
Chapter 4

A DDoS Detection and Mitigation

System Based on Bidirectional

Nature of Internet

Communications

In the previous chapter, I discussed a light weight DDoS detection technique to

detect an ongoing attack in near real time. However, a DDoS defense solution

should be capable of not only to detect the attack but also to discriminate the

attack packets from normal packets. In this chapter, I present a DDoS defense

system for the detection and mitigation of different types of commonly seen DDoS

attacks. The system assumes bidirectional traffic information at an edge router

to detect and mitigate the attacks. A router might not always see the out going

traffic corresponding to the incoming traffic carried by the router and which has

always been a problem for other approaches which assume bidirectional traffic at

the monitoring point. I introduce an agent-based technique which enables each edge

router to validate the bidirectional nature of the incoming traffic passing through

them. I present several experiments demonstrating the effectiveness of the proposed

detection and mitigation system.

4.1 Introduction

In a DDoS attack the attacker first compromises a set of machines, called as

bots(zombies).The entire network of such compromised machines controlled by a

single user (i.e., the actual attacker) is called a botnet. Once control over one or

41

more botnet is achieved, the attacker commands the zombies to send Internet traffic

to one or a set of selected servers called as victim(s) in an attempt to exhaust the

resources of the victim such as CPU, memory and link bandwidth (the link could

be any where between the first mile and last mile router). Under such a situation

the legitimate users of the victim(s) experience high degradation of service or at

worst situation, no service at all. Figure 4.1(a) shows a pictorial representation

of a DDoS attack along with its participants such as attacker, bots and victim.

However, it is not always necessary that the attacker needs to have a botnet of

compromised machines to perform a successful DDoS attack. A variant of DDoS

attack that doesn’t require a botnet to launch the attack is known as reflection

DDoS attack (DRDoS)[7]. In a DRDoS attack vulnerable public servers which re-

sponse to queries, mostly over UDP such as DNS and NTP are used as reflectors

to carry out a DDoS attack. Figure 4.1(b) shows a pictorial representation of DR-

DoS attack. To perform an attack, the attacker sends requests to such reflectors

but spoofs the SIP of the request packets as the victim’s IP. When the reflectors

receive such requests they send the responses to the corresponding SIP i.e., to the

victim. The victim thus receives a large volume of response messages from many

such reflectors sufficient to create a DoS situation at the victim. Two important

advantages of DRDoS attacks are as follows.

1. A large botnet is not required to carry out a massive attack. Even with a

single machine an attacker can launch a massive DRDoS attack.

2. In DRDoS attack, the attacker can achieve a bandwidth amplification of the

final attack traffic towards the victim. The size of the response messages

of the reflector servers such as NTP and DNS, are typically many times

bigger than that of the request messages. The bandwidth amplification can

be calculated as the ratio of the number of bytes in the response messages

to the number of bytes in the corresponding request message. The attacker

can easily amplify the attack traffic by many hundred times using proper

reflectors. The different types of reflectors and along with their amplification

factors are well documented in [7].

In a DRDoS attack, the attacker usually aims to exhaust the network links of

the victim by flooding the victim with a high volume of unwanted traffic. Two

other most commonly used DDoS attacks are TCP SYN flooding attack and UDP

flooding attack. In a TCP flooding attack the attacker instructs the bots to send

TCP SYN packets to the victim with spoofed source IP in an attempt to exhaust

42

(a) DDoS attack and its participants

(b) A Reflection DDoS attack

Figure 4.1: DDoS attack and its variants

the TCP state table of the victim machine. In UDP flooding attack the bots are

instructed to send huge number of UDP packets to the victim. Such attacks exploit

the network/transport layer features of Internet Protocol to conduct the attack and

commonly known as network/transport layer DDoS attack.

In this chapter I present a defense system to detect and mitigate commonly

seen network/transport layer DDoS attacks. The proposed system is advantageous

in view of the following points

• Accurate detection of an attack at the edge of a protected network in near

real time.

• Effective mitigation of the attack irrespective of whether the SIP used in the

attack packets are real or spoofed.

43

• Scalable and robust, in the sense that the attacker has very limited control

over filling up the resources used to keep track of necessary information by

the defense system.

The rest of the chapter is organized as follows. In section 4.2, I discuss the proposed

DDoS defense system. Section 4.3 presents the experimental evaluation of the

defense system under different types of attack scenarios. Conclusions are drawn in

section 4.4.

4.2 DDoS Detection and Mitigation System (DDM)

The proposed defense system, DDM, operates at the edge routers of a network to

protect the servers inside the network. Such a network could be a tire-3 network

which is connected to the Internet through one or more Internet Service Providers.

Figure 4.2 shows such a network. In the figure, the routers marked as PRi (i =

Figure 4.2: Topology of a protected network

0, 1, 2, 3..) are the edge routers of the network which connect the network with

the rest of the Internet i.e., all the incoming/outgoing traffic to/from the network

are visible at these routers. The protected network consists of different public

servers such as web servers, e-mail servers, DNS servers and NTP servers along

with individual Internet users. Given such a network, the goal is to detect and

mitigate one or more DDoS attacks going on against one or more servers inside the

network.

Table 6.1 includes a list of abbreviations and their meanings which are used to

describe the rest of the chapter.

44

Table 4.1: Short hand notations and names used in chapter 4
NAME DESCRIPTION

PR Perimeter Router and represents an edge router of

the protected network

PRID 16 bit ID of a PR which it inserts into the 16 bit

ID field of the incoming packets

SIP Source IP address of a packet

FU Forward Unit of the defense system

BU Backward Unit of the defense system

FTT Forward Traffic Table to keep track of incoming

traffic information

BTT Backward Traffic Table which is used by the BU

to keep track of the control packets received from

the bi-agent s. The FU receives copy of this table

from the BU at each interval.

CAL Current Arrival List, representing the set of newly

arrived sources in a particular interval

BLT Black List Table, which is used by the FU to keep

track of the identified attack sources

GL Good List, which records the sources of the com-

munications validated by the FU over a period of

time

GoodF ilter Filters an entry against the GL

ε Maximum number of time intervals which can

elapse between the first incoming packet from a

source and its corresponding out going packet, be-

fore considering the source as unidirectional

The proposed defense mechanism is based on the observation that most of the

Internet traffic is bidirectional in nature, i.e., both the ends in a communication

usually send packets to each other, might be at different rate. Not only TCP but

UDP based protocols such as DNS, NTP and SNMP also possess bidirectional

nature of communication. However, there are Internet traffic also which are com-

pletely unidirectional in nature such as those generated by push services. However,

the overall traffic from such services are very little compared to the rest of the

traffic and can hence be considered as special cases. Figure 4.3 shows the incom-

ing vs outgoing traffic generated by TCP and UDP protocols for network traces

AUK-VIII and WAIK-VIII. (Description of the traces are presented in Chapter 2).

We can see a high correlation between the incoming and outgoing traffic in both

the protocols. Figure 4.4 shows the unidirectional traffic present in AUK-VIII and

WAIK-VIII, which is very less (< 0.025%) compared to the entire traffic. Manual

inspection of these unidirectional traffic reveals that most of these traffic are UDP

traffic. For our experiments we filtered such unidirectional communications from

the traces.

45

(a) AUK-VIII trace

(b) WAIK-VIII trace

Figure 4.3: Incoming vs outgoing TCP and UDP traffic for normal traces

On the contrary to the bidirectional nature of a legitimate Internet communi-

cation, DDoS attack traffic generated in most of the DDoS attacks such as SYN

flooding, UDP flooding, and Reflection DDoS are unidirectional in nature. Let

us consider a TCP SYN flooding attack, where the bots continuously send TCP

SYN packets to the victim, possibly with spoofed SIP. In such an attack, the bots

do not participate in valid TCP communications with the victim. Although, the

victim replies each SYN packet by a SYN/ACK packet but it will never sends a

pure TCP ACK packet to a bot. Thus, if we consider a pure TCP ACK packet

from a server to a specific IP as a sign of bidirectional TCP communication, then,

under a TCP SYN flooding attack, we will observe a huge number of unidirectional

communications with the victim server. Similarly, in a DRDoS attack, the victim

receives a large number of response messages from a set of public servers (used as

reflectors by the attacker) which it never requested for, causing a huge number of

46

(a) AUK-VIII trace

(b) WAIK-VIII trace

Figure 4.4: unidirectional traffic present in the normal traces

unidirectional communications towards the victim. Thus, bidirectional nature of

a communication can be used to verify the source of the communication as either

legitimate or an attack source.

In Figure 4.2 we see that the rest of the Internet interacts with the servers

within the protected network only through the edge routers, i.e., through the PRs

of the protected network. We deploy our defense system at these routers, inde-

pendent of each other, to monitor the bidirectional nature of the communications

going through them to detect and mitigate possible DDoS attacks. Since our de-

fense system checks bidirectional pattern of the communications going through the

corresponding PR, it implies that all the outgoing traffic corresponding to the PR’s

incoming traffic should exit the network through the same PR. Such a requirement

is difficult to achieve under practical situation. Figure 4.5 shows an example where

the incoming (user P to server S) and outgoing (server S to user P) packets of a

communication is visible at two different PRs of the network. To overcome this

47

limitation we discuss here an agent-based technique, which enables each PR to have

the information regarding the outgoing traffic corresponding to the traffic entered

into the network through that particular PR.

4.2.1 Agent-based Bidirectional Information

To validate the bidirectional pattern of a communication, a PR needs to know the

IP addresses to which the servers from the protected network are sending traffic in

response to the incoming traffic through that PR. To achieve this goal the following

assumptions are made

1. Each PR in the protected network is given a 16-bit unique ID, called as

PRID. When a packet enters into the network, the corresponding PR inserts

its PRID into the 16 bit ID field of the packet.

2. Each server is associated with an agent called as bi-agent. The bi-agent

is installed between the server and the first router to which the server is

connected with, as shown in Figure 4.5.

The bi-agent maintains a hash table to keep track of the PRIDs of the incoming

packets to a particular server. The key of the hash table is the source IP of the

incoming packet and the value is the 16 bit ID field of the incoming packet. For

each incoming packet the bi-agent extracts the SIP and PRID and updates the hash

table accordingly. For each outgoing packet from the server, if the packet is a valid

bidirectional packet (for example a pure TCP ACK packet) the bi-agent generates

a control packet with the 32 bit destination IP field of the outgoing packet as the

payload of the control packet. The same destination IP is then used to retrieve the

PRID from the hash table. The control packet is then sent to the PR pointed out

by the PRID. In order to convert the 16 bit PRID to actual 32 bit IP address of

an edge router, the bi-agents maintain a static table which maps each PRID to an

edge router. Figure 4.5 demonstrates an example of the technique explained above.

Let us assume, there are two different sources, i.e., P and Q which send request

packets preq and qreq, respectively to a server S inside the network. Also, assume

both these requests enter into the network through the same edge router PR1. PR1

inserts its 16 bit PRID into the packets ID field. When these packets reach server S,

the corresponding bi-agent records the SIP and ID field of the packets in its hash

table. Based on the server’s response, the bi-agent generates and sends control

packets pcontrol and qcontrol to PR1. As shown in Figure 4.5, even if the actual

48

Figure 4.5: Demonstration of the working of a bi-agent

response packets Pres and Qres do not exit through PR1, PR1 still can verify the

bidirectional nature of the sources P and Q based on the control packets it received

from the bi-agent .

The task of the bi-agent associated with a server is to keep track of the source

IP addresses which communicate to the server. An attacker who is informed about

the defense system might try to exhaust the bi-agent by sending attack traffic from

a large number of sources. However, the following two points should be noted about

a bi-agent .

1. For each SIP, a bi-agent needs to maintain only the 16 bit PRID and hence

the bi-agent can easily keep track of millions of sources without getting over-

whelmed.

2. A bi-agent receives attack traffic only during the initial period of an attack.

As soon as an attack is detected by the defense system at the edge of the

protected network, the attack traffic is dropped at that point itself.

Hence, an attacker’s attempt to exhaust a bi-agent will only make the attack more

prominent to the defense system, making it extremely difficult to achieve the at-

tacker’s malicious goal.

4.2.2 Deployment of the Defense System At An Edge Router

In this section we consider the deployment of the defense system at a PR which

observes the incoming traffic as well as the control packets received from the inter-

nal servers to detect and mitigate any possible DDoS attacks. Each PR has two

different units referred to as Forward Unit (FU) and Backward Unit (BU). The

49

task of the FU is to maintain a list of all SIPs which have communicated through

the corresponding PR to one or more servers inside the protected network. On

the other hand the BU is responsible for collecting the control packets sent by the

bi-agents associated with the internal servers. In other words, FU maintains the

list of SIPs from which packets are coming into the protected network, and BU

maintains the list of SIPs to which packets are sent from the protected network.

Thus at any instant of time, comparison of the lists of SIPs maintained by the FU

and BU reveals the sources which are not bidirectional. The details of the FU and

BU are discussed below

1. Backward Unit: As mentioned earlier, for each incoming packet through a

PR, the bi-agent of the destination server sends a control packet to the PR.

The corresponding BU receives such control packets and records the IP ad-

dresses encoded in the payload of the received packets in a table referred to as

Backward Traffic Table (BTT). At the end of each interval, the BU forwards

the recorded IPs in that interval (i.e., a copy of BTT) to the FU and resets

BTT for the next interval.

2. Forward Unit: The FU maintains a table referred to as Forward Traffic Table

(FTT) to keep track of the sources of the incoming traffic. For each incoming

packet other than marking its PRID in the 16 bit ID field of the packet, a

PR inserts (or updates) an entry in its FTT which is indexed by the SIP of

the incoming packet. The fields of a FTT record along with their meaning is

presented in Table 4.2.

Table 4.2: Details of a FTT record
NAME DESCRIPTION

Count At any time it represents the total number of pack-

ets sent by SIP. This field is incremented every

time a packet is seen from the corresponding SIP.

IsGood Represents whether the corresponding SIP is ver-

ified of not.

LastGoodAt Represents the interval number at which the most

recent packet is received from the corresponding

SIP when the SIP is already validated.

LastBadAt Represents the interval number at which the most

recent packet is received from the corresponding

SIP when the SIP is not validated yet.

StartedAt Represents the interval number at which the first

packet from the corresponding SIP was seen.

Let us now see how an incoming packet is processed by a PR before it is forwarded

to the next hop. A PR splits time into intervals of fixed width and assigns a

50

monotonically increasing value to each interval. For each incoming packet, a PR

checks its FTT using the SIP of the packet. If there exists no entry against the SIP

(indicating a new communication), a new record is inserted against the SIP. The

Count field is set to 1, IsGood field is set to ’false’ indicating that the SIP is not

yet verified, the LastGoodAt field is set to null and the LastBadAt and StartedAt

fields are set to the current interval number. For each such new communications,

the SIP is maintained in a list referred to as Current Arrival List (CAL). The CAL

represents a list of SIPs which are seen by the PR in the current interval but was

not seen in at least last T intervals. Here T is a user specified value which represents

time out period of an entry in the FTT.

On the other hand, if the SIP lands in an existing record in the FTT then the

IsGood field of the corresponding record is checked. A false value here indicates

that the SIP is not verified by the PR. A PR verifies a communication at the end

of each interval and hence IsGood is left as it is in this case. The Count field is

incremented and the LastBadAt is set to the current interval. If IsGood is true

then the LastGoodAt field is checked which gives the interval at which the most

recent packet from the SIP was received. If the difference between the current

interval and this field value is greater than the threshold T then the packet is

considered and processed as a new communication. If the difference is less than T

the Count field is incremented and also the LastGoodAt field is set to the current

interval.

At the end of each interval the FU checks each entry in the CAL against the BTT

forwarded to it by the BU. For each match the corresponding entry in the FTT

is updated with IsGood=true and LastGoodAt as the value of LastBadAt, which

represents the interval at which the last packet from the SIP was seen by the PR.

Also the SIP is removed from the CAL. It might happen that some of the outgoing

traffic generated by the incoming traffic in the interval CIi might only appear at

CIi+1 or in general CIi+ε, where ε is the maximum number of intervals that can

elapse between a forward packet and its corresponding backward packet. Thus if

an SIP from the CAL is not found in the backward list then the difference between

the current interval and the StartInterval is calculated. If the difference is less

than a threshold ε then the communication is allowed until the next interval, else

the SIP involved in the communication is detected as an attack source. Once an

attack source is detected we stop further traffic from the source. To achieve this,

the FU maintains a table referred to as Black List Table (BLT). Whenever an IP

is detected as malicious, it is pushed into the BLT and the corresponding entry

from the FTT is removed. We now use BLT as a filter in the FU. As soon as a

51

packet reaches the edge router, the corresponding FU checks the SIP of the packet

against BLT. If the SIP is already black listed then the packet is dropped else it

is processed as explained before. Figure 4.6 shows the architecture of the defense

system in a PR.

Figure 4.6: Defense system architecture

4.2.3 Implementation Details of DDM

To check how the above mentioned model works under normal as well as attack

condition, we developed a program consisting of two units controlled by two sep-

arate threads. One thread executes the Forward Unit (FU) and the other one

executes Backward Unit(BU). Periodically, the BU passes a copy of BTT to the

FU using inter thread communication technique. In the FU, we need Black List

Table(BLT), Forward Traffic Table(FTT) , Backward Traffic Table(BTT) and Cur-

rent Arrival List(CAL). In case of BLT and BTT, we simply want to query whether

an IP address is present in the list or not. We do not need to store any other in-

formation, not even the IP itself. Thus both these list are implemented as Bloom

Filters[58, 139]. On the other hand the FTT keeps track of a set of values against

an IP. This table is thus implemented as a Hash Table. At the end of each interval

the entries in the CAL is read and processed one at a time, which is served well by

a simple list structure.

52

4.3.3.1 Estimation of the Size of the Data Structures

Since we are using bloom filters and hash tables to store and retrieve our informa-

tion, it might happen that we get false positive due to their probabilistic nature.

We discuss here how one can set the size of such tables so that the false positive

rate is below some tolerable threshold.

• Hash Table: We have used an universal hash function for our hash tables.

The false positive of a hash table is caused by collision rate. The collision

rate on the other hand depends on the load factor of the hash table and can

be stated as

α =
n

m
(4.1)

where α is the load factor of the hash table, n is the number of entries and

m is the number of slots in the hash table. Thus to estimate the size of the

FTT we first need to estimate the number of entries which the table has to

record at any time. The following equation gives the estimation:

n = avgLifeT ime× ar (4.2)

where avgLifeT ime is the average life time of a communication, ar is the

arrival rate of new IP into the network (as explained earlier a completely

new IP and an IP appearing after T intervals both are considered as new to

the system). The arrival rate in AUK-VIII and WAIK-VIII is approximately

10 IPs per second (can be seen in Figure 4.9(b)). The avgLifeT ime of a

communication in AUK-VIII and WAIK-VIII is approximately 60 seconds.

From Equation (4.2) we get n as 600 for both the traces. To keep the false

positive rate low we set α = 0.01. Thus from Equation (4.1), under normal

condition number of slots (m) in FTT will be 60000. From 4.2 we see that

a FTT record maintains 5 fields. Considering each field size as 16 bit, the

memory needed by FTT under normal condition turns out as 4800000 bits

which is < 5MB.

• Bloom Filters: As mentioned above, both the BTT and BLT are imple-

mented as Bloom Filters. A Bloom filter is a space-efficient but probabilistic

data structure that supports membership queries against a set of elements.

To represent and support membership queries for a set X = {x1, x2, ...xn}
of n elements, a Bloom filter uses m bits and a set of k hash functions,

H{h1, h2, , , , hk} with range (1, 2, ...m). For theoretical analysis it is as-

sumed that each hash function spreads the n items in the set uniformly

53

over the range (1, 2, ...m), independent of each other. For practical imple-

mentation we chose the hash functions from a family of universal hash func-

tion. For each element xj ∈ X, j = 0, 1,n, m[hi(xj)] is set to 1, where

i = 0, 1, ..k. For a membership query of an element y, if ∃hl ∈ H, l = 0, 1, ..k

such that m[hl(y)] = 0, then the element y is certainly not there in the

set. If ∀hl, l = 0, 1, ..k m[hl(y)] = 1, then we assume that the element is a

member of the set with a certain probability of being wrong, referred to as

false positive rate. Let X = {x1, x2, ...xn} be the set of n elements, m be the

number of bits in the Bloom filter, k is the number of hash function used by

the Bloom filter and fpr is the maximum tolerable false positive rate of the

Bloom filter then the following equations can be used to show the relationship

among the parameters.

k = ln
m

n
(4.3)

fpr = (0.6185)
m
n (4.4)

From Equation (6.2), we see that the false positive rate of a Bloom filter de-

creases if bits per element i.e., m
n

increases. Also, from Equation (6.1) we see

that the number of hash functions in a Bloom filter increases logarithmically

with respect to m
n

.

The number of entries in the BTT will be proportional to the number of

entries in the FTT. Considering fpr as 0.01, n = 600 from Equation (6.2)

we get m < 6000 bits or m < 6 KB. On the other hand the size of the BLT

depends on the number of SIP being blacklisted during an attack. For our

experiments we use n = 100000 for the BLT. Considering fpr as 0.01 from

Equation (6.2) we get m < 10 MB.

4.3.3.2 Possibility of Attacking the Defense System Itself

Another point of interest is that whether the attacker can fill these tables or not

to launch a DDoS attack at the defense system itself. First, consider the BTT

maintained by the BU which it updates to the FU periodically. This table is fed

by the control packets from the bi-agents which are generated when the bi-agent

sees a valid bidirectional packet towards the requesting source. Thus this table

cannot be populated by the attacker as attack traffic are unidirectional in nature.

On the other hand, the FTT maintained by the FU has to keep track of a source

for a maximum of ε intervals before it can be verified as either good or bad. Thus

if a source is malicious it will be detected eventually and will be blacklisted. The

54

attacker will eventually exhaust all its bots within a certain time period which

depends on the number of bots exposed per interval of time. So, it turns out that

the attacker will simply reduce its attack length in an attempt to exhaust the FTT.

Also in section 4.4.3, we will see that once the attack is detected by observing large

black listing by the FU, the mitigation system gets activated and filters most of

the new attack traffic at the PR without needing them to process and store by the

FTT in the FU. Thus, after detection of the attack, the attacker has less control

over the FTT table to blow it up. That way the filling of the BLT by the attacker

also becomes difficult as the mitigation system allows less number of attackers after

attack detection.

4.3 Experiments and Results

In this section, I mention the experiments performed to evaluate our defense system.

To perform the experiments AUK-VIII and WAIK-VIII network traces are used as

normal traffic reference. In the experiments the time interval is set to 60 seconds.

The value of ε is set to 2 intervals.

4.3.1 Experiment 1

DDoS attack with fixed number of sources: For this experiment UDP attack packets

are generated mimicking a DDoS attack performed by 1000 bots using TUCAN-

NON. The attack was performed for 3 minutes. As the defense system is not making

use of protocol specific information to detect and mitigate an attack, TCP traffic

would also have served the purpose here.

Figure 4.7(a) shows the attack traffic as well as the normal background traffic.

In the top graph (which are seen by the FU as a single stream of packets) and

the bottom graph shows the separation of the input stream into attack traffic and

normal traffic by the FU, marked as FILTERED and PASSED respectively. We

can see that for the first 2 minutes of the attack the entire attack traffic was allowed

by the defense. After that the last 1 minute of the attack is detected and mitigated

accurately. It happens because when the attack starts the FU records all the new

sources and waits for ε=2 intervals for them to verify. As the attack sources did

not verify at the end of the 2nd interval, all of them is detected as malicious and

thus marked as blacklisted and any further traffic from them is blocked by the

blacklist filter. The fact can be seen in Figure 4.7(b) which shows a large number

55

(a) Attack vs normal traffic detected by the system

(b) Black listed SIP count per interval

Figure 4.7: Experiment1 result

of blacklisting at around 118th sec. Suppose the attacker has only a few thousands

of bots to carry out the attack In that case the entire attack will be stopped by

our defense system within a short interval of time. The situation of having a fixed

number of attack sources can be seen in DRDoS attack. The attacker typically uses

thousands of reflectors to generate the attack traffic. Also, the attacker does not

have any control over the SIP field of the attacking packets. Thus, such a DRDoS

attack will be detected and stopped by our defense immediately.

56

4.3.2 Experiment 2

DDoS attack with changing sources: Suppose, instead of exposing the entire botnet

at a time, the attacker activates a fraction of it. TUCANNON is used to generate

the attack traffic for the experiment where, each attack thread generates attack

traffic using a fixed SIP. The SIP of the attack threads are changed periodically

to mimic change of attacking groups in the attack. The total number of threads

(over all the machines) are approximately 100, which is the number of active attack

sources in an interval.

(a) Attack vs normal traffic detected by the system

(b) Black listed SIP count per interval

Figure 4.8: Experiment2 result

57

Figure 4.8(a) shows that the entire attack traffic pass through the defense

system. Due to the changing nature of the attack sources the defense system is not

capable of filtering out any attack traffic. If the size of the botnet (or the number

of reflectors) is small, then to keep the attack alive for a longer period of time the

attacker has to activate a small number of zombies at a time which makes the attack

less effective. However, the attacker can try to inject attack packet at high rate to

occupy the victim bandwidth. But such an attempt will make the attack source

more visible to the defense system. The count field of an FTT record can be used

to detect such high rate attack sources. However, if the attacker has a large botnet

then it can activate a large size group at a time and thus can cause harm to the

victim. Figure 4.8(b) shows that from the second interval from the starting point of

the attack, a large number of sources are continuously blacklisted by the FU. i.e.,

at every interval the attack is detected but due to the changing nature of the attack

sources the defense system is not capable of filtering out any attack traffic. Here

we will see how we can enhance the defense system to prevent such attack where

the attack sources are changed periodically revealing a fraction of a large botnet.

The FU maintains a list of SIPs participated in one or more valid communications

through the PR in the past, referred to as Good List (GL). The duration of the

history period could be from hours to weeks or larger than that. When the FU

verifies a communication as ’good’, its source IP is pushed into the GL. Also, the

FU monitors the number of arrivals per interval. The number of arrivals per interval

is nothing but the size of CAL at the end of an interval. Figure 4.9(a) shows the

arrival of new SIP per interval in AUK-VIII and WAIK-VIII traces. Figure 4.9(b)

shows the arrival per interval of the input stream prepared in experiment 2 with

the consideration of AUK-VIII as the normal background traffic.

We see a stable arrival rate over a period of time for the normal traces with

occasional bursts of arrival. However, during the attack the arrival of new SIP per

interval goes high significantly. The FU considers a high blacklisting as an attack

alarm and if in the subsequent intervals after the alarm contains burst of arrival,

it activates its mitigation system. To achieve this the FU performs the following

• The FU triggers an alarm referred to as AttackAlarm as soon as it sees a

high black list count.

• When the AttackAlarm is on and the size of CAL is also larger than a

threshold then the FU activates a filter referred to as GoodFilter which allows

only those SIP recorded in the GL into the network. The deactivation of the

GoodFilter is done by observing the drop count by the GoodFilter. If the

58

(a) Arrival of SIP/interval in AUK-VIII and WAIK-VIII traces.

(b) Arrival SIP/interval in the attack trace considering AUK-VIII as background normal

traffic.

Figure 4.9: Arrival rate of SIP/interval

count is less than a threshold the filter is deactivated by the FU.The modified

FU is shown in Figure 4.10.

To study the behavior of the defense with this modification, experiment 3 is

performed.

4.3.3 Experiment 3

DDoS attack mitigation based on SIP history: In this experiment the first half

of AUK-VIII trace is used to fill the GL. The duration of the history is thus 90

59

Figure 4.10: Modified FU

minutes. Figure 4.11(a) shows the passed and filtered traffic volume when the

second half of AUK-VIII trace is filtered against the GL created from the first half

of the trace. We observe that only a fraction of normal traffic is blocked by the

GoodFilter. On the other hand, Figure 4.11(b) shows the output of the FU when

the attack traffic generated in experiment 2 is merged with the second half of the

trace, which ensures that most of the attack traffic is blocked by the GoodFilter.

Thus, even if the attacker possesses a large botnet and continues to attack with

different bot groups at a time, our defense can mitigate the attack successfully. The

effectiveness of the GoodFilter certainly depends on the history duration. As the

history goes longer over time, the number of entries in the GL will also go high.

To estimate the size of the GoodFilter for normal traces, we plot the number of

completely new SIPs over time for AUK-VIII and WAIK-VIII traces. Figure 4.12

shows that the rate of new SIP to the GL goes down over time. We recorded

around 1000 SIP in each of AUK-VIII and WAIK-VIII traces in 2 hours. Since

GL is used only to check the membership of an entry it is implemented as a bloom

filter. Considering false positive rate as 0.001 and number of potential SIP as 2000,

from equation (6.2) we see that for such a GL will require < 30 KB of memory.

4.3.4 Experiment 4

DDoS attack with spoofed SIP: Until now we were assuming that the source IPs

used in the attack traffic were not spoofed. Now, if we remove that constraint, the

attacker can use almost all the 232 IP addresses as the SIP of the attack packets.

60

(a) Filtering 2nd half based on 1st half of AUK-VIII trace

(b) Attack vs normal traffic detected by the system

Figure 4.11: Experiment3 result

Let us discuss the consequences when each bot generates attack packets with ran-

domly spoofed SIP. The defense system mitigates the attack in the same way as in

Experiment 3, as shown in Figure 4.11(a). The FU will detect the set of spoofed

SIPs used in interval a+ i at the end of a+ ε+ i interval, where a is the interval,

when the attack started and i = 0, 1, 2, ..n. This will trigger the AttackAlarm.

Since the arrival rate at each interval given by the size of the CAL remains high

in the subsequent interval due to the randomly spoofed SIP used in the packets,

the GoodFilter will eventually get activated to mitigate the attack. But since the

attacker has the entire range of source IPs, he/she can perform the attack for a

longer period of time in an attempt to make the GoodFilter obsolete and drop

packets from legitimate but unknown users of the victim.

4.4 Discussion

In this chapter, I propose and demonstrate an effective DDoS attack detection and

mitigation system(DDM) based on the observation that most of the Internet com-

munication is bidirectional in nature. Experimental results show that the proposed

61

Figure 4.12: Entries in the GL over time

detection and mitigation system can defend against many different types of DDoS

attacks. DDM is a victim end DDoS defense technique which, detects an attack by

observing a high volume of unidirectional flows. DDM mitigates an ongoing DDoS

attack by blocking all the subsequent packets from the SIPs which are detected as

unidirectional. DDM achieves this by maintaining a black list of malicious SIPs.

DDM also maintains a database of SIPs which have participated in a bidirectional

communication with in a fixed duration history period, ranging from hours to days

or even months. DDM performs effectively against non spoofing attacks such as

DRDoS where, the attack packets received by the victim always carry the genuine

SIPs of the senders of the packets. However, spoofing can be used by the attacker

to degrade the performance of DDM. Spoofing can be of two types.

1. Random spoofing: In random spoofing, the attacker changes the SIP addresses

of the attack packets randomly and dynamically. In such a situation DDM

can not filter the attack packets using its black list, as most of the SIPs

appear for a very short duration. However, DDM can detect the presence

of the attack by observing the growth of the number of such short lived

unidirectional communications. DDM mitigates this situation by activating

a filter, which allows packets only from known SIPs present in the white list.

This remedy however, degrades the performance of DDM, as an unknown

SIP always might not carry an attack packet. I.e., DDM drops all legitimate

packets coming from one or more unknown SIPs during an attack.

2. Selected spoofing: In selected spoofing, the attacker spoofs the SIPs of the

attack packets with the SIPs of one or more specific sources. For example, an

attacker can spoof the attack packets with a set of selected SIPs which are

know to the victim. In such a situation, DDM can not distinguish an attack

packet from a benign packet if both the packets carry the same SIP.

62

To address these issues, in the next chapter, I discuss about techniques which can

distinguish a spoofed packet from a benign packet carrying the same source IP in

their IP headers.

63

	A DDoS Detection and Mitigation System Based on Bidirectional Nature of Internet Communications
	Introduction
	DDoS Detection and Mitigation System (DDM)
	Agent-based Bidirectional Information
	Deployment of the Defense System At An Edge Router
	Implementation Details of DDM

	Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Discussion

