
Chapter 6

A Logging Based IP Traceback

Mechanism

In the previous chapter, I discuss different packet marking schemes such as XORID

and SEM which allow a packet to carry a mark which can be used at the victim end

to discriminate spoofed packets from the benign packets. Such a defense system

can only decide whether a received packet is spoofed or not, but can not reveal the

actual source(s) of the attack packets. In this chapter, I discuss IP traceback mech-

anisms, where the goal is to find the actual source(s) of one or more attack packets

irrespective of the SIP addresses carried by them. I propose and analyze a logging-

based IP traceback mechanism, referred to as Singleton Flow Traceback(SFT), that

can traceback to the source of a flow containing one or more packets. We consider

the tuple < S,D > as a flow, where S is the Source IP and D is the destination

IP of the flow and all packets with the same < S,D > pair belongs to the same

flow. For logging, SFT requires significantly less storage (less than 8% of packet

rate) than most of the existing single packet traceback mechanism in the literature.

SFT guarantees zero false negative rate, i.e., if there exists a path P = R1, R2....Rk

of routers through which the packets of a flow < S,D > has traversed, SFT can

always reach R1, i.e., the first router to which the source of the flow < S,D >

is connected with. Also, the expected value of false positive rate for a traceback

query is very low (< 0.11).

6.1 Introduction

In the current Internet the most common but destructive threat is a DDoS attack.

The most difficult part with a DDoS attack is to mitigate the attack even if an

89

attack is detected. An IDS can detect the presence of a DDoS attack by monitoring

different traffic attributes such as traffic volume, entropy variance of the SIPs of

the incoming packets or some flow level attributes like flow length and flow size

of the incoming traffic. To mitigate a DDoS attack it is important to prevent

the zombies (puppets of the attacker) from pushing more attack packets into the

protected site or network. The presence of SIP spoofing allows a sender to fill the

SIP field of the sent packets with any probable IP address. Hence at the victim

side identification of the participating zombies based on the SIP of the incoming

packets becomes void. Thus, it becomes important to have a traceback mechanism

which can provide the true identity of the sender of one or more packets to the

victim irrespective of the SIP of the examined packets.

To achieve this goal researchers have developed different approaches such as

link testing schemes [102] ,[103], packet marking schemes [29],[74], packet logging

schemes [138] and hybrid of packet marking and packet logging schemes [127],[100],

[116]. Link testing approaches incur extra load to the network by generating extra

packets as part of the traceback mechanism. Packet marking approaches use one

or multiple less frequently used IP fields of a packet as the marking field. The

most commonly used IP header fields for this purpose are 16 bit ID field, 3 bit

fragmentation field and 13 bit fragmentation offset field. Thus, we see that the

marking of a packet generally varies from 1 single bit to 32 bits based on the

approach. In methods proposed in [29],[101] a border router inscribes its IP address

into the 16 bit ID field of all its incoming packets. Since the border router’s IP

address does not fit in a single packet’s ID field, it creates several segments of its

IP address and selects a segment randomly to mark the current packet. When

the victim receives enough packets it can construct the IP of the border router

through which the packets entered into the Internet by assembling the received

marks. Another packet marking approach is probabilistic packet marking (PPM).

Schemes proposed in [74],[124] and [97] comes under this category. The main idea

of PPM is that each intermediate router along a path probabilistically decides

whether to mark a passing packet or not. On the receiving side, the victim has to

collect enough number of packets carrying different marks to construct the entire

path traveled by a set of packets. If the victim does not receive enough number

of packet from a source it might not be able to reconstruct the path. Another

disadvantage of such a scheme is that it imposes a computational burden on the

victim side. In [26] and [27] each router along the path contributes a portion of

the mark instead of completely overwriting it. Thus, when a packet reaches the

destination the mark of the packet is used as an identification of the path traveled

90

by the packet. Two packets carrying the same mark is considered to travel the same

path to reach the destination. However, due to the limited size of the marking field

it is impossible to inscribe the entire path information into a packet. For this reason

such approaches suffer from a high false positive rate in source identification. To

achieve higher accuracy in traceback, researchers proposed logging packet specific

information in the intermediate router. One of the pioneers of such approach is

the work proposed in SPIE [138]. SPIE uses Bloom filters [139],[58] to manage the

digests of the passing packets through a router. However, high storage requirement

of SIPE in high speed router restricts its practicability. In an attempt to reduce

the storage requirement of the log based approaches, hybrid of packet marking and

packet logging techniques have been proposed in [127],[100],[116],[122],[123]. The

main goal of such techniques is to reduce the logging frequency in an intermediate

router. In such an approach some of the intermediate routers performs only marking

operation and others perform both.

Investigating the above mentioned works from the literature we still find scope

where improvements can be contributed. Most logging based techniques concen-

trate around facilitating a single packet traceback mechanism which accepts a copy

of a specific packet or its transformation to reach to its actual source. However, in

a situation like DDoS attack instead of following a single specific packet, following

a particular flow originated from a claimed source, i.e., a group of packets carrying

the same pair of < S,D > suffices the need. Since the number of flows through a

router at a time is many times less than the number of packets, the storage over-

head at a router can be drastically reduced by logging individual flow information

rather than packet information. Another issue which is needed to be handled in

most of the hybrid and log based approach is the false negative caused by the re-

freshing of the log tables in the intermediate routers. Keeping these issues in mind,

in this paper we propose a log based traceback system, referred to as Singleton

Flow Traceback (SFT). The main emphasis of ”Singleton Flow Traceback” is to

traceback a flow up to its actual source even if it contains only one packet. The

prime features of SFT are as follows:

• SFTs storage requirement is proportional to the number of flows rather than

the number of packets through a router per unit time. Thus, SFT has many

times less storage requirement than that of other single packet traceback

approaches.

• We introduce a logging scheme with a rolling pair of bloom filters to guarantee

zero false negative without needing the intermediate routers to synchronize

91

their log table refreshment event.

• In SFT a single traceback query can reveal all the sources which are com-

municating with the destination using the same SIP at the same time. This

situation might occur in case of a DDoS attack where one or multiple zombies

z1, z2, ..zk send attack traffic to a specific victim v with randomly spoofed

SIPs. In that case, the victim might receive packets carrying a particular

< S,D > pair from multiple zombies. Under such situation, existing single

packet traceback mechanisms can reach only up to one zombie based on the

packet selected for traceback. However, in SFT, a single query can reveal all

such zombies in parallel.

We provide detailed mathematical description to show how SFT attains zero false

negative. Also, we provide both theoretical and practical analysis (using real In-

ternet topology) to demonstrate low margin of false positive rate (less than 11%

of the SFT queries return at least one false source along with the actual source) of

SFT. In section 6.2, we provide our solution. Section 6.3 analyses the performance

of SFT. In section 6.5 draws the conclusion.

6.2 Singleton Flow Traceback(SFT)-The Proposed

Traceback Mechanism

Most existing logging-based traceback mechanisms in the literature need a router

to log the digests of the packets passing through it. Thus, the size of the log in a

router is proportional to the packet rate through that router. In high speed link

such approaches need several hundreds of Mega Bytes of storage to accommodate

the log, which is not affordable. Instead of recording information against each

packet, our method, referred to as SFT records information against each flow.

Thus, the storage requirement in a router to log traceback information by SFT is

significantly reduced by a factor η, where

η =
packets

flows

. Figure 6.1(a) shows η for CAIDA-2014 [84] high speed network traces. Figure

6.1(b) shows the number of < S,D > pairs vs number of packets/unit time from the

same trace. It can be seen from the figure that η is approximately 14, on average,

i.e. number of digests needed to be stored by an SFT enabled router is less than 8%

of the total packet rate through the router. Other than less storage requirement,

92

another advantage of SFT is that it requires comparatively less number of routers

to log a specific flow to facilitate successful traceback of the flow. Let us consider

an example as shown in Figure 6.2.

(a) η

(b) Number of < S,D > pairs vs number of packets per second

Figure 6.1: Comparison of number of < S,D > pairs vs number of packets per 10

minutes in CAIDA network trace.

Figure 6.2: An example of transit flow

A source S from AS1 is communicating a flow to the destination D in another

autonomous system AS3. AS2 is the intermediate autonomous system traveled

by the packets of the flow. R3 is the router through which the flow entered into

93

AS2 and R5 is the router through which the flow exited the network. The flow

is called a transit flow for AS2. For any transit flow in an autonomous system

both the source and destination are outside the autonomous system and thus, the

autonomous system always have a pair of entry and exit edge routers through

which the flow enters and exit the network. Autonomous system can record such

transit flow only at the entry and exit edge routers by considering them as two

consecutive hops in the path. The average number of hops in terms of routers

and autonomous system between any source and destination in the Internet is

approximately 15 and 3, respectively. Thus, in SFT, on an average a flow is needed

to be logged in 5+2+5=12 nodes rather than 15 nodes. It is approximately 20%

reduction in terms of the number of intermediate nodes to be visited to reach a

source through a path by SFT.

We now discuss how an SFT enabled router logs the flow information to facilitate

accurate traceback up to the sources of one or more flows. Table 6.1 gives a quick

reference to some of the terminologies used to describe the paper.

Table 6.1: Short hand notations and their meanings
NAME DESCRIPTION

AS Autonomous System

EBGP Stands for External BGP router. Two

routers Ri and Rj are EBGP to each

other if Ri and Rj belongs to two dif-

ferent AS

internal neighbor Ri and Rj are internal neighbor to

each other if both belongs to the same

AS

SIP Source IP address of a packet

DIP Destination IP address of a packet

LT LAN TABLE

FT FORWARD TABLE

6.2.1 Flow Recording Process At Intermediate Routers By

SFT

Each router maintains a pair of two fixed size tables , namely

1. LAN TABLE (LT), which is used to log the flow information coming from

the local LAN of the router.

2. FORWARD TABLE (FT), which is used to log the flow information for-

warded to it by its upstream routers.

94

In this chapter I use the term LOG to refer to both LT and FT collectively. Since

the tables get filled up along with time, it is important to refresh the content of these

tables periodically. However, such refreshing might lead to false negative if proper

synchronization is not maintained among the routers. To overcome this problem,

each SFT enabled router makes use of two LOGs, i.e., LOG[0] and LOG[1], which

are refreshed alternatively at the end of a fixed time interval T. The refreshing of

one router is completely independent from other routers. However, all have to agree

with the duration T of the interval. Figure 6.3 shows a pictorial representation of

the schema.

Figure 6.3: Demonstration of Lemma1

Figure 6.4: Demo

With such a scheme we have the following Lemma

Lemma 1. If a flow traversed a router R at time t, the flow information will be

available at R atleast upto time t+T. In other words every flow information through

95

a router will be available at the router for atlest T time from the recording time of

the flow in that router.

Proof. An SFT enabled router refreshes the LOGs alternately at the end of T

time interval. Consider at some point of time t, a flow < S,D > is recorded

in the current LOG, as shown in Figure 6.4. Let α be the elapsed time from

the most recent refresh time. In that case the information related to < S,D >

will be available in the LOG TABLE until the table is refreshed again, i.e., upto

t+ (T − α) + T time. Since T − α >= 0, we have

(T − α) + T >= T

.

=> t+ (T − α) + T >= t+ T

As mentioned above, SFT needs to record transit flows only at the edge routers

of the corresponding AS. To achieve this, we use the first two bits of the 16-bit ID

field of the IP header to mark a packet P. A router takes the logging decision

based on the mark of a packet. As soon as a packet P is received at an interface,

a router processes the packet as shown in Figure 6.5. When a router receives a

packet from its local LAN, it sets the packet mark as ’10’. If the packet is received

from an EBGP router, it’s destination IP is checked. If the packet is destined for

an external DIP then the mark field of the packet is set to ’01’, otherwise it is set

to ’11’. The mark field is not changed if the upstream router is a router from the

same network. The marking of the incoming packets can be done independently at

every incoming interface of a router. Before forwarding a packet to the next hop

by an SFT enabled router, the mark of the packet is verified, as shown in Figure

6.6 to decide whether to log the packet or not. If a packet is being forwarded to

an EBGP router, the flow information of the packet, i.e., < SIP,DIP > is always

recorded irrespective of the mark of the packet. On the other hand, if the packet

is forwarded to a local router then the mark of the packet is checked. If the mark

is ’10’, the flow information is recorded at the LT of the current router and the

packet mark is changed to ’11’. If the mark is ’11’ the current router always logs the

corresponding flow information. If the packet mark is ’01’ then the current router

logs the corresponding flow and resets the mark of the packet to ’00’ which prevents

further logging of the flow upto the exit router of the intermediate network. The

interpretations of the packet marks are mentioned in Table 6.2.

96

Figure 6.5: Incoming packet processing

Figure 6.6: Outgoing packet processing

Table 6.2: Interpretation of the mark of an outgoing packet by a router
MARK INTERPRETATION

11 Log the corresponding flow information in FT

01 Log the corresponding flow information in FT and

reset mark as 00

10 Log the corresponding flow information in LT and

reset mark as 11

00 Do not log

Figure 6.7 demonstrates how a flow (for simplicity we assume the flow is a single

packet flow) is processed and logged along the path from a source-destination pair

< S,D >. When the packet reaches R1 from S, it’s mark field is set to ’10’. When

forwarded by R1, it logs the corresponding < S,D > pair in its LT and sets the

97

Figure 6.7: Demonstration of flow recording

mark as ’11’. Since R2 receives the packet from an internal neighbor R1, it keeps

the mark as it is. R2 forwards the packet to an EBGP router R3 and hence logs

< S,D > in its FT. R3 receives the packet from an EBGP router and since the

destination is outside the network, hence it sets the mark of the packet as ’01’.

When forwarded, R3 logs < S,D > in it’s FT and sets the mark of the packet

to ’00’. R4 neither changes the mark, as it is received from an internal neighbor,

nor logs the flow, as its mark is ’00’. R5 does not change the mark since R4

is an internal neighbor to it. But when forwarded to R6, R5 logs < S,D >

as R6 is an EBGP router to it. R6 receives the packet from an EBGP router

and the destination is in the same network, hence, it marks the packet with ’11’.

Finally, when R7 receives the packet from R6 it does not change the mark and

while forwarded, it logs < S,D > in it’s FT.

6.2.2 Tracing Back a Flow

In the previous section, we have seen how an SFT enabled router (here onwards

we will refer to an SFT enabled router by simply a router, as we assume that all

routers are SFT enabled to facilitate traceback) logs the flow information going

through it. In this section we discuss the traceback mechanism to reach the source

of a communication from the destination end of the communication. A traceback

can be initiated by issuing a traceback query, referred to as Query, to the nearest

router by an authorized IDS. A Query contains four fields. The significance of

these fields are listed in Table 6.3.

When a router receives a Query, it processes it as shown in Figure 6.8. For

98

Table 6.3: The fields of a traceback Query
Field Description

ID A 32 bit number which uniquely identifies a Query

DIP The destination IP of the flow being queried

SIPList The list of SIPs whose corresponding flows with

Query.DIP are being trace backed

Action It specifies the action needed to be taken by a

router when it identifies its LAN as the source for

a traceback query.

each SIP Si in Query.SIPList, the flow information < Si, Query.DIP > is checked

against the LT and FT in parallel. If a flow is found, the corresponding Source IP

i.e., Si, is maintained in a list, referred to as FOUND LIST . After processing all

Sis in Query.SIPList, if FOUND LIST is not empty for LT , it implies that the

SIPs in the FOUND LIST are from the local LAN of the router. Thus, the router

executes the action specified by Query.Action. On the other hand a non-empty

FOUND LIST in FT verification implies that the router has recorded commu-

nication from the sources in the FOUND LIST to the destination Query.DIP .

Since these flows might be forwarded to the router by any of its neighbors, the cur-

rent router replaces Query.SIPList by FOUND LIST and forwards the Query

to all its neighbors. When we say ’neighbor’, there might be two different kinds of

neighbors to a router, such as

1. Direct Neighbor: Two routers R1 and R2 are direct neighbors of each other,

if there is a direct communication link between R1 and R2.

2. Virtual neighbor: Two routers R1 and R2 are virtual neighbors of each other,

if both R1 and R2 are edge routers of the same AS.

If the current router is an internal router, it will forward the Query to all the

routers to which it is directly connected with. On the other hand, if the current

router is an edge outer, then along with all direct neighbors, the Query will be

forwarded to all other edge routers of the network.

Since the current router forwards Query to all its neighbors, it might happen that

a Query back propagates, i.e., a router might receive a Query back, that it just had

forwarded to its neighbor. To overcome this problem the Query.ID is used as an

identifier to a traceback query. After processing a traceback query the correspond-

ing Query.ID is recorded by the current router. When a router receives a Query,

it first checks if the Query has been processed in the recent past. In that case the

Query is ignored by the router. We consider the size of the Query.ID field as 32

bit. If there are k IDSs simultaneously issuing different Querys then the probabil-

99

ity of collision of two Query.ID is P (collision) = k
232

. Since k << 232, Pcollision ≈ 0.

Figure 6.9 shows the propagation of a traceback query for the flow < S,D >.

An IDS monitoring the traffic to the victim D, issues a traceback query at R7.

Since < S,D > is logged at R7, the query will be forwarded to R6. R6 forwards

the query to R5 as well as R7. Since R7 has already processed the query, it will not

respond to the query received from R6. However, R5 will process the query and

since the queried flow is recorded at R5, the query will be forwarded to all the direct

neighbors i.e., R4 as well as virtual neighbors i.e., R8,R9 and R3 of R5. Since R4,R8

and R9 has not recorded < S,D >, the query will be discarded at these routers

with a very high probability. However, due to occurrence false positive, R4,R8 and

R9 might forward the query to their neighbors independent of each other. R3 on the

other hand will forward the query to R2 as the queried flow < S,D > is recorded

at R2. Finally R1 will find a match in its LT for the queried flow and thus, identify

its LAN as the source of the flow.

6.2.3 Implementation Details of the Log Tables

From the above discussion we see that during traceback the log tables maintained

by a router need to answer only membership queries against an entry, i.e., they

are used only to see if a particular < S,D > pair is there in the table. No other

information related to a flow < S,D > is needed to be stored and retrieved. Due

to this property, the log tables are implemented as Bloom filters[14]. A Bloom

filter is a space-efficient but probabilistic data structure that supports membership

queries against a set of elements. To represent and support membership queries for

a set X = {x1, x2, ...xn} of n elements, a Bloom filter uses m bits and a set of k

hash functions, H{h1, h2, , , , hk} with range (1, 2, ...m). For theoretical analysis it

is assumed that each hash function spreads the n items in the set uniformly over

the range (1, 2, ...m), independent of each other. For practical implementation we

chose the hash functions from a family of universal hash function. For each element

xj, j = 0, 1,n ∈ X, m[hi(xj)] is set to 1, where i = 0, 1, ..k. For a membership

query of an element y, if ∃hl, l = 0, 1, ..k ∈ H such that m[hl(y)] = 0, then the

element y is certainly not there in the set. If ∀hl, l = 0, 1, ..k m[hl(y)] = 1, then

we assume that the element is a member of the set with a certain probability of

being wrong, referred to as false positive rate. Let X = {x1, x2, ...xn} be the

set of n elements, m be the number of bits in the Bloom filter, k is the number

of hash function used by the Bloom filter and fpr is the maximum tolerable false

100

(a) Search in LOG TABLE.LAN TABLE

(b) Search in LOG TABLE.FORWARD TABLE

Figure 6.8: Traceback query processing at a router

positive rate of the Bloom filter then the following equations can be used to show

the relationship among the parameters.

k = ln
m

n
(6.1)

fpr = (0.6185)
m
n (6.2)

From Equation (6.2), we see that the false positive rate of a Bloom filter decreases

if bits per element i.e., m
n

increases. Also, from Equation (6.1) we see that the

number of hash functions in a Bloom filter increases logarithmically with respect

to m
n

.

101

Figure 6.9: Demonstration of traceback mechanism

6.3 Analysis of SFT

The efficiency of a traceback mechanism can be evaluated based on false positive

rate, false negative rate, storage requirement at intermediate routers, computa-

tional overhead at intermediate routers and the traceback time to reach the source.

6.3.1 Analysis of False Negative Rate of SFT

We use Bloom filter to store and query the flow information in a router. Bloom

filters have the useful property of zero false negative rate, i.e., if xi ∈ X then a

membership query for xi in X will always return a ’positive’, irrespective of the

values and the number of other elements in the set. From the discussion in section

6.3.2, we know that a traceback query propagates from the current router to its

upstream routers (i.e. ,both direct and virtual neighbors of the current router)

only when the current router returns a ’positive’ for the queried flow < S,D > in

their FT. Also, to confirm the source, the first router from the source must return

a ’positive’ in its LT. Thus, to reach R1 from Rk along the path {R1, R2, ...Rk} all

routers Ri, i = k, k − 1, ..1 must return ’positive’ for the queried flow < S,D >.

This will be always true, only when all the routers Ri, i = k, k − 1, ..1, contains

the entry for < S,D > in their corresponding LOGs, when they are being queried,

according to the zero false negative rate property of Bloom filters. According to

Lemma 1, a router always keeps a flow information at least for the time interval T,

from the most recent recording time of the flow in the router. Thus, for successful

retrieval of the source of a flow < S,D > it is important that the query reaches the

102

source router, i.e., R1 within T time from the most recent recording time of the

flow in that router. To meet this requirement the following equation must be true

ppt+DT + qpt ≤ T (6.3)

Where, DT is the time difference between the time at which the traceback query

is issued by the destination of the flow and the time at which the flow reached the

destination (shown in 6.10), ppt is the propagation time of the flow from R1 to Rk

and qpt is the propagation time of query from Rk to R1

Since both ppt and qpt are typically in milliseconds and DT is in minutes,

we can consider DT as a safe upper bound for ppt + qpt, i.e., we can consider

ppt+ qpt ≤ DT . Thus we can write

DT +DT ≤ T

=> 2×DT ≤ T

=> T ≥ 2×DT

From this we state the following lemma.

Figure 6.10: Demonstration of Lemma2

Lemma 2. For any flow < S,D > traversing the path {R1, R2, ...Rk}, the first

router R1 can always be reached (traced back), if T > 2×DT assuming ppt+qpt <<

DT , where T is the minimum guaranteed time interval of the routers (as mentioned

in Lemma 1)

Proof. Say t is the time at which Ri recorded the queried flow < S,D > in its

LOG. Then the flow will reach and will be recorded at Rk at time t+(k− i)×δppt,

103

δppt is the flow propagation delay for one hop. Given, the traceback query for the

flow is issued at Rk within T
2

time of its arrival, hence, the query will reach Ri at

t+ (k− i)× δppt+ T
2

+ (k− i)× δqpt, where δqpt query propagation delay for one

hop. Figure 6.10 depicts the fact pictorially. Thus, the time difference between the

recording of the flow and the arrival of the traceback query at router Ri is

δti = (k − i)× δppt+
T

2
+ (k − i)× δqpt

Since i ≥ 1 and i ≤ k, (k− i)×δppt ≤ (k − 1)× δppt ≤ ppt and (k− i)×δqpt ≤
(k − 1)× δqpt ≤ qpt, we can write

δti = (k − i)× δppt+
T

2
+ (k − i)× δqpt ≤ ppt+

T

2
+ qpt

Agin, qpt+ ppt << DT and DT ≤ T
2
. Which implies

=> δti ≤ DT +
T

2

=> δti ≤
T

2
+
T

2

=> δti ≤ T

The traceback query will reach all the routers along the sequence {Rk, Rk−1...R1}
within T time from the recording time ti of the queried flow in that router. Since

a router always keeps a flow information at least for duration T from its recording

time, due to zero false negative of the Bloom filters, each Ri, i = k, k − 1, ...2

will return ’positive’ for the the queried flow in its FT and will forward the query

to Ri−1. On the other hand, R1 will return a ’positive’ from it’s LT, i.e, R1 will

identify the source of the queried flow as its local LAN.

It can be safely assumed that a real-time IDS can detect and pinpoint the

sources of the malicious traffic within a few minutes, i.e., less than 5 minutes,

from the starting of the attack. Thus if T ≥ 10 minutes then Lemma 1 assures

zero false negative, i.e. if a flow < S,D > traversing through the sequence of k

routers {R1, R2...Rk} is traced back within a short time interval after its arrival at

the destination, then SFT will always be able to reach to the source router, i.e., R1.

Each router can set its T to any value ≥ 10 minutes independent of one another.

6.3.2 Analysis of False Positive Rate of SFT

Another desirable property of a traceback mechanism is zero false positive. Let’s

first define what is a false positive in SFT.

104

Definition 1. For a particular flow < S,D >, traversing through a sequence of

routers {R1, R2,Rk}, if SFT returns atleast one router Rx such that Rx 6= R1 as

the source, then it called a false positive.

We will now get an estimation of the false positive rate (fpr) i.e., the average

number of false positives returned by SFT for one traceback query. As mentioned

in section 6.3.2, when a router receives a traceback query, it checks the queried flow

in its LT and FT simultaneously. A false positive in LT will cause a false positive

in SFT. Due to false positive, the current router identifies its LAN as the source

of the queried flow. Although we can not make Bloom filters deterministic, but we

certainly can set fpr of a Bloom filter to a very low value (such as ≤ 0.0001) to

make it almost deterministic. From Equation (6.2) and (6.1), a Bloom filter with

fpr=0.0001 will need < 20N bits of memory and ≤ 3 hash function executions

per search. If we consider N to be 1, 00, 000 then the amount of memory needed

will be around 2MB. Since LT records only those flows coming from the LAN of

the corresponding router, N can be expected to be even smaller than 1, 00, 000.

On the other hand a false positive in FT will cause unnecessary forwarding of

the traceback query to all neighbors of the current router, which will increase the

network load as well as the fpr of SFT. The FT might have to store hundreds of

millions of flows within 2×T time, specially when the router is a back bone router.

Figure 6.1 shows the number of distinct flows per ten minutes in CAIDA’s[84]

high speed network traces. Thus, to assure a low false positive rate in FT, the

memory requirement will be high. Table 6.4 mentions the memory requirement for

different fpr of the Bloom filter, considering N = 107, representing a sufficiently

large number of flows.

Table 6.4: FPR vs Memory needed to store N = 107 flow information for Bloom

filter
fpr MEMORY in MB

0.5 14

0.2 33

0.1 50

0.01 100

0.001 150

0.0001 200

We see that a low fpr (≤ 0.01) Bloom filter needs hundreds of MBs of memory

in a router, which might not be available. However, a moderate fpr (< 0.10) Bloom

filter can be achieved by using less than 50 MB of memory. To estimate the fpr of

SFT, first we estimate the average number of routers, to which a single traceback

105

query propagates. For theoretical analysis we consider the network topology as

a rooted tree, where the root of the tree is considered as the destination. The

sources can be connected to any node in the tree. We assume each internal node

has exactly (d+ 1) neighbors, where d is the number of children of the node and 1

for its parent. Let us assume that all the nodes set the same fpr for their Bloom

filters. Say, Rx is a router which never recorded the queried flow. In that case

expected number of nodes, which will be visited by a traceback query issued from

Rx is given by
i=h∑
i=0

di × (fpr)i

=
i=h∑
i=0

(d× fpr)i

where h is the height of the tree, or the diameter of the Internet. Consider k

is the average number of nodes along a path traversed by a flow < S,D >. Since

from each node the query will always propagate to all d neighbors, the expected

value of the number of nodes visited by a single traceback query is given by

E(visited nodes) = k × d×
i=h∑
i=0

(d× fpr)i (6.4)

It implies the expected value of fpr of SFT traceback query is as follows

E(fpr) = E(visited nodes)× (fpr of the LT) (6.5)

From Equation (6.4) we see that, if the product d × (fpr) > 1, the expected

value of the number of nodes visited by a single query in SFT will grow rapidly.

Table 6.5 reports E(visited nodes) for different combinations of d and fpr. The

value of k is assumed to be 15, as it is the average number of nodes between any

< S,D > pairs in the Internet.

Table 6.5: E(visited nodes) per SFT traceback query
fpr=0.5 fpr=0.4 fpr=0.3 fpr=0.2 fpr=0.1 fpr=0.01 fpr=0.001

d=2 1250.00 249.06 125.00 83.33 62.50 51.02 50.10

d=3 * * 696.16 187.50 107.14 77.32 75.23

d=4 * * * 498.11 166.67 104.17 100.40

d=5 * * * 3125.00 250.00 131.58 125.63

d=6 * * * * 375.00 159.57 150.91

d=7 * * * * 583.26 188.17 176.23

d=8 * * * * 996.22 217.39 201.61

* values > 10, 000

106

The fpr of the LT is normally kept at a very low value(< 0.0001). Considering

d=3, which is the average degree of an Internet router (Figure 6.14), and fpr of

the FT as 0.2, from Equation (6.5), we get the expected value of fpr in SFT as

E(fpr) = 498.11× 0.0001

= 0.0498

< 0.05

In other words, 5% of the SFT queries will return atleast one false source.

Figure 6.11: Pictorial representation of preprocessed skitter topology

7.4.2.1 fpr Analysis in Real Internet Topology Dataset

To evaluate the fpr of SFT we use CAIDA’s LNK0304[64] Internet topology

dataset. Skitter maintains trace route informations from selected monitoring points

to different destinations. The datasets contain both complete as well as incomplete

paths. Also for a single destination there are multiple paths in some of the datasets.

For our experiments we consider only the complete paths. In case of multiple paths

to the same destination from the monitoring point, we chose the longest path se-

quence. Thus, after preprocessing we get a tree, where the root of the tree is the

destination and the leafs are the sources. Out of skitter’s 25 monitoring points, we

chose the topology generated from m-root, f-root and mwest monitoring points, in

our experiments. However, topology related to other monitoring points also exhibit

almost same characteristics.

107

(a) m-root

(b) f-root

(c) mwest

Figure 6.12: hopcount distribution of SKITTER dataset

108

(a) m-root

(b) f-root

(c) mwest

Figure 6.13: RTT distribution of SKITTER dataset

109

(a) m-root

(b) f-root

(c) mwest

Figure 6.14: degree distribution of SKITTER dataset

110

(a) m-root

(b) f-root

(c) mwest

Figure 6.15: Distribution of visited nodes by a traceback query in SKITTER

dataset

111

Figure 6.12 shows the hop count distribution from different sources to a specific

monitoring point. We see that the average hop count is approximately 15.

Figure 6.13 shows the RTT distribution of the probe messages from different

sources to a three monitoring points. We see that the in most of the cases RTT

is below 500 millisecond. This observation validates our assumption of (ppt+ qpt)

to be very small compare to the typical real time detection time of 5 minutes in

lemma 2.

Figure 6.14 shows skitter graph nodes degree distribution corresponding to

three different monitoring points. We see that the average degree of a node is < 3.0.

However, the maximum degree of the mwest topology(4227) is comparatively larger

that that of m-root(835) and f-root(562) topologies.

Figure 6.15 shows the distribution of the visited nodes by a single traceback

query corresponding to the topologies obtained from three monitoring points. The

false positive rate of the Bloom filters is set to 0.10. The average number of

visited nodes in mwest, m-root and f-root monitoring points are 1100,352 and 243

respectively. Comparing with Figure 6.14, we see that mwest topology contains a

set of routers with large degree. When a traceback query goes through such a high

degree router, the query is spread to all the neighbors, causing the query to visit

more number of routers. From equation (6.5) we see that in all the cases, we get

the expected value of false positive rate in SFT as

E(fpr) = 1100× 0.0001

= 0.11

I.e. On average 11% of the SFT traceback queries will return at least one false

source of the queried flow. From Table 6.4 we can see that on a high speed link,

(like CAIDA), a Bloom filter with 0.1 false positive rate will need ≤ 50MB of

storage to facilitate SFT.

6.3.3 Computational Overhead At Intermediate Routers

As we discussed in section 6.3.1, a router marks a packet as soon as it is received

at an interface. Based on the mark, a router decides to log a packet. The marking

operation time is comparatively negligible than the log operation time. In SFT a

log operation includes the execution of k hash functions, where each hash function

typically includes one or more multiplication and division operations based on their

type. Since the execution of one hash function is completely independent of the

112

other k− 1 hash functions, parallel executions of these hash functions are possible.

Also the hardware implementation of the Bloom filters allows the logging of a

packet at line speed. In our implementation of Bloom filter, the hash functions are

implemented as universal hash functions.

6.3.4 Traceback Time

The traceback time depends on (i) the number of intermediate routers to be visited

by a query to reach a source along a path and (ii) the complexity of searching at

each router. The average hop count between any source and destination in the

Internet is approximately 15. Thus, a traceback query needs to traverse on average

approximately 15 intermediate routers in sequence to reach from destination to the

source. Each router has to check at most 2 LOG TABLEs each containing a pair

of Bloom filters. Thus, SFT offers a near real time traceback of the sources.

6.3.5 Storage Requirement

As mentioned in section 6.3, the storage requirement of an SFT enabled router is

less than 8% of the packet rate through the router. Other similar approaches like

HIT and PPIT require 50% and 39% of the packet rate.

6.4 Discussion

In this chapter, I present a log based IP traceback system with comparatively

less storage requirement than earlier approaches. The proposed approach achieves

zero false negative without the need of synchronization among the routers. Also, I

demonstrate the low margin of false positive rate (< 0.11) of our proposed technique

both theoretically and on real Internet topology.

113

	A Logging Based IP Traceback Mechanism
	Introduction
	Singleton Flow Traceback(SFT)-The Proposed Traceback Mechanism
	Flow Recording Process At Intermediate Routers By SFT
	Tracing Back a Flow
	Implementation Details of the Log Tables

	Analysis of SFT
	Analysis of False Negative Rate of SFT
	Analysis of False Positive Rate of SFT
	Computational Overhead At Intermediate Routers
	Traceback Time
	Storage Requirement

	Discussion

