution ¯̄β for a random number u ∈ (0, 1) and a
non-negative probability distribution index n is expressed by Eq. (A.12).

¯̄β =







(2u)
1

1+n ; if u � 0.5
�

1
2(1−u)

�
1

1+n

; otherwise.
(A.12)

A single-point crossover operator is applied in case of {0,1} binary-coded variables
where by crossing two parents two children are generated as follows: As shown in

Figure A.1(a), the portions of the parents on the right side of a randomly chosen

crossing site are exchanged.

1 1 0 1001

0110 0 0 1 0110 1 1 0

0 0 1001 1

Child 1Parent 1

Child 2Parent 2
(a) Single-point crossover operator.

1 1 1 0 0 01 0 1
1 0

10
(b) Mutation operator.

Figure A.1: GA operators for {0,1} binary-coded variables.

Once a children population is generated, the neighborhood of a child solution

is explored with the application of a mutation operator. For a random number r ∈
(0, 1) and a polynomial distribution index η̄ > 0, the polynomial mutation operator

is applied to the real-coded variables to evolve real-valued variable x̄j in the range

of
�

x̄min
j , x̄max

j

�

as given by Eq. (A.13).

x̄j ← x̄j +
�

x̄max
j − x̄min

j

�

dq (A.13)

where,

dq =



















�

2r + (1− 2r)
�

1− x̄j−x̄min
j

x̄max
j −x̄min

j

�η̄+1
�

1
η̄+1

− 1 ; if r < 0.5

1−
�

2(1− r) + 2(r − 0.5)
�

1− x̄max
j −x̄j

x̄max
j −x̄min

j

�η̄+1
�

1
η̄+1

; otherwise .

(A.14)

The binary mutation operator, on the other hand, is applied to {0,1} binary-coded
variables for altering the elemental values from 0 to 1 or from 1 to 0 as shown in

Figure A.1(b).
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An important point to be noted here that because of the stochastic nature of the

GA, there is no assurance that the children population, generated by the application

of the crossover and mutation operators, as expressed above, would be superior than

the parent population. Under such a situation, simply considering the children pop-

ulation of a generation as the parent population for next generation may sometime

lead the search in the opposite direction to the optima. A convergence and diversity

based elite preserving mechanism is applied in NSGA-II to avoid such a possibility

and thus retaining the best solutions of a generation. Applying this mechanism, at

first both the parent and children populations of a generation are combined upon

which, based on their non-dominated ranks and crowding distances as stated in

Section A.2.2, sorting is done. By selecting the first 50% of the best solutions of

this combined population, finally the parent population for the next generation is

formed. Even if no good solution is generated at a generation, this mechanism

guarantees that from the current position, NSGA-II never moves opposite to the

optima.

A.2.4 Working steps of NSGA-II in the context of the present

study

The working steps (NSGA-II) in the context of the present study is summarized

below:

(1) Form a GA population with N̄ number of solutions, where a solution is a real-

valued array representing the design variable vector x ≡
�

d̄1, d̄2, d̄3 . . . . . .
�T

where d̄1, d̄2, d̄3 . . . . . . are the design variables.

(2) Initialize the solutions of the GA population with design variable values gener-

ated randomly within their user-specified ranges.

(3) Evaluate the objective functions for the GA population.

(4) Employ the binary tournament selection operator to the GA population to form

a mating pool of size N̄ .

(5) Apply the simulated binary crossover operator to generate a children population

of size N̄ by exploiting the mating pool.

(6) Apply the polynomial mutation operator to explore the neighborhood of the

children population.

(7) Evaluate the objective functions for the children population repeating Step (3).
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(8) Form the population for the next generation by applying the elite-preserving

mechanism to the original GA population and the children population.

(9) Repeat Steps (4)–(8) until the user-specified maximum number of generations

is performed.
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