
Chapter 3

A Light Weight DDoS Attack

Detection Mechanism

In this chapter, I present a low cost yet robust DDoS detection method to detect

different types of DDoS attacks. The method attempts to detect DDoS attack by

monitoring the deviation of the count of unique source IPs and the count of source

IPs whose transmission rate is higher than a given threshold value. Unlike other

similar existing methods, the proposed method does not need to maintain a list

of source IPs which makes the detection method faster. Another advantage of the

proposed method is the ability to detect DDoS attacks performed by small size

botnet. A non-parametric change point modeling technique is used to identify the

changes in the observed parameters in near real time.

3.1 Introduction

In a distributed denial of service (DDoS) attack, one or more group of compromised

users send legitimate traffic to the victim to degrade or even shut down the service

of the victim. The goal of such a DDoS attack typically varies from creating

simple inconvenience to the user of a website to incur major financial losses to

the on-line service providers. A DDoS attack usually generates a huge volume

of TCP/IP packets from a large number of sources. These attack packets are

generally indistinguishable from that of normal traffic packets. Thus, when all

these attack packets merge at the victim site, they occupy most of the victim’s

network bandwidth and forces the victim to degrade its service or at worst shut

down its services temporarily. One of the key challenge for DDoS attack defenders

is to detect the attack as near real time as possible so that the victim gets enough
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time to take appropriate mitigation steps such as traffic diverting and resource

allocation.

One obvious way taken by most researchers[69][19][71] is to monitor the volume

of traffic that are received by the victim site. However, such methods are not robust

against the bursty nature of Internet traffic. In case of the bursty nature of internet

traffic such methods often identify it as an attack. On the other hand, such bursty

traffic may actually be attack traffic, and a delayed decision may turn out to be very

risky for the victim. Another important feature which can be monitored to detect

a DDoS attack is source IP of the incoming packets. Since a DDoS attack is highly

distributed, the number of source IPs involved in the attack is much larger than the

number of source IPs under normal condition. Peng et al [72] used the arrival rate

of new source IP addresses in the traffic during each observation period. However,

this approach needs to maintain a database of trustworthy source IP addresses,

which might itself be vulnerable to attack.

In this chapter, I present an effective detection scheme called Violating Source

IP Count (VSC), which monitors the number of unique source IP addresses during

each observation period. Our assumption is that during an attack, the number

of source IP will increase abruptly, and by detecting this change we can detect

the attack. Also, if the attacker attempts to launch a DDoS attack with less

number of sources, the rate of transmission from each source must be high to

achieve a bandwidth attack. We monitor the count of sources which transmits

above a threshold. Under a less distributive attack the mean value of this count

deviates significantly, which indicates the presence of an attack. To detect changes

in our observed features we adopted the non-parametric CUSUM[18] approach

and applied it by following the idea of Wang et al[5]. To evaluate our detection

mechanism we perform several experiments on different network traces and are

presented in section 3.4. The experimental results indicate that VSC has a short

detection time and a high accuracy rate. The complexity of this method is very

low both in terms of space and time which makes the proposed method deployable

in a distributed manner in the first mile as well as in the intermediate routers to

detect the attack in the beginning stage itself.Our contribution in this work is a

simple and fast approach to detect DDoS attacks by monitoring the deviation of

(i)the count of the unique source IPs from its mean value and (ii)the count of the

sources transmitting at a high rate.

The rest of the chapter is organized as follows. Section 3.2 presents the pro-

posed method along with the necessary theory. Section 3.3 presents the results of
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performing our method on various network traces. Finally, conclusions are drawn

in section 3.4.

3.2 Violating Source IP Count(VSC)- a Light Weight

DDoS Detection Mechanism

For a DDOS attack, the attacker’s main goal is to overwhelm the server by sending

illegitimate network traffic, using different protocol. One common characteristic of

DDoS attack is that the volume of traffic (number of packets) during an attack is

very high. To generate high volume of traffic the attacker either has to use a large

botnet consisting of lot of compromised machines or the attacker may send traffic

from a small botnet but at very high speed. We are making the assumption that

under normal condition the deviation of the number of unique source IP addresses

from its mean value is bounded by an upper bound. And also during normal con-

dition the deviation of the number of source IP addresses sending packets above a

threshold, referred to as violating source IP, from its mean value is also bounded

by an upper bound. Based on these two assumptions we present a detection mech-

anism called violating Source IP count (VSC) to detect a distributed denial of

service (DDoS). The key features of VSC are highlighted below.

1. Researchers have already used source IP addresses as detection feature such

as in Peng et al[72]. However, we use the count of unique source IP addresses,

in an observation period, as detection feature. This approach does not require

to maintain a database of trustworthy IP addresses for its operation. Thus

the memory requirement and speed of this algorithm is comparatively better,

which is a key goal for a detection system. This feature makes VSC very

suitable to be used in a distributed manner.

2. A DDoS attack may either use a small size bot sending traffic at a high speed

or a large size bot consisting of many zombies. VSC monitors changes in both

the number of source IP addresses and count of sources transmitting at high

speed. Thus VSC traps the attacker from both the directions, hence reducing

the scope of the attacker.
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3.2.1 Overview of Violating Source IP Count

VSC attempts to detect the presence of attack by monitoring two features of the

traffic, namely the number of unique source IP addresses and the number of vi-

olating source IP addresses. VSC collects the incoming packets during every ob-

servation period, say δT and inserts the packets into a binary search tree based

on their source IP address. Each node in the tree has a count field that specifies

the number of packets from the source IP represented by the source IP field of the

node, as illustrated in figure 3.1

Figure 3.1: The binary search tree used in the VSC

If the number of packets for a source IP address is greater than a certain

threshold, that IP address is marked as violating IP. This information is used by

VSC to detect DDoS attack that uses a small size botnet to carry out the attack.

Also, at the end of each observation period the number of nodes in the binary

search tree gives the number of unique source IP addresses during the observation

period. Thus at the end of each observation period the BST (Binary Search Tree)

gives us a) the number of violating source IP addresses Vi, and b) the number of

unique source IP addresses Xi in the current observation period ti.

3.3.1.1 System Architecture

Figure 3.2 provides an overview of VSC mechanism. The VSC mechanism consists

of three basic components, viz,

detection engine, decision engine, and response engine. The detection engine

processes the incoming traffic to detect any attack. The task of the decision engine
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Figure 3.2: Architecture of VSC

is to combine the results from the detection engine and to reach a consensus about

the occurrence of an attack. The response engine in turn sets an alarm on or off

based on the output of the decision engine.

3.3.1.2 Placement of the Detection Mechanism

The VSC can be deployed in different locations in a network as shown in Figure

3.3

Figure 3.3: Different possible placement locations of VSC

If it is deployed in the first mile router, the detection rate will depend on the size

of the bot. If a small bot is used then the number of packets from one IP must be
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high, which our detection engine can detect by estimating the change in the count

of violating source IP count. However, in case of a large bot, the detection rate

might decline. If deployed in intermediate routers, the detection rate increases as it

moves towards the victim site. One can thus deploy VSC at different intermediate

routers and detect the occurrence of an attack in a distributed manner. Chen et

al [81] describe such an approach in their work. Another point of deployment is at

the victim site, i.e, the last mile outer. Since all the attack traffic aggregate in the

last mile router, deviation of An and/or Bn can easily be detected, if there is any.

Among these different detection points the intermediate routers and the last mile

router carries the greatest interest from the point of view of the victim. In this paper

we present the experimental results performed on the last mile router. Detection of

the attack by placing VSC at different intermediate routers in a distributed manner

is out of thee scope of this paper.

3.2.2 Theory Behind VSC

As mentioned above, VSC monitors the number of unique source IP address Xn,

where n = 0, 1, 2, 3.. and number of violating source IP addresses Vn, where n =

0, 1, 2, 3.. in each observation period tn to detect the occurrence of an attack in the

network. Under the normal condition, the deviation of Xn and Vn from its mean

value is less, however, under an attack these parameters deviate from their mean

largely. Our detection engine thus monitors and detects (if any) such a significant

change in these two parameters and confirms as an attack based on some threshold

value. The following section describes the approach we use to detect such change

in the above mentioned framework.

3.3.2.1 The Non-parametric CUSUM Algorithm:

Let Xn, where n = 0, 1, 2, 3.. and Vn, where n = 0, 1, 2, 3.. be the number of

unique source IP addresses and the number of violating source IP address in an

observation period tn. Since Xn and Vn are highly dependent on different attributes

of the network (such as size, time of the day, etc) from which they are collected, we

first normalize Xn and Vn by the average value of Xn and Vn respectively. Let Xn

and V n represent the mean value of Xn and Vn. Then Xn and V n can be computed

as follows Xn=α*Xn − 1+(1-α)*Xn , V n=α* V n − 1+(1-α)*Vn Where α is the

memory factor and lies between 0 and 1.

Thus from Xn and Vn we define An=Xn/Xn Bn=Vn/V n Since An and Bn are
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normalized values, no longer they are dependent on the current network character-

istics.

We use the concept of sequential change point detection [72] in our detection

algorithm. The goal of the change point detection mechanism is to detect the

presence of a change of the mean value in a observed time series data. In our

algorithm, it detects change in An and Bn. However, accurate estimation of An

and Bn are challenging task, hence we use non-parametric CUSUM method [74]

in our detection algorithm. Non-parametric CUSUM is not model specific and

hence suitable for our purpose. The basic idea of using non-parametric CUSUM

to detect abrupt change in a time series data is based on the model presented in

Peng et.al [72]. The details of non-parametric CUSUM can be found in [74]. Here

we demonstrate how to apply non-parametric CUSUM on An to detect change.

Similar approach is taken in case of Bn.

Under normal condition, the mean of An denoted by c (i.e, c = E(An)) is

near by 1. We chose a parameter which is the upper bound of c. From An we

derive another random sequence An such that An = An − c. This transformation

will make the mean value of An negative under normal condition, which is a basic

assumption of non-parametric CUSUM algorithm [18]. Now consider h as the lower

bound of the amplitude of increase in the mean value of An during an attack and

h � c. As presented in wang et al [5] the nonparametric CUSUM algorithm can

be written as

Yn = Sn −min Sk, 1 ≤ k ≤ n

Where Sk =
∑k

i=1Ai, S0 = 0 at the beginning and Yn is the accumulated positive

values of Ai. Thus if Yn is very large it is a clear indication of the deviation of the

observed value of the random sequence from its mean value. We use a threshold

value N which is compared against Yn at the end of each observation period. If Yn

exceeds N an attack is detected. Thus we can now formally define the detection

function as

DN(Yn) =

{
0 if Yn ≤ N

1 otherwise.

where 1́́ındicates an attack and 0́d́etects normal traffic.
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3.3.2.2 Parameter Specification

Two key measures of greatest interest for a DDoS attack detection system are given

below.

1. False alarm rate, i.e, the number of normal instances reported as attack over

a specific period of time.

2. Detection time, i.e, time duration between the starting of an attack and the

detection of the attack.

However, both these design goals are mutually conflicting, as expected! To

achieve one other one often has to compromise up to extent. in practice (1,4,30 p)

CUSUM is considered as optimal in terms of both false alarm rate and detection

time. As presented in Brodsky et al[18]

τN = inf n : Dn(.) = 1

ρN =
(τN −m)+

N

where τN = detection time ρN = normalized detection time after a change occurs.

Inf represents infimum, n is the time when the attack started, N is user defined

threshold value

ρN and h can be related by the following equation

ρN → γ =
1

h− |c− a|

Where h − |c − a| gives the mean of An, after an attack begins. As mentioned in

[5] the above equation gives an upper bound of the actual detection time. Thus

to achieve our design goals we have to choose optimal values for the parameters a

and N . It is clear from Equation 1 and Equation 2 that once we are given a,h and

a detection time period we can calculate N accordingly. The parameter a is used

to offset An to be An, so that An has a negative mean under normal condition. If

a is chosen to be very high the likelihood of getting positive values in the sequence

An is less. In turn the accumulated value i.e, Yn might not reach the threshold.

The parameter N specifies the threshold for Yn. If N is chosen to be very high,

false alarm rate will be low at a cost of high detection time. On the other hand, a

small value of N may increase the false alarm rate.
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As mentioned earlier CUSUM algorithm needs a, h and detection time interval

to be specified and calculates N by using Euations 1 and 2. Here a is the upper

bound estimation of the mean of An. From the definition of An can safely assume

a as 1.1. The parameter h specifies the amplitude of the minimum increase of the

mean value of An under an attack. By following the same principle as in wang et

al[5] we set h = 2 ∗ a. We used detection interval as 3 sec. Assuming c = 1, from

Equation 1 and 2 we get N = 6.3.

3.3 Performance Evaluation

In this section I mention the experimental evaluation of the proposed model under

different attack conditions.

3.3.1 VSC Under Normal Condition

To perform our experiments AUK-VIII is used as normal packet trace.The result

of VSC when applied on AUK-VIII is shown in figure 3.4. We can see that both of

our test statistics are much below their threshold value.

3.3.2 Detection of Low Rate DDoS Attack

Our detection mechanism detects attack based on the deviation of the number of

unique source IP addresses from its mean value, rather than the volume of the traf-

fic. Thus our detection mechanism can detect low rate DDoS attack involving large

number of sources. To demonstrate this we embedded a simulated spoofed DDoS

attack of duration 1 minute into the normal traffic. The attack was performed at a

rate of 250 packets/sec, which is much lesser than the usual traffic of the network.

Hence, such an attack can easily escape a volume based detection mechanism. Fig-

ure 3.4(a) shows that during the attack period the traffic volume does not change

significantly. However, as shown in figure 3.4(c), the proposed method detects the

attack within a few seconds of the starting of the attack.

3.3.3 Detection of Randomly Spoofed Source IP Attack

we used the DARPA dataset in our experiments to show the effectiveness of VSC in

detecting DDoS attack which uses a randomly spoofed source IP addresses Figure

3.6 demonstrate the result of this experiment. From Figure 3.6(c), we can see that
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(a) Packet rate in normal trace

(b) Unique IP rate in normal trace

(c) CUSUM statistics in normal trace

Figure 3.4: Normal traffic characteristics
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(a) Packet rate in low rate attack scenario

(b) Unique IP rate in low rate attack scenario

(c) CUSUM detection of attack

Figure 3.5: Result of VSC on low rate attack scenario
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(a) Packet rate of DARPA attack trace

(b) Unique IP rate of DARPA packet trace

(c) CUSUM detection in DARPA packet trace

Figure 3.6: Result of VSC on DARPA dataset
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the attack present in the DARPA dataset is easily detectable by VSC in less than

3 seconds.

(a) Packet rate of small size BOT

(b) High speed IP count of small size BOT

(c) CUSUM detection on small size BOT

Figure 3.7: Result of VSC on small size BOT
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(a) Packet rate of CAIDA attack trace

(b) Unique IP rate of CAIDA attack trace

(c) CUSUM detection on CAIDA attack trace

Figure 3.8: Result of VSC on CAIDA attack trace
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3.3.4 Detection of DDoS Attack From a Small Size Botnet

The attacker may use a small size botnet (consisting a small number of sources)

to carryout the attack. However, in that case the speed of the individual source

need to be high to end up in an effective DDoS attack. We used a simulated attack

consisting of 7 sources, performing an attack at 2000 packets/sec, for a duration of

10 minutes. We used 150 packets/sec as the threshold to mark an IP as violating

IP. From Figure 3.7(c) it is clear that VSC can detect such an attack in less than

15 seconds, by detecting a change in the violating source IP count.

3.3.5 Detection of DDoS Attack in CAIDA-2007 Dataset

CAIDA 2007 is an widely used and benchmark DDoS network trace.We applied

VSC on this dataset in our experiment. The result of VSC is shown in figure 3.8.

The length of CAIDA is around 1 hour. The first 30 minutes contains traffic at a

low rate, from a small number of sources. However, at the beginning of the second

30 half, there is an abrupt change in both number of unique source IP address as

well as the traffic volume as shown in Figure 3.8(b) and 3.8(a). VSC detects this

change within 8 seconds.

3.4 Discussion

In this chapter, I present a robust and low cost method to detect DDoS attack. Our

method detects DDoS attack by monitoring the deviation of the count of unique

SIPs and the count of SIPs whose transmission rate is higher than a threshold

value. I demonstrated the near real time detection capability of the detection

mechanism under different attack scenarios. Although VSC can detect the presence

of DDoS attack almost immediately due to its low computational cost, VSC can

not discriminate the attack packets from normal packets. In the next chapter, I

present a DDoS defense solution which is capable of both detecting and mitigating

(by discriminating attack packets from normal packets) a DDoS attack in near real

time.
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