
Chapter 3

Optimization of isolated annular

fin

In this chapter, the analysis of the isolated annular fins undertaken in this thesis,

is described, involving all the parameters and variables needed for the formulation.

The problem is also represented diagrammatically with the help of figures. The heat

transfer as well as thermal stress model considered in this problem, is also illustrated

here. Then, the mathematical formulation is given to evaluate the different design

variables through an optimizing algorithm.

As thermal conductivity k varies linearly with temperature Ti in most of the fin

materials, the relationship between the thermal conductivity k and temperature Ti,

given by Eq. (3.1), is adopted here. [86].

k = ka {1 + β (Ti − T∞)} (3.1)

In Eq. (3.1), T∞ is ambient temperature, ka is the value of k at T∞, and β

is a parameter that controls the variation in k. Further, Ti = T in uniform and

continuously varying thickness fins, while i in Ti indicates the steps in the fin with

step change in thickness (i = 1 in the first step and i = 2 in the second step).
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14 3. Optimization of isolated annular fin

The thickness of the fin is assumed to be very small, so that the heat transfer by

conduction in the radial direction can be treated as a one-dimensional flow without

any significant difference. The heat losses from the fin surface to the surround-

ing fluid are assumed to be taken place by natural convection and radiation. The

other assumptions are steady state, constant convection heat transfer coefficient,

h (though in real case convection heat transfer coefficient varies in the direction

of fluid flow, it is assume constant here mainly for the purpose of simplifying the

analysis) and no internal heat generation. Considering a constant temperature Tb at

the base of the fin, one-dimensional steady-state analysis for the studied fin profiles

based on Eq. (3.1) are discussed as follows:

3.1 Stepped fin

The problem discussed here is a two-stepped rectangular cross-sectional annular fin

attached to a heat exchanger of cylindrical primary surface.

A schematic diagram of the two-stepped rectangular cross-sectional annular fin

is shown in Fig. 3.1. The inner and outer radii of the fin are rb and ro respectively,

while the radius at the point of step change in thickness is r1. The cross-sectional

half-thickness of the base and that of the tip of the fin are t1 and t2, respectively.

3.1.1 Formulation for heat transfer equation

Based on conditions of Eq. (3.1), the steady state energy balance governing equation

for the fin can be expressed by Eq. (3.2).

d
dr

�

r {1 + β (Ti − T∞)} dTi

dr

�

− hr
kati

�

Ti − T∞ +
σǫ(Ti

4−T 4
∞)

h

�

= 0

where, rb ≤ r ≤ r1 ; for i = 1

r1 ≤ r ≤ ro ; for i = 2























(3.2)
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Figure 3.1: Schematic diagram of two-stepped annular fin.

In this study, the base of the fin (i.e, Tb) is considered to be at constant tem-

perature and heat transfer by both convection and radiation is allowed through the

tip of the fin to the surrounding. Also, since the continuity of temperature as well

as energy balance must exist at the interface between the thick and thin sections of

the fin, Eq. (3.2) is subjected to the boundary conditions given by Eq. (3.3).

T1 =











Tb ; if r = rb

T2 ; if r = r1

(3.3a)

−ka {1 + β (T2 − T∞)}
dT2

dr
=h (T2 − T∞) + σǫ

�

T 4
2 − T 4

∞
�

; at r = ro (3.3b)

−t1ka {1 + β (T1 − T∞)}
dT1

dr
=− t2ka {1 + β (T2 − T∞)}

dT2

dr

+ hs (t1 − t2)

�

T1 − T∞ +
σǫ (T 4

1 − T 4
∞)

hs

�

; at r = r1

(3.3c)

The temperature distribution and fin dimensions shown in Fig. 3.1 are normal-
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ized, as given in Eq. (3.4), by defining some dimensionless parameters.

R1 = rb
ro

Ro = r1
ro

R = r
ro

ys = t2
t1

ξ = t1
rb

Bi = hrb
ka

Bis = hsrb
ka

θ = T1−T∞

Tb−T∞

φ = T2−T∞

Tb−T∞

δ = T∞

Tb−T∞

Rf = σǫ(Tb−T∞)3

h
Rfs = σǫ(Tb−T∞)3

hs
α = (Tb − T∞) β







































(3.4)

In terms of the dimensionless parameters defined in Eq. (3.4), Eqs. (3.2) and

(3.3) are expressed in non-dimensional forms as in Eqs. (3.5) and (3.6), respectively.

(1 + ακ) d
2κ

dR2 +
�

α dκ
dR
+ 1

R
(1 + ακ)

�

dκ
dR

−Z2κ {1 +Rf (4δ
3 + 6δ2κ+ 4δκ2 + κ3)} = 0

where, κ = θ , Z = Z0

R1
; if R1 ≤ R ≤ Ro

κ = φ , Z = Z1√
ys
; if Ro ≤ R ≤ 1

Z0 =
�

Bi
ξ

Z1 =
Z0

R1



























































(3.5)

θ =











1 ; at R = R1

φ ; at R = Ro

(3.6a)

− (1 + αφ)
dφ

dR
=
Bi

R1

φ
�

1 +Rf

�

4δ3 + 6δ2φ+ 4δφ2 + φ3
��

; at R = 1 (3.6b)

R1 (1 + αθ)
dθ

dR
=ysR1 (1 + αφ)

dφ

dR

− Bis (1− ys) θ
�

1 +Rfs

�

4δ3 + 6δ2θ + 4δθ2 + θ3
��

; at R = Ro

(3.6c)
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3.1.2 Optimization modeling

In the present study, the performance of the studied two-stepped rectangular cross-

sectional annular fin is evaluated in different combinations of five functions, which

are heat transfer rate (f1), fin volume (f2), fin heat transfer surface area (f3), fin

efficiency (f4), and fin effectiveness (f5). Further, as shown in Fig. 3.1, the geometry

of the fin can be defined in terms of only four independent parameters, which are fin

radius at the point of step change in thickness (r1), outer radius of the fin (ro), cross-

sectional half thickness of the thick (first) step of the fin (t1), and cross-sectional

half thickness of the thin (second) step of the fin (t2). Therefore, it is clear that a

change in the value of any of these four independent parameters will lead to a new

design with different values of the five performance functions of the fin. Accordingly,

treating these four independent geometric parameters as the design variables and

the five performance functions as the objective functions, the considered fin design

can be modeled as a multi-objective optimization problem as given by Eq. (3.7).

Determine x ≡ (r1, ro, t1, t2)
T

to maximize z(x) ≡ {f1(x), f4(x), f5(x)}
minimize f(x) ≡ {f2(x), f3(x)}
subject to g1(x) ≡ r1 > rb

g2(x) ≡ ro > r1

g3(x) ≡ t1 > t2

r1, ro, t1, t2 ≥ 0 .



































































(3.7)

In Eq. (3.7), constraints g1(x) and g2(x) ensure the existence of two steps (sec-

tions) in the fin, and constraint g3(x) ensures that they (i.e., the two fin steps) are

of different cross-sectional thicknesses, thus resulting in a two-stepped rectangular

cross-sectional fin. On the other hand, the last line in Eq. (3.7) makes the design

variables non-negative (in practice, positive). Further, ro ≫ 2tb (i.e., the outer ra-

dius of the fin is sufficiently larger than its thickness at the base) may be maintained

to make the fin thin enough, so that it can be studied under one-dimensional heat
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conduction in the radial direction only. The five objective functions f1(x)–f5(x) in

Eq. (3.7) are the heat transfer rate, fin volume, fin heat transfer surface area, fin

efficiency and fin effectiveness, respectively. The maximization of f1(x), f4(x) and

f5(x) improves the overall thermal performance of the fin, while the minimization of

f2(x) and f3(x) reduces the fin material and space cost. In terms of the notations

and formulation for heat transfer equation of the fin, presented in Section 3.1.1,

these objective functions can be defined by Eq. (3.8).

f1(x) = −kAb

dT1

dr

�

�

�

�

r=rb

(3.8a)

f2(x) = 2π
�

t1
�

r21 − r2b
�

+ t2
�

r2o − r21
��

(3.8b)

f3(x) = 2π
�

r2o − r2b
�

+ 4π {r1 (t1 − t2) + rot2} (3.8c)

f4(x) =
f1(x)

hf3(x) (Tb − T∞) + σǫf3(x) (T 4
b − T 4

∞)
(3.8d)

f5(x) =
f1(x)

hAb (Tb − T∞) + σǫAb (T 4
b − T 4

∞)
(3.8e)

where, Ab = 4πrbt1

3.1.3 Solution procedure

The fin design problem, formulated in Eq. (3.7) as a multi-objective optimization

model, is solved using a very popular and widely applied multi-objective genetic

algorithm, namely nondominated sorting genetic algorithm II (NSGA-II) proposed

by Deb et al. [23]. The working steps of (NSGA-II) in the context of the present

study is summarized in Section A.2.4.

The heat transfer rate, f1(x), is evaluated numerically by solving the problem

governing Eq. (3.5) along with its initial and boundary conditions given by Eq. (3.6).

The non-dimensional temperature distribution (θ, φ) along the length of the fin is

first evaluated by solving Eqs. (3.5) and (3.6) using the hybrid spline difference
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method (HSDM) proposed by Wang et al. [83–86]. The computational process of

HSDM is similar to those of the finite difference methods, but an accuracy of fourth

order can be achieved in HSDM while evaluating the first-order and second-order

derivative functions. Also, sufficiently large number of grid points and low values in

termination criteria of the iteration process are considered in order to obtain results

with higher accuracy. Validating the performance through the predicted tip temper-

ature and fin efficiency as shown in Table 3.1, it is found that the numerical results

Table 3.1: Error analysis of HSDM in case of annular stepped fin (design condi-
tion: R1 = 0.5, R2 = 0.75, ys = 0.5, Bis = 0.0)

Z0

(a) Non-dimensional temperature at the tip (b) Fin Efficiency

Exact [44]
HSDM

% Error Exact [44]
HSDM

% Error
(present work) (present work)

0.1 0.99231 0.99231 0.0 0.9947 0.9947 0.0
0.2 0.96981 0.96981 0.0 0.9793 0.9793 0.0
0.3 0.93416 0.93416 0.0 0.9549 0.9549 0.0
0.4 0.88778 0.88778 0.0 0.9229 0.9229 0.0
0.5 0.83348 0.83348 0.0 0.8854 0.8854 0.0
0.6 0.77417 0.77417 0.0 0.8441 0.8441 0.0
0.7 0.71245 0.71245 0.0 0.8009 0.8009 0.0
0.8 0.65054 0.65054 0.0 0.7572 0.7572 0.0
0.9 0.59016 0.59016 0.0 0.7141 0.7141 0.0
1.0 0.53253 0.53253 0.0 0.6725 0.6725 0.0

of HSDM exactly match with the deterministic exact results reported by Kundu et

al. [44], thus demonstrating the accuracy of HSDM as well as the correctness of the

algorithm used for solving the direct problem. The discrete relationships with the

concept of HSDM are given in Eq. (A.9).

The detail procedure for evaluating f1(x) in Step (3) of NSGA-II, through the

HSDM scheme expressed by Eq. (A.9), is as follows:

(a) Discretize Eqs. (3.5) and (3.6) as in Eq. (A.9).

(b) Evaluate pn (n = 0, 1, . . . , N) by solving the discretized form of Eqs. (3.5)

and (3.6) using the variant of the Thomas algorithm proposed by Martin and

Boyd [64].

(c) At all the grid points, evaluate the dimensionless temperature distribution and

their derivatives up to the second order, i.e., θn, φn, θ
′
n, φ

′
n, θ

′′
n and φ

′′
n using

the values of pn in Eq. (A.9).
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(d) Evaluate the temperature gradient at the base of the fin, i.e., dT1

dr

�

�

r=rb
, from

the dimensionless temperature gradient θ′o at the base of the fin.

(e) Evaluate f1(x) using the value of
dT
dr

�

�

r=rb
in Eq. (3.8a).

3.1.4 Numerical experimentation and discussion

In the present study, a rectangular cross-sectional two-stepped annular fin, having

constant base temperature and variable heat conductivity, is studied in a convective

and radiative environment. The considered operating conditions, thermal properties

of the fin material, and fin geometry with reference to Fig. 3.1 are listed in Table 3.2,

Table 3.2: Operating conditions, fin material properties, and fin geometry for annular
stepped fin.
Parameter Value/ range of value
Ambient temperature, T∞ 300 K
Fin temperature at the base, Tb 600 K
Convective heat transfer coefficient on the fin surface, h 50 W/m2K
Convective heat transfer coefficient on the step surface, hs 50 W/m2K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Emissivity of the fin material, ǫ 0.8
Base radius, rb 2.0 cm
Radius of step change in thickness, r1 2.5–6.0 cm
Outer radius, ro 2.5–6.0 cm
Half thickness of the first step, t1 0.01–0.2 cm
Half thickness of the second step, t2 0.01–0.2 cm

while the user defined algorithmic parameter settings for NSGA-II are fixed based on

some trial runs as given in Table 3.3. With these sets of input values and randomly

Table 3.3: User defined parameter setting in the context of NSGA-II.
Parameter Value/ range of value
Population size 100
Number of generations 400
Crossover probability 90%
Distribution index for the SBX crossover operator 10
Mutation probability 0–1%
Distribution index for the polynomial mutation operator 100

generated NSGA-II population, the fin design optimization problem formulated in

Eq. (3.7) is studied under two scenarios of the considered five objective functions

f1–f5 given by Eq. (3.8). In the first scenario, the objective functions are optimized
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in various pairs, while all the five objective functions are optimized simultaneously

in the second scenario.

3.1.4.1 Scenario I

Initially the fin configuration optimization problem is studied for maximizing the

heat transfer rate f1 and minimizing the fin volume f2. The obtained final Pareto

front, containing the set of trade-off solutions in terms of f1 and f2, is shown in

Fig. 3.2(a). It clearly reveals the conflicting nature between the heat transfer rate
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Figure 3.2: Pareto fronts for pairwise objective functions.

and the fin volume, i.e., one objective cannot be improved without degrading the

other at least by some amount. Six selective efficient fin geometries, corresponding

to trade-off solutions A–F of Fig. 3.2(a), are shown in Fig. 3.3, where the pattern of

geometric variations in the fin configurations is noticeable. For these configurations,

the values of other three objective functions, i.e., f3–f5, are also computed and

shown in Fig. 3.3 along with the design parameter values. The notations for design
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Figure 3.3: Selective efficient fin geometries (corresponding to trade-off solutions
A–F of Fig. 3.2(a).)

parameters in Fig. 3.3 are as per those used in Fig. 3.1. From Fig. 3.3, it is observed

that the patterns of variations of f3–f5 with those of f1 and f2 are not very clear.

It is to be mentioned that in some applications (such as those pertaining to

aerospace, electronic components, heat exchangers in vessels, etc.), the weight or

the available space is a major design consideration, thus making fin volume (f2) and

fin heat transfer surface area (f3) an important parameter to be optimized. It is also

desirable for a fin to perform at its maximum capacity, i.e., at the ideal situation with

the whole fin at its base temperature. However, because of the thermal resistance

to conduction, the temperature gradually decreases along the radial direction of the
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fin, causing the fin performance to fall from its ideal situation and subsequently the

utilization of the fin material in an inefficient manner. Hence, if the economic aspect

of the fin material is to be taken into account, the fin efficiency (i.e., f4) becomes

an important consideration in optimization of annular fins. On the other hand, the

fin effectiveness (f5) also becomes an important parameter to be optimized in the

case of constrained surface area of the body to which the fin is attached. Hence,

although the fin volume (i.e., f2), the fin heat transfer surface area (i.e., f3) and the

fin performance factors (i.e., f4 and f5) are desirable to be optimum in a real life

situation, optimum values of some of these objectives may be more important than

others depending upon the availability of resources.

In view of above, the fin design optimization problem is studied in the second

step for maximizing the heat transfer rate f1 separately with minimizing the fin

heat transfer surface area f3, maximizing the fin efficiency f4, and maximizing the

fin effectiveness f5, and the obtained Pareto fronts are shown in Figs. 3.2(b)–3.2(d),

respectively. The Pareto front in Fig. 3.2(b) shows that the heat transfer rate f1

conflicts with the fin heat transfer surface area f3 also, i.e., an improvement in

f1 will degrade f3 by some amount and vice-versa. Further, it can be noticed in

Fig. 3.3 that the heat transfer rate gradually increases with increasing fin volume.

Accordingly, since both the fin volume and fin heat transfer surface area are sought

to be minimized against maximizing the heat transfer rate, it can be concluded that

the fin volume and fin heat transfer surface area are not conflicting but correlated

to some extent, i.e., both will be optimized (improved or degraded) simultaneously.

Next studying the Pareto fronts in Figs. 3.2(c) and 3.2(d), it is observed the heat

transfer rate f1 conflicts with the fin efficiency f4 and fin effectiveness f5 also, i.e.,

a higher heat transfer rate will reduce both the fin efficiency and fin effectiveness.

However, unlike the cases of the fin volume and fin heat transfer surface area, the

trends of variation of the fin efficiency and fin effectiveness against the heat transfer

rate are different. Therefore, finally the variation of the fin efficiency f4 against the

fin effectiveness f5 is studied by taking them as two maximizing objective functions

of the fin design problem. The obtained Pareto front is shown in Fig. 3.4, which

depicts that the fin efficiency conflicts with the fin effectiveness. It may be noted
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Figure 3.4: Pareto front of fin efficiency versus fin effectiveness.

that the fin efficiency is the ratio of the actual heat transfer rate from the fin to the

ideal heat transfer rate with the entire fin surface at the base temperature, while

the fin effectiveness is the ratio of the actual heat transfer rate from the fin to the

heat transfer rate through the base area without any fin.

3.1.4.2 Scenario II

Studying pair-wise separately, it is observed in Section 3.1.4.1 that the variations

of the objective functions are different, leading to no common pattern of the heat

transfer rate. Therefore, all the five considered objective functions, i.e., f1–f5 given

by Eq. (3.8), are optimized here simultaneously in order to arrive at a general sce-

nario. Since a plot of more than three dimensions can neither be visualized directly

nor analyzed effectively on a two-dimensional page, the obtained five-dimensional

Pareto front is plotted in a parallel coordinate system as shown in Fig. 3.5, in which

an objective function of interest is plotted in one of a series of parallel coordinate

axes each of equal length [88]. The objective functions are marked here along the

horizontal axis, and their values for different solutions are shown along the corre-

sponding parallel vertical axes. Each crossing line in Fig. 3.5 represents a solution

of the Pareto front, connecting the objective values of the solution on the respective
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Figure 3.5: Five-dimensional Pareto front in two-dimensional parallel coordinate
system.

parallel vertical axes. Accordingly, the conflicting objective values of any solution

can be noticed in Fig. 3.5. For example, the solution corresponding to the maximum

heat transfer rate bears very high fin volume and fin heat transfer surface area, and

a moderately high fin efficiency, while a very low fin effectiveness.

The fact that in real life scenario, all the objective functions are desirable to be

optimum justifies the need for optimizing all the objective functions simultaneously.

Further, since the single plot of the Pareto front in Fig. 3.5 is able to show clearly

the relationships of any objective function with the remaining four, a designer can

enjoy the flexibility of adopting a compromise solution based upon the accessibility

and practicability of information and resources available for the problem at hand.

Such a compromise solution is also shown in Fig. 3.5, which bears some balanced

values of the considered five objective functions.

3.1.5 Sensitivity analysis

Finally, sensitivity analysis is performed in order to study the influence of each

design variable on the heat transfer rate. For this purpose, an arbitrary intermediate
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solution is chosen from the Pareto front shown in Fig. 3.2(a). The solution has

optimal objective values of f ∗
1 = 178.46 W and f ∗

2 = 3.36 cm
3, and the corresponding

efficient fin geometry as r∗1 = 3.35 cm, r
∗
o = 5.11 cm, t

∗
1 = 0.05 cm and t

∗
2 = 0.01 cm.

The sensitivity analysis is first performed using a small perturbation, say 1% and

then using a large perturbation, say 10%. As such, in each case the problem is

solved four times for maximizing the heat transfer rate f1 and minimizing the fin

volume f2. In the first case, the design variable are allowed to vary ±1% from

its optimum value, while keeping all other three design variables constant at their

optimum values while in the second case the design variable are allowed to vary

±10% from its optimum value. The plots of the deviation of the optimum heat

transfer rate f ∗
1 along the new Pareto front of each case, against the deviation of the

corresponding optimum design variable, are shown in Figs. 3.6 and 3.7 respectively.

Deviation from optimal point (%)
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 0.004

 0.006

 0.008

−1 −0.5  0  0.5  1
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1
−
f
∗ 1
)
/f
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Figure 3.6: Sensitivity analysis of heat transfer rate in terms of design variables
using 1% perturbation.

It is found that plots of the deviation of the optimum heat transfer rate f ∗
1 against the

deviation of the corresponding optimum design variable follows the same trends in

both the sensitivity analysis using 1% and 10% perturbation. Further it is observed

in the plots that the heat transfer rate is more sensitive to the outer radius (ro) of

the fin geometry, followed by that to the fin radius (r1) at the step change, while the

influences of the fin cross-sectional half thicknesses (t1 and t2) on the heat transfer

rate are comparatively very less. Accordingly, in order to obtain the desired heat
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Figure 3.7: Sensitivity analysis of heat transfer rate in terms of design variables
using 10% perturbation.

transfer effect, a designer can adjust design variables based upon the availability

and practicability of information and resources.

3.2 Fin with linearly varying thickness

The multi-objective optimization of an annular fin of plane profile, attached to a

heat exchanger of cylindrical primary surface, is studied here with the assumptions

that Poisson’s ratio, coefficient of thermal expansion, and modulus of elasticity of

the fin material remain constant irrespective of any variation in temperature and

the inner and outer radii of the fin are free of traction A schematic diagram of an

annular fin of plane profile is shown in Fig. 3.8, where rb and ro are respectively the

inner and outer radii of the fin, while t represents the cross-sectional half-thickness

of the fin with tb and to being its values at the base and tip, respectively. Note that

the fin profile will be rectangular if t is constant (i.e., to = tb), otherwise it will be

taper as shown in Fig. 3.8.
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ro

r
rb

2tb

2t

2to

Figure 3.8: Schematic diagram of annular fin of linearly varying thickness.

3.2.1 Formulation for heat transfer equation

Incorporating Eq. (3.1), the one-dimensional steady-state energy balance equation

for heat transfer in an axisymmetric thin annular fin can be expressed by Eq. (3.9).

d

dr

�

r {1 + β (T − T∞)}
dT

dr

�

+

�

r {1 + β (T − T∞)}
dT

dr

�

t′

t

− hr

kat

�

T − T∞ +
σǫ (T 4 − T 4

∞)

h

�

�

1 + t′
2
�

1
2
= 0 (3.9)

Since it is assumed that temperature at the base of the fin (i.e., Tb) is constant

and heat is dissipated from the tip of the fin to the surrounding by convection as well

as radiation, Eq. (3.9) is subjected to the boundary conditions given by Eq. (3.10).

T = Tb ; at r = rb (3.10a)

−ka {1 + β (T − T∞)}
dT

dr
= h (T − T∞) + σǫ

�

T 4 − T 4
∞
�

; at r = ro (3.10b)
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For simplicity of analysis, the fin dimensions and temperature distribution in

the fin shown in Fig. 3.8 are non-dimensionalized by defining some dimensionless

parameters as given by Eq. (3.11).

X = r
rb

Xo =
ro
rb

ζ = tb
rb

δd = βT∞ γc =
t
tb

Bi = hrb
ka

ω = T
T∞

ωb =
Tb

T∞

δc =
βT∞

(1−βT∞)

γ =
hr2

b

tbka(1−βT∞)
nc =

σǫr2
b
T 3
∞

tbka(1−βT∞)
mc =

σǫrbT
3
∞

ka







































(3.11)

In terms of the dimensionless parameters defined in Eq. (3.11), the energy bal-

ance relation of Eq. (3.9) and its associated boundary conditions of Eq. (3.10) are

now expressed in non-dimensional forms as in Eqs. (3.12) and (3.13), respectively.

γc

�

(1 + δcω)
d2ω

dX2
+ (1 + δcω)

1

X

dω

dX
+ δc

�

dω

dX

�2
�

+ γc
′(1 + δcω)

dω

dX

−
�

γ(ω − 1) + nc

�

ω4 − 1
��

�

1 + γc
′2ζ2

�
1
2
= 0 (3.12)

ω = ωb; at X = 1 (3.13a)

(1− δd + δdω)
dω

dX
+Bi(ω − 1) +mc

�

ω4 − 1
�

= 0; at X = Xo (3.13b)

3.2.2 Formulation of the thermal stress model

Since an annular fin of small thickness can be studied by considering it under the

action of an axisymmetric plane stress system [80], the stress-displacement relation-
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ships for such an annular fin can be expressed by Eq. (3.14).

σr =
E

1− ν2

�

du

dr
+ ν

u

r
− (1 + ν)αeT

�

(3.14a)

σθ =
E

1− ν2

�

u

r
+ ν

du

dr
− (1 + ν)αeT

�

(3.14b)

Further, according to the classical theory of elasticity, the equilibrium condition

for a fin of plane profile can be expressed in terms of polar coordinates as given by

Eq. (3.15).
dσr
dr

+
σr
t

dt

dr
+
σr − σθ

r
= 0 (3.15)

Combining Eqs. (3.14) and (3.15), the equilibrium condition of a fin can be

expressed in terms of the displacement field as given by Eq. (3.16).

d2u

dr2
+

�

1 +
rt′

t

�

1

r

du

dr
−
�

1− rt′

t
ν

�

u

r2
−

�

dT

dr
+
t′

t
T

�

(1 + ν)αe = 0 (3.16)

Since it is assumed in the present study that the outer radius of the annular

fin is larger than its thickness, the fin can be studied under a plane stress field,

which would cause negligible traction at the end faces (i.e., at the inner and outer

radii) [18]. Accordingly, Eq. (3.16) would be subjected to the boundary conditions

given by Eq. (3.17).

du

dr
+ ν

u

r
− (1 + ν)αeTb = 0 , at r = rb (3.17a)

du

dr
+ ν

u

r
− (1 + ν)αeTo = 0 , at r = ro (3.17b)

For non-dimensionalizing the thermal stress distribution in the annular fin shown

in Fig. 3.8, some dimensionless parameters are defined apart from those in Eq. (3.11).
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These new parameters are given Eq. (3.18).

ωo =
To

T∞
, ψ =

u

ro − rb
, ηc =

ro − rb
rb

(3.18)

In terms of the dimensionless parameters defined in Eqs. (3.11) and (3.18),

Eqs. (3.16) and (3.17) are now non-dimensionalized as given by Eqs. (3.19) and

(3.20), respectively.

d2ψ

dX2
+

�

1 +
Xγc

′

γc

�

1

X

dψ

dX
−
�

1− Xγc
′

γc
ν

�

ψ

X2
− (1 + ν)αeT∞

ηc

�

ω′ +
γc

′

γc
ω

�

= 0

(3.19)

ηc
dψ

dX
+ ηc

νψ

X
− (1 + ν)αeT∞ωb = 0 , at X = 1 (3.20a)

ηc
dψ

dX
+ ηc

νψ

X
− (1 + ν)αeT∞ωo = 0, at X = Xo (3.20b)

3.2.3 Optimization modeling

In the present study the five performance functions, namely heat transfer rate,

induced maximum thermal stress, fin volume, fin efficiency, and fin effectiveness, are

considered for performance evaluation of the studied annular fin of plane profile.

Further the fin profile shown in Fig. 3.8 is defined by three independent param-

eters, which are the outer radius (ro), cross-sectional half thickness at the base (tb),

and cross-sectional half thickness at the outer radius (to). It is, therefore, clear

that any adjustment in the value of any of these three independent parameters

will prompt a new configuration for the annular fin with changed values of the five

performance functions.

Accordingly, the fin design problem considered in the present study can be

formulated as a multi-objective optimization problem, as given by Eq. (3.21), by
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taking the three independent geometric parameters as the design variables and the

five performance functions as the objective functions.

Determine x ≡ (ro, tb, to)
T

to maximize z(x) ≡ {f1(x), f4(x), f5(x)}
minimize f(x) ≡ {f2(x), f3(x)}
subject to g1(x) ≡ ro > rb

g2(x) ≡ to ≤ tb

ro, tb, to ≥ 0 .























































(3.21)

In Eq. (3.21), constraint g1(x) ensures the existence of the fin, and constraint g2(x)

restricts the increase in fin thickness in the outward direction (to = tb will give a

rectangular profile, while to < tb will make it taper). Although the last line in

Eq. (3.21) ensure just the non-negativity of the design variables as per the require-

ment of optimization techniques, to in practice may be maintained at some specified

minimum value in order to avoid any safety hazard resulting from a weak slender

tip of the fin. Further, ro ≫ 2tb (i.e., the outer radius of the fin is sufficiently larger

than its thickness at the base) may be maintained to make the fin thin enough, so

that it can be studied under one-dimensional heat conduction in the radial direction

only.

The objective functions, f1(x)–f5(x) in Eq. (3.21), represent the heat transfer

rate, induced maximum thermal stress, fin volume, fin efficiency, and fin effective-

ness, respectively. The overall thermal performance of the fin will be enhanced

upon maximizing f1(x), f4(x) and f5(x). On the other hand, the minimization of

f2(x) and f3(x) will contribute to the enhancement of life expectancy of the fin and

reduction in the fin material cost, respectively. In terms of the notations and for-

mulation for heat transfer equation of the fin and thermal stress model as presented

in Sections 3.2.1 and 3.2.2 respectively, these objective functions can be formulated
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as given by Eq. (3.22).

f1(x) = −kAb

dT

dr

�

�

�

�

r=rb

(3.22a)

f2(x) =
�

�

σ2
r − σrσθ + σ2

θ

�
1
2

�

max
(3.22b)

f3(x) = V (3.22c)

f4(x) =
f1(x)

hAs (Tb − T∞) + σǫAs (T 4
b − T 4

∞)
(3.22d)

f5(x) =
f1(x)

hAb (Tb − T∞) + σǫAb (T 4
b − T 4

∞)
(3.22e)

where, Ab = 4πrbtb

Using the Simpson’s 1
3
rule for numerical integration, the fin volume V in

Eq. (3.22c) is evaluated as given by Eq. (3.23).

V =
4

3
π

N
�

n=2,4,...

rn−1 (rn − rn−1) (tn−2 + 4 tn−1 + tn) (3.23)

Further, the heat transfer surface area As in Eq. (3.22d) is evaluated from the

fin geometry as expressed by Eq. (3.24).

As = 4πroto + 2π
N
�

n=1

(rn + rn−1)
�

(rn − rn−1)
2 + (tn−1 − tn)

2�
1
2 (3.24)

3.2.4 Solution procedure

The non-dominated sorting genetic algorithm II (NSGA-II) is employed to solve the

fin design problem formulated in Eq. (3.21) as a multi-objective optimization model.

The working steps of (NSGA-II) in the context of the present study is summarized

in Section A.2.4.

The heat transfer rate f1(x) given by Eq. (3.22a) is computed numerically by
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solving the problem governing Eq. (3.12) along with its associated boundary con-

ditions in Eq. (3.13). Similarly, the problem governing Eq. (3.19) along with its

associated boundary conditions in Eq. (3.20) is solved to compute the induced max-

imum thermal stress f2(x) given by Eq. (3.22b). For these, the sets of Eqs. (3.12)

and (3.13), and Eqs. (3.19) and (3.20) are solved first by employing the hybrid spline

difference method (HSDM) so as to evaluate the dimensionless temperature field (ω)

and displacement field (ψ), respectively. The discrete relationships used in HSDM

can be expressed as Eq. (A.9).

To assess the correctness of the algorithm for solving the direct problem, the re-

sults of HSDM for temperature and stress fields are compared with those of Mallick

et al. [63]. The comparison is shown in Fig. 3.9, where it is found that the numer-
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(c) Circumferential stress distribution.

Figure 3.9: Comparison of temperature and stress distribution with those of Mallick
et al. [63].

ical results of HSDM reveal a very good agreement with the deterministic results

reported by Mallick et al. [63], thus illustrating the correctness of the algorithm used

for solving the direct problem. For clarity of the comparison, the results shown in

Fig. 3.9 take into account the same parameter values and similar boundary condi-
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tions.

The detail procedure for evaluating f1(x) and f2(x) in Step (3) of NSGA-II,

through the HSDM scheme expressed by Eq. (A.9), is as follows:

(a) Discretize Eqs. (3.12) and (3.13) as in Eq. (A.9).

(b) Evaluate pn (n = 0, 1, . . . , N) by solving the discretized form of Eqs. (3.12)

and (3.13) using the variant of the Thomas algorithm proposed by Martin and

Boyd [64].

(c) At all the grid points, evaluate the dimensionless temperature distribution and

their derivatives up to the second order, i.e., ωn, ω
′
n and ω

′′
n using the values

of pn in Eq. (A.9).

(d) Evaluate the temperature gradient at the base of the fin, i.e., dT
dr

�

�

r=rb
, from

the dimensionless temperature gradient ω ′
0 at the base of the fin.

(e) Evaluate f1(x) using the value of
dT
dr

�

�

r=rb
in Eq. (3.22a).

(f) Repeat Steps (a) and (b) for Eqs. (3.19) and (3.20), and then evaluate the

dimensionless displacement and their derivatives up to the second order (i.e.,

ψn, ψ
′
n and ψ

′′
n) using the values of pn in Eq. (A.9).

(g) Evaluate the displacement field, along with their first order gradient, using the

values of ψn and ψ
′
n throughout the fin length in the radial direction.

(h) Evaluate the radial and circumferential thermal stresses (i.e., σr and σθ, re-

spectively) throughout the fin length using the temperature distribution, and

displacement field and its first order derivative in Eq. (3.14).

(i) Evaluate the resultant thermal stress throughout the fin length, and then find

its maximum value as f2(x) expressed by Eq. (3.22b).
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3.2.5 Numerical experimentation and discussion

In the present study, an annular fin consisting of plane surfaces is studied in a

convective and radiative environment with constant base temperature and variable

thermal conductivity. For numerical experimentation, the considered operating con-

ditions and thermal properties of the fin material along with the fin geometry with

reference to Fig. 3.8 are given in Table 3.4, while the user-defined algorithmic pa-

Table 3.4: Operating conditions, fin material properties, and fin geometry for linearly
varying thickness annular fin.
Parameter Value/ range of value
Ambient temperature, T∞ 300 K
Temperature of the fin at the base, Tb 600 K
Convective heat transfer coefficient on the fin surface, h 50 W/m2K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Emissivity of the fin material, ǫ 0.8
Base radius of the fin, rb 2.0 cm
Outer radius of the fin, ro 3.5–15.0 cm
Half thickness of the fin at the base, tb and tip, to 0.01–0.3 cm

rameter settings for NSGA-II are given in Table 3.3. After fixing the sets of input

parameters, the fin size optimization problem as formulated in Eq. (3.21) is inves-

tigated under two scenarios of the considered five objective functions f1(x)–f5(x)

given by Eq. (3.22). The objective functions are optimized in different pairs in the

first scenario, while all of them are optimized simultaneously in the second scenario.

3.2.5.1 Scenario I

The heat transfer rate (f1) and the maximum thermal stress (f2) are assumed as the

two primary objective functions to be optimized in the fin design problem at hand (f1

is to be maximized and f2 is to be minimized). For further assessment, the fin design

is studied in the second step maximizing the heat transfer rate (f1) separately with

minimizing the fin volume (f3), maximizing the fin efficiency (f4) and maximizing

the fin effectiveness (f5). The obtained respective final Pareto fronts are shown

in Figs. 3.10(a)–3.10(d). The solutions of the Pareto front in Fig. 3.10(a) depict

the trade-off (conflicting) nature between the heat transfer rate and thermal stress.
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(c) Pareto front in terms of f1 and f4.
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(d) Pareto front in terms of f1 and f5.

Figure 3.10: Pareto fronts for pairwise objective functions of linearly varying thick-
ness fin.

Similar conflicting nature of the heat transfer rate with fin volume, fin efficiency and

fin effectiveness are also seen in Figs. 3.10(b)–3.10(d), respectively.

Six selective efficient fin geometries, corresponding to trade-off solutions A–F of

Fig. 3.10(a), are shown in Fig. 3.11, where the variations in the patterns of the fin

profiles are noticeable. Calculating the values of f3–f5 for these fin configurations,

which are also shown in Fig. 3.11 along with the optimized values of f1 and f2, it

is observed in these particular six profiles that with increasing f1 and f2, f3 and f5

also increase continuously, while f4 decreases.

3.2.5.2 Scenario II

Optimizing the objective functions of the annular fin design problem in pairs, it is

observed in Section 3.2.5.1 that the heat transfer rate varies differently with different
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Figure 3.11: Selective geometries of linearly varying thickness fin (corresponding to
trade-off solutions A–F of Fig. 3.10(a). In these plots, the scale along the axial (ver-
tical) direction is 15 times larger than that along the radial (horizontal) direction.)

objective functions without any common pattern. Therefore, all the considered five

objective functions, i.e.,f1–f5 given by Eq. (3.22), are next optimized simultaneously

with the expectation for arriving at a general conclusion.

The obtained five-dimensional Pareto front is plotted in a parallel coordinate

system as shown in Fig. 3.12, which clearly depicts the conflicting nature of various

objective functions. For instance, the solution of the Pareto front having maximum

heat transfer rate exhibit a very high fin volume, a reasonably high maximum ther-
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Figure 3.12: Five-dimensional Pareto front in a parallel coordinate system.

mal stress, while a reasonably low fin efficiency and fin effectiveness. The degree

of zigzagness of the various cross lines demonstrates the trade-off sharpness of the

objective values between various efficient solutions. It is also to be noted that a

very high value of thermal stress in developed in the fin at extremely low value of

fin volume. It is now up to a designer to adopt a balanced solution based upon the

availability and practicability of information and resources for the problem at hand.

Such a compromised solution, bearing some intermediate values of the objective

functions, is also shown in Fig. 3.12 by a thick crossed line.

3.2.6 Sensitivity analysis

Finally, in order to investigate the effect of each design variable on the heat trans-

fer rate and maximum thermal stress developed in the fin, a sensitivity analysis

is performed. For this purpose, the design variables are allowed to vary ±40%
from a chosen particular point in the design space (t†b = 0.20 cm, t†o = 0.10 cm

and r†o = 9.25 cm). The corresponding heat transfer rate f †
1 and the maximum

thermal stress developed f †
2 for the chosen point are 573.51 W and 268.24 MPa,

respectively. In this analysis, the problem is solved three times, each time allow-

ing a design variable to vary from its chosen value, while keeping the other two
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design variables fixed. The plots of the deviation of the heat transfer rate and the

maximum thermal stress developed against the characteristic variation of the corre-

sponding design variables, are shown in Fig. 3.13(a) and Fig. 3.13(b), respectively.
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Figure 3.13: Sensitivity analysis of heat transfer rate and maximum thermal stress
in terms of design variables.

It is observed in the plots that both the heat transfer rate and maximum thermal

stress developed are more sensitive to the outer radius (ro) of the fin, followed by

that to the fin cross-sectional half thickness at the base (tb), while the influences of

the fin cross-sectional half thickness at the outer radius (to) are comparatively very

less in both the cases. Accordingly, in order to acquire the desired heat transfer

effect maintaining the maximum thermal stress, a designer will have the freedom to

choose economic combinations of the design variables based upon the accessibility

and practicability of information and resources. It may be noticed in Fig. 3.13 that,

with an increase in tb, the heat transfer rate in the fin increases and the induced

maximum thermal stress decreases. Since problem related all other parameter val-

ues were kept constant, this happened because of the fact that an increase in tb

decreases the conductive resistance to heat flow, thus increasing the heat transfer

rate. Further increased heat transfer rate results in a more uniform temperature

distribution along the radial direction of the fin, which lead to decreasing thermal

stress in the fin.
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3.3 Fin of non-linearly varying thickness

The problem in the present study is a non-linearly varying thickness annular fin

attached to a heat exchanger of cylindrical primary surface. The Poisson’s ratio,

modulus of elasticity and coefficient of thermal expansion of the fin material are

assumed to remain constant with temperature. A schematic diagram of a non-

linearly varying thickness annular fin is shown in Fig. 3.14. The inner and outer

ro

r

2tb

rb

2t

Figure 3.14: Schematic diagram of non-linearly varying thickness annular fin.

radii of the fin are rb and ro respectively. The cross-sectional half-thickness of the

fin is t with tb being that at the base of the fin.

3.3.1 Formulation for heat transfer equation

The formulation for heat transfer equation of non-linearly varying thickness annular

fin is similar to that of linearly varying thickness annular fin profile as given in

Section 3.2.1.
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3.3.2 Formulation of the thermal stress model

The formulation for the thermal stress model of non-linearly varying thickness an-

nular fin is similar to that of linearly varying thickness annular fin as given in

Section 3.2.2.

3.3.3 Optimization modeling

In the present study the performance of the studied non-linearly varying thickness

annular fin will be evaluated in different combinations of five performance functions,

which are heat transfer rate, maximum thermal stress induced in the fin, fin vol-

ume, fin efficiency, and fin effectiveness. Further the profile of the fin, as shown in

Fig. 3.14, can be defined in terms of m number of control points of a B-spline curve.

Therefore, it is clear that a change in any of these control points will lead to a new

design of the annular fin with different values of the five performance functions.

In the optimization process, the optimum shape of the fin profile can be obtained

by finding the optimum values of the control points, which are regarded as unknowns.

The first control point is positioned at the base of the fin that can move freely

along the y-axis, so that its x-value will represent the predefined fixed radius at

the base of the fin while its y-value will represent the half thickness of the fin at

the base. The last control point can move freely in the xy-plane, representing the

length of the fin by its x-value and the half thickness of the fin at the tip by its

y-value. The intermediate control points can also move in the xy-plane with fixed

or increasing x-values and decreasing y-values in between those of the first and

last control points. Accordingly, treating the m number of control points as the

design variables and the five performance functions as the objective functions to be

optimized simultaneously, the considered fin design problem can be formulated as a
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multi-objective optimization problem as given by Eq. (3.25).

Determine x ≡ (P1, P2, P3, · · · · · · , Pm)
T

to maximize z(x) ≡ {f1(x), f4(x), f5(x)}
minimize f(x) ≡ {f2(x), f3(x)}
subject to g1(x) ≡ x1 < x2 ≤ · · · ≤ xm

g2(x) ≡ y1 ≥ y2 ≥ · · · ≥ ym











































(3.25)

In Eq. (3.25), Pi = (xi, yi) is the ith control point and m is the total number

of control points of the B-spline curve representing the fin profile, while x1 = rb,

y1 = tb, xm = ro and ym = to as considered in Fig. 3.14. The constraints g1(x) and

g2(x) in Eq. (3.25) make the control points distributed along the radially outward

direction of the fin with non-increasing values in the direction of the fin thickness.

In other words, g1(x) and g2(x) resists the control points to form an unphysical

shape of the B-spline curve, so as to give a viable fin profile. Further, in order to

represent a practical scenario, a sharp outer edge of the fin may be avoided by fixing

ym > 0.

The five objective functions, represented by f1(x)–f5(x) in Eq. (3.25), are the

heat transfer rate, maximum thermal stress developed, fin volume, fin efficiency, and

fin effectiveness, respectively. The maximization of f1(x), f4(x) and f5(x) enhances

the overall thermal performance of the fin, while the minimization of f2(x) increases

its life expectancy and minimization of f3(x) reduces the fin material cost. These

objective functions, in terms of the notations and formulation for heat transfer

equation and thermal stress model of the fin as presented in Sections 3.3.1 and 3.3.2

respectively, are similar to that of linearly varying thickness fin as expressed by

Eq. (3.22).
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3.3.4 Solution procedure

The solution procedure of non-linearly varying thickness annular fin is similar to

that of linearly varying thickness annular fin as given in Section 3.2.4.

3.3.5 Numerical experimentation and discussion

The rate of convergence of an optimization process is dependent on the number of

design variables also, among others. It usually decreases with increasing number of

design variables. Since in terms of flexibility and stiffness, cubic curves with open

uniform knot vector and of order 4 are considered to be sufficient in most of the

engineering analysis, the same is considered for the B-spline curve representing the

fin profile investigated in this work. Further, since the number of control points

of a B-spline curve must be more than the chosen polynomial degree by at least

two units in order to have a local control on the curve [75], five control points are

considered here to approximate the fin profile. The coordinates of these five control

points of the B-spline curve are treated here as the design variables of the studied

fin design problem.

In the present study, the non-linearly varying thickness annular fin is analyzed

in a convective and radiative environment with a constant temperature at the base

of the fin and variable thermal conductivity for the fin material. The considered op-

erating conditions and thermal properties of the fin material along with fin geometry

are listed in Table 3.5 with reference to Fig. 3.14, and the user-defined algorithmic

parameter settings for NSGA-II are given in Table 3.3. With the above sets of input

parameters and randomly generated NSGA-II population, the fin configuration op-

timization problem formulated in Eq. (3.25) is analyzed under two scenarios of the

considered five objective functions f1–f5 given by Eq. (3.22). In the first scenario,

the objective functions are optimized in various pairs, while in the second scenario

all of them are optimized simultaneously.
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Table 3.5: Operating conditions, fin material properties, and fin geometry for non-
linearly varying thickness annular fin.
Parameter Value/ range of value
Ambient temperature, T∞ 300 K
Temperature of the fin at the base, Tb 600 K
Convective heat transfer coefficient on the fin surface, h 50 W/m2K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Emissivity of the fin material, ǫ 0.8
Base radius, rb 2.0 cm
Outer radius, ro 3.5–15.0 cm
Half thickness of the fin, t 0.01–0.3 cm

3.3.5.1 Scenario I

Initially the fin design optimization problem is analyzed for maximization of the

heat transfer rate (f1) and minimization of the maximum thermal stress (f2) devel-

oped in the fin. The obtained final Pareto front, shown in Fig. 3.15(a), contains a
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Figure 3.15: Pareto fronts for pairwise objective functions of non-linearly varying
thickness fin.

set of trade-off solutions in terms of f1 and f2, which clearly exhibits the conflicting

nature between the heat transfer rate and the maximum thermal stress. Six num-
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ber of selective efficient fin geometries, corresponding to trade-off solutions A–F of

Fig. 3.15(a), are shown in Fig. 3.16, where the patterns of variation in the fin pro-
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Figure 3.16: Selective efficient fin configurations (corresponding to trade-off solu-
tions A–F of Fig. 3.15(a). In these plots, the scale along the axial (vertical) direction
is fifteen times larger than that along the radial (horizontal) direction.)

files are noticeable. For these fin configurations, the values of other three objective

functions, f3–f5, are also evaluated and shown in Fig. 3.16, where it is observed that

with respect to increasing f1 and f2, f3 and f5 also increase continuously, but f4

shows the reverse trend.
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In view of above, the fin configuration optimization problem is analyzed in the

second step for maximization of f1 separately with minimization of f3, maximization

of f4, and maximization of f5. The obtained final Pareto fronts of these three cases

are shown in Figs. 3.15(b)–3.15(d), respectively. The Pareto front in Fig. 3.15(b)

shows the conflicting nature of heat transfer rate with fin volume, i.e., with improve-

ment in f1, f3 degrades by some amount, and vice-versa. Next analyzing the Pareto

fronts in Figs. 3.15(c) and 3.15(d), it is observed that the heat transfer rate conflicts

with both fin efficiency and fin effectiveness, i.e., a higher value of f1 reduces both

f4 and f5.

3.3.5.2 Scenario II

Analyzing the objective functions in pairs, it is observed in the Section 3.3.5.1 that

the variations of heat transfer rate with other objective functions are different, lead-

ing to no common pattern. Therefore, in order to arrive at a general scenario, all

the five considered objective functions, i.e., f1–f5 given by Eq. (3.22), are optimized

simultaneously. The obtained five-dimensional Pareto front is plotted in a parallel

coordinate system as shown in Fig. 3.17 in which the conflicting nature of different
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Figure 3.17: Five-dimensional Pareto front in two-dimensional parallel coordinate
system.
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objective functions can be noticed clearly. For example, the solution corresponding

to the maximum heat transfer rate bears a moderately high thermal stress and fin

efficiency, and a very high fin volume, while a low fin effectiveness. It is also to be

noted that at an extremely low value of fin volume, a very high thermal stress is de-

veloped in the fin. Based upon the availability and practicability of information and

resources for the problem at hand, a designer can now enjoy the flexibility to adopt

a balanced solution out of multiple alternatives provided by the Pareto front. One

such compromised solution, which bears some intermediate values of the objective

functions, is also shown in Fig. 3.17 by a thick crossed line.

3.4 Comparison of different fins

The problem in the present study is an annular fin of various profiles (namely step

change in thickness, non-linearly varying thickness, and uniform thickness) attached

to a heat exchanger of cylindrical primary surface. Fig. 3.18 shows the schematic

rb

ro

2t

r

2tb

Figure 3.18: Schematic diagram of annular fins of uniform thickness.
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diagram of annular fins of uniform thickness whereas fin of step change in thickness

and non-linearly varying thickness are already shown in Figs. 3.1 and 3.14 respec-

tively. Here r is the radial distance with rb and ro respectively as its radial values at

the inner and outer surfaces of each fin, t(= tb = to) represents the cross-sectional

half-thickness of the uniform thickness fins.

3.4.1 Common formulation for heat transfer equation

The formulation for heat transfer equation of stepped fin and non-linearly varying

thickness fin is already discussed in Section 3.1.1 and Section 3.3.1 respectively. For

uniform thickness fin profile, t′ = 0 in Eq. (3.9).

3.4.2 Common optimization modeling

In the present study the performance of the studied annular fin of various profiles

are evaluated in different combinations of three performance functions, which are

heat transfer rate, fin volume and fin efficiency. Accordingly, the multi-objective

optimization problem is formulated here in a general form for maximizing the heat

transfer rate (f1(x)) and fin efficiency (f3(x)) and minimizing the fin volume (f2(x)).

3.4.2.1 Stepped fin

The geometry of the step fin, as shown in Fig. 3.1, is defined in terms of four

parameters, which are radius of the fin at the point of step change in thickness (r1),

outer radius of the fin (ro), cross-sectional half thickness of the thick (first) step

of the fin (t1), and cross-sectional half thickness of the thin (second) step of the

fin (t2). Taking these four parameters as the variables, the design of the step fin can

be formulated as a multi-objective optimization problem as given by Eq. (3.26).
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Determine x ≡ (r1, ro, t1, t2)
T

to maximize z(x) ≡ {f1(x), f3(x)}
minimize f(x) ≡ {f2(x)}
subject to g1(x) ≡ r1 > rb

g2(x) ≡ ro > r1

g3(x) ≡ t1 > t2

r1, ro, t1, t2 ≥ 0 .



































































(3.26)

In Eq. (3.26), the existence of two steps in the fin is ensured by constraints g1(x)

and g2(x), while two different cross-sectional thicknesses of the two steps are ensured

by constraint g3(x). The last line in Eq. (3.26) makes the design variables non-

negative.

3.4.2.2 Non-linearly varying and uniform thickness fins

The profile of the non-linearly varying thickness fin as shown in Fig. 3.14 is rep-

resented by a B-spline curve, which is defined by some control points. Hence, m

number of such control points, Pi(xi, yi) (i = 1 to m), are taken as the design vari-

ables, whose x values will represent the radial distances starting from the base of

the fin and associated y values will define the half-thickness of the fin falling on

the B-spline curve. On the other hand, the profile of the uniform thickness fin, as

shown in Fig. 3.18, is defined by a single point P1 = (x, y), whose x and y values

will give respectively the outer radius and half-thickness of the fin. Accordingly,

the optimization problem for both the profiles can be formulated jointly as given by

Eq. (3.27).

Determine x ≡ {Pi|Pi ; i = 1 to m}
to maximize z(x) ≡ {f1(x), f3(x)}
minimize f(x) ≡ {f2(x)}
subject to g1(x) ≡ x1 < x2 ≤ · · · ≤ xm

g2(x) ≡ y1 ≥ y2 ≥ · · · ≥ ym











































(3.27)
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In the case of the non-linearly varying thickness fin, Pi = (xi, yi) in Eq. (3.27)

is the ith control point of the B-spline curve representing the fin profile and m is

the total number of control points. According to the notations used in Fig. 3.14,

x1 = rb, y1 = tb, xm = ro and ym = to. Constraints g1(x) and g2(x) in Eq. (3.27)

ensure that the control points are distributed along the radially outward direction

of the fin with non-increasing values in the direction of the fin thickness, so as to

avoid any unpleasant fin profile. Further, ym > 0 can be set in order to represent a

practical scenario by avoiding a sharp outer edge of the fin.

In Eq. (3.27), m = 1 for uniform thickness fin, indicating a single design point

as stated above. Further, constraints g1(x) and g2(x) are not applicable in this case.

3.4.2.3 Formulation of objective functions

The three objective functions, f1(x)–f3(x) expressed in Eqs. (3.26) and (3.27), are

the heat transfer rate, fin volume, and fin efficiency, respectively. The maximization

of f1(x) and f3(x) enhances the overall thermal performance of the fin, while the

minimization of f2(x) reduces the fin material cost. In terms of the notations and

formulations for heat transfer equation of the fins as presented in Section 3.4.1, these

can be given by Eq. (3.28).

f1(x) = −kAb

dTi

dr

�

�

�

�

r=rb

(3.28a)

f2(x) = V (3.28b)

f3(x) =
f1(x)

hAs (Tb − T∞) + σǫAs (T 4
b − T 4

∞)
(3.28c)

where, Ab =











4πrbt1 ; for step fin.

4πrbtb ; for uniform/non-linearly varying thickness fins

In Eq. (3.28a), Ab is the base area of the fin. The fin volume V , appearing in



52 3. Optimization of isolated annular fin

Eq. (3.28b), is expressed by Eq. (3.29).

V =











































2π {t1 (r21 − r2b ) + t2 (r
2
o − r21)} ; for step fin.

4
3
π
�N

n=2, 4, ... rn−1 (rn − rn−1)

× (tn−2 + 4 tn−1 + tn) ; for non-linearly varying thickness

2πtb (r
2
o − r2b ) ; for uniform thickness

(3.29)

Further, the heat transfer surface area As, appearing in Eq. (3.28c), is expressed

by Eq. (3.30).

As =











































2π (r2o − r2b ) + 4π {r1 (t1 − t2) + rot2} ; for step fin.

4πroto + 2π
�N

n=1 (rn + rn−1)×
�

(rn − rn−1)
2 + (tn−1 − tn)

2�
1
2 ; for non-linearly varying thickness

2π (r2o − r2b ) + 4πrotb ; for uniform thickness

(3.30)

In Eqs. (3.29) and (3.30), n and (N+1) are respectively the grid index of space

and total number of grid points.

3.4.3 Solution procedure

The non-dominated sorting genetic algorithm II (NSGA-II) is employed here for

solving the fin design problem formulated by Eqs. (3.26) and (3.27) as multi-objective

optimization models.

In the cycles of NSGA-II, the heat transfer rate, f1(x), is evaluated through

Eqs. (3.5) and (3.6) for step fin, while that through Eqs. (3.12) and (3.13) for non-

linearly varying and uniform thickness fins as discussed in Sections 3.1.3 and 3.3.4

respectively.
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3.4.4 Numerical experimentation and discussion

In the present study, the annular fins of various profiles, namely step change in

thickness, non-linearly varying thickness and uniform thickness, are analyzed in a

convective and radiative environment with a constant temperature at the base of

the fin and variable thermal conductivity for the fin material.

The considered operating conditions and thermal properties of the fin material

along with fin geometry with reference to Figs. 3.1, 3.14 and 3.18 are listed in

Table 3.6, while the user defined algorithmic parameter settings for NSGA-II are

Table 3.6: Operating conditions, fin material properties, and fin geometry of annular
fins.

Parameter
Value/

Range of value
Ambient temperature, T∞ 300 K
Temperature of the fin at the base, Tb 600 K
Convective heat transfer coefficient on fin surface, h 50 W/m2K
Convective heat transfer coefficient on step surface, hs 50 W/m2K
Thermal conductivity of the fin material at T∞, ka 186 W/mK
Parameter for variable thermal conductivity, β -0.00018 K−1

Emissivity of the fin material, ǫ 0.8
Base radius, rb 2.0 cm
Outer radius, ro 2.5–6.0 cm
Fin half-thickness, t (for uniform/non-linearly varying thickness fin) 0.01–0.2 cm
Radius of step change in thickness, r1 (for step fin) 2.5–6.0 cm
Half thickness of the first step, t1 (for step fin) 0.01–0.2 cm
Half thickness of the second step, t2 (for step fin) 0.01–0.2 cm

given in Table 3.3. A cubic curve with open uniform knot vector and of order 4 is

considered for the B-Spline curve representing the profile of the non-linearly varying

thickness fin. Further, five control points are considered here to define the B-spline

curve.

With the above sets of input values and randomly generated NSGA-II popu-

lation, the fin design problem formulated in Eqs. (3.26) and (3.27) is studied with

various combinations of the three objective functions, f1–f3, given by Eq. (3.28).

The Pareto fronts for the three fin profiles obtained by maximizing the heat

transfer rate (f1) and minimizing fin volume (f2) are shown in Fig. 3.19, where

the conflicting nature of the heat transfer rate and fin volume is clearly visible. It
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Figure 3.19: Pareto fronts of heat transfer rate versus fin volume.

is also seen in Fig. 3.19 that the non-linearly varying thickness fin has the best

performance among the three profiles, followed by that of the step fin. In fact, near

the end of the Pareto fronts where both the heat transfer rate and fin volume reach

their maximum values, the performance of the step fin is slightly better than that of

the non-linearly varying thickness fin. Nine selective efficient fin geometries (three

solutions from each fin profile), corresponding to solutions A–I of Fig. 3.19, are

shown in Fig. 3.20, where the patterns of significant geometric variations are clearly

noticeable. For these configurations, the values of the third objective (f3) are also

computed and shown in Fig. 3.20.

For further assessment, the problem is studied in the second step for simultane-

ously maximizing the heat transfer rate (f1) and fin efficiency (f3). The obtained

Pareto fronts are shown in Fig. 3.21, which reveal the conflicting nature between

the heat transfer rate and fin efficiency also. It is also seen in Fig. 3.21 that the

non-linearly varying thickness fin has the lowest efficiency among the three fin pro-

files. The Pareto fronts of the other two fins overlap with each other, indicating

almost the same efficiency in both the cases. This is due to the fact that both the

optimized step fin and uniform thickness fin takes almost similar shapes.
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Figure 3.20: Selective fin geometries (corresponding to solutions A–I of Fig. 3.19 (a
larger scale in thickness direction is used to make the variation in thickness promi-
nent)).
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Figure 3.21: Pareto fronts of heat transfer rate versus fin efficiency.


