
Chapter 4

Naturalness in Synthesised

speech: the Voice Conversion way

4.1 Introduction

Voice Conversion or VC, which is the technique of converting speech from a source

speaker to speech of a target speaker, has been used in a number of applications

such as conversion of whispered to normal speech, conversion of speaking styles,

conversion of emotion, accent, improving speech intelligibility, transformation of

speaker identity, speech-to-speech translation etc. to name a few. The aim of VC

is to transform the characteristics of a speech signal uttered by a source speaker in

such a manner that the transformed speech sounds as if it is spoken by the target

speaker. Such a conversion transforms not only the organic properties of speech

such as voice quality but also linguistic cues such as regional accents and requires

transformation of both spectral and prosodic features. In this work we explore to

what extent VC techniques can help in generating dialectal speech from existing

Text-to-Speech (TTS) systems. In other words, we explore to what extent VC can

be used for incorporating dialectal features into speech synthesised from a TTS

built for the standard variety of the Assamese language. A TTS built for the stan-

dard variety of a language will have no explicit linguistic or prosodic knowledge

pertaining to a target dialect. Therefore it is obvious that dialectal speech gener-

ated from it will lack naturalness with respect to the dialect concerned. Our aim is

to use VC techniques to incorporate some amount of naturalness into this speech.

Three different techniques, i.e., Vector Quantization (VQ) with mapping code-

books, Gaussian Mixture Models (GMMs) and Artificial Neural Networks (ANNs),
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have been used to develop mapping functions. The mapping function maps from

speech synthesised by a TTS for the standard form of the language to parallel

speech recorded from a speaker in the target dialectal variant of the language. Our

aim is not to compare existing VC methods or improve the quality of a VC sys-

tem, but to explore the prospects of VC in the generation of dialectal speech or

the prospects of VC in incorporating naturalness to synthesised dialectal speech.

Therefore we carry out the conversions using VC mapping functions and then se-

lect the best conversions for resynthesis. Mel Cepstral Coefficients (MCEPs) are

used to represent the spectral envelope, while pitch, intensity and duration values,

collectively referred to as PID, represent the prosody of speech.

The rest of the chapter is organised as follows. Section 4.2 presents a brief

introduction to VC and its applications, Section 4.3presents the motivation for

this work, Section 4.4 presents a brief review of related literature and Section 4.5

describes the building of the four systems A, B, C and D. Experimental results are

presented in Section 4.6 and finally in Section 4.7 conclusions and plans for future

work are presented.

4.2 Voice Conversion

Voice Conversion is a special type of the Voice Transformation technique whose

goal is to modify a speech signal uttered by a source speaker to sound as if it was

uttered by a target speaker, while keeping the linguistic contents unchanged [26].

VC modifies speaker-dependent characteristics of the speech signal, such as spectral

and prosodic, in order to modify the perceived speaker identity while keeping the

speaker independent information i.e., the linguistic contents, same. An overview of

a typical VC system is presented in Figure 4.1 [96]. In the training phase, the VC

system is presented with a set of utterances recorded from the source and target

speakers. The speech analysis and mapping feature computation steps encode the

speech waveform signal into a representation that allows modification of speech

properties. Source and target speakers speech segments are aligned (with respect

to time) such that segments with similar phonetic content are associated with each

other. The mapping or conversion function is then trained on these aligned features.

The conversion phase consists of two steps. First mapping features from a new

source speaker utterance are computed, and second, the features are converted

using the trained conversion function. The speech features are computed from
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the converted features which are then used to synthesise the converted utterance

waveform.

VC systems are categorized as using parallel or non parallel corpus, text depen-

dent or independent, language independent or cross-language. The most common

approach to VC uses recordings of a set of parallel sentences from both source and

target speakers. However, the source and target speakers are likely to have different

length recordings, and have dissimilar phoneme durations within the utterance as

well. Therefore, a time-alignment approach must be used to address the temporal

differences. Manual or automatic phoneme transcriptions can be utilized for time

alignment. Most often, a dynamic time warping (DTW) algorithm is used to com-

pute the best time alignment between each utterance pair or within each phoneme

pair. The final result of this step is a pair of source and target feature sequences

of equal length. More complicated approaches are required for non-parallel align-

ment. An important factor for VC categorization is the amount of data used for

training the system. It is seen that conversion functions that memorize better are

more effective for larger training data while those that generalize better are more

preferable for smaller training data. The three most effective speech features with

respect to VC are the average speech spectrum, formant frequencies and the aver-

age pitch level [96]. Most VC systems therefore aim to modify the speech features

related to the short time spectral envelopes and the pitch value. Today VC systems

are gaining popularity because of its varied applications. VC systems however pose

a threat to speaker verification systems [154].

4.3 Motivation

Building a TTS for the standard variety of a language is a much simpler task than

building a TTS for a dialect, the main reason being the ready availability of speech

data of the standard variety. The quality of dialectal speech generated by a TTS

built for the standard variety of the language, is poor in terms of naturalness.

This is due to differences in pronunciation rules, syllabification rules, phoneme and

syllable inventory and prosodic factors between the two varieties of the language.

Therefore building a module for post processing this synthesised speech lacking

naturalness, would help in achieving more natural sounding speech with respect to

the concerned dialect.

There are two basic advantages of using VC in our work. Firstly, a small
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Figure 4.1. A typical Voice Conversion System. (courtesy:[96])

amount of target data is known to be sufficient to train the VC system. This would

be particularly helpful since dialect data is scarce and limited. Secondly, VC can be

performed with limited annotation of the training data since the classes of spectral

features represented by the parametric components are determined purely on the

basis of acoustic measures. This feature of a VC system is also desirable for our

work since we do not have an automatic transcription tool for Assamese and manual

transcription is both time taking and expensive. Our system as shown in Figure 4.2

includes two modules in addition to the TTS module: the preprocessing module

which is a text-to-text translator for translating the text in the standard variety of

a language to text in the target dialect. The output of this module, i.e., given the
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Figure 4.2. Block Diagram Representation of Proposed System

transcription of an utterance in the standard variety, the equivalent transcription in

the dialect, will be fed to TTS module. The utterance synthesised by the TTS will

resemble the speech of a non-dialect speaker and will lack naturalness with respect

to the dialect concerned. This will be passed on to the post processing module for

incorporating naturalness into the synthesised speech. This module will use VC

techniques for converting spectral and prosodic features from the source (speech

in standard variety of Assamese) to the target (speech in a dialectal variety of

Assamese). By transforming the overall spectral characteristics, VC also realises

the corresponding voice quality (VoQ) changes which is implicitly in the spectral

conversion function [143], thereby contributing to improved naturalness. The final

output speech is expected to be closer to speech in the target dialect. The current

work focuses on the TTS module and the post processing module.

As previously mentioned in Chapter 3, Section 3.1, our work considers the

All India Radio (AIR) variety of Assamese as the standard form and the Nalbaria

variety (NAL) as its dialectal variant. The Nalbaria variety has been chosen for

our study because it greatly differs from the standard form in terms of accent,

vocabulary, pronunciation as well as grammar. The Nalbaria variety has additional

syllables, consonant clusters and diphthong sounds. What mainly distinguishes it

from the standard variety is however the tone or rhythm which is referred to as

prosody and the manner in which various speech sounds are pronounced.

4.4 Literature Review

In an attempt to create new voices from existing synthesis systems researchers are

using various methodologies. State-of-the-art techniques related to such topics are

reviewed in the following subsections.
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4.4.1 Dialect Synthesis

The dialects of a single language may be defined as mutually intelligible forms of

that language which differ in systematic ways from each other. Although a lot of

work has been going on in speech synthesis, work on dialect synthesis is relatively

few. Recent speech analysis techniques are opening up new avenues of research in

the processing of oral dialectal data. Adaptive parametric Hidden Markov Model

(HMM)-based speech synthesis [163] allows for the usage of a back-ground model or

average model to improve synthetic voice quality with small amounts of adaptation

data and is especially suitable for designing TTS systems for dialects. A number

of works ( [109], [151] and [9]) report on systems built using this approach. Rep-

resenting a dialect primarily requires a specialized pronunciation dictionary which

reflects deviations from the standard variety on relevant linguistic levels. Pucher

et al. [106] developed methods to derive Viennese dialect dictionaries from a stan-

dard Austrian German dictionary using sets of transformational rules. In addition

to adaptive methods, a number of works exist which attempt to create dialectal

speech from standard speech by manipulating prosodic features such as F0, seg-

mental durations, intensity, etc. Yoon [160], showed that transformation of both

F0 contour and segmental durations had major effects on listener responses of syn-

thesised Korean dialects. A major challenge in the synthesis of dialects is lack of a

proper phoneset and sufficient training data. Pucher et al. [107] describes HMM-

based machine learning methods and supervised optimization for the definition of

the phoneset of an unknown dialect.

4.4.2 Accent Conversion

While a dialect may be described as a variation of a given language spoken in

a particular place or by a particular group of people, an accent may be consid-

ered to originate not only from regional variations but also from variations in the

socio-economic status of the speakers, their ethnicity or their age. It may also be

associated with a language which is not the first language of the speakers. Accent

describes the way a speaker produces the sounds of a language while dialect de-

scribes a person’s accent in addition to the phonology, vocabulary and grammar

associated with the dialect. Therefore the problem of dialect conversion may be

reduced to the problem of accent conversion provided the rest of the issues are

taken care of. Zheng [166] identifies accent influential acoustic features of two En-

glish dialects and investigated accent conversion via formant modification and pitch
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contour manipulation. Zetterholm [165], states that to imitate a speaker’s voice

and speech behavior, one has to be aware of not only the group identity markers

such as regional or social dialect, but also the personal markers in speech such as

pronunciation or articulation. Chao-angthong et al. [21] developed the Northern

Thai Dialect (NTD) TTS system which translates text input in the Central Thai

Dialect (CTD) and synthesises speech in NDT. They modified two components in

the TTS, the Grapheme-to-Phoneme (G2P) and Speech models used.

4.4.3 Voice Conversion

A number of mapping techniques are used for the VC task to learn the associ-

ations between the spectral mapping features. Vector quantization (VQ) can be

used to reduce the number of source-target pairs in an optimized way. This ap-

proach creates M codevectors, where ‘M’ is the number of centroids, based on hard

clustering using VQ on source and target features separately. At conversion time,

the closest centroid vector of the source codebook is found and the corresponding

target codebook is selected. The VQ approach is compact and covers the acoustic

space appropriately since a clustering approach is used to determine the codebook.

However, this simple approach still has the disadvantage of generating discontin-

uous feature sequences. Valbret et al. [147] proposed to use linear multivariate

regression (LMR) for each codevector. In this approach, the linear transformation

is calculated based on a hard clustering of the source speaker space. One of the

simplest mapping functions is a look-up table that has source features as entry keys

and target features as entry values. For an incoming feature, the function looks up

to find the most similar key based on a distance criterion. In other words, it looks

for the nearest neighbor of the incoming source feature and select its corresponding

entry value. This category of approaches is called exemplar-based VC [155]. The

most popular VC approach in the literature is Gaussian mixture model (GMM)

based conversion. A GMM can be trained to model the density of source features

only [135] or the joint density of both source and target features [66]. Nonlinear

methods using Artificial Neural Networks (ANNs) have been applied to VC to cap-

ture the nonlinear relationships between source and target [31]. Laskar et.al [81]

present a comparative analysis of ANNs and GMMs for the design of a VC sys-

tem using LSFs. Spectral features like MFCCs and Linear Prediction Coefficients

(LPC) [79], Line Spectrum Pairs (LSP) and Line Spectral Frequency (LSF) [115]

have been used in various works of VC. VC can be used to transform the overall
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spectral characteristics for realising corresponding voice quality changes implicitly

in the spectral conversion function. Voice quality is known to display significant

variation across different speaking styles, or across different dialects. Three VC

methods, weighted codebook mapping, weighted frame mapping and joint source-

target GMM, used for transforming voice quality of neutral speech to emotional

speech have been compared by Turk and Marc [143]. Likewise VC has been used to

convert one form of speech to another, like adult to child speech [151] and whispered

to normal speech [78].

4.4.4 Prosody transformation and Dialects

Regional dialects are known to display differences at the prosodic level also. In

fact, the prosodic aspect may be one of the most outstanding aspects of regional

dialects. Srikanth et al. [134] proposes a framework for converting both spectral

and prosodic features whereby phoneme duration is modified using a Gaussian nor-

malised transformation before mapping spectral characteristics of source speaker

to those of the target speaker using ANNs. Their results confirm that incorpo-

rating durational modification has a significant improvement over a VC system

using only spectral features. Most VC systems use a linear mean variance method

to transform the pitch range of the source speaker to that of the target speaker.

They overlook the local variations that affect the speaking style. Popular meth-

ods for pitch conversion are GMMs, codebook method [60] and non-linear pitch

modification using ANN [17]. In addition to pitch and duration, controlling the

intensities of speech segments also bring naturalness to synthesised speech. Reddy

and Rao [118] use syllable specific features capable of capturing intensity variation

patterns to train feed forward neural networks. Chiang [25] presents a cross-dialect

adaptation framework for constructing prosodic models for Chinese dialect TTS

systems. He adapts dialect prosodic models from an existing Mandarin speaking

rate-dependent hierarchical prosodic model.

Although a lot of work has been reported for recognition/identification of di-

alects, very little work is present for dialect synthesis or bringing naturalness to

synthesised dialectal speech. Likewise VC has been used for conversion of speaking

styles, accent conversion, emotion conversion etc. However, the scope of using such

techniques for incorporating dialectal features into synthesised speech has not been

explored yet as illustrated in Figure 4.3. The current work is an attempt to apply

VC techniques to synthesised dialectal speech to make it sound more natural. At
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Figure 4.3. VC for Dialectal Speech?

the same time, experiments are carried out to manipulate prosodic features such

as vowel duration, pitch and energy contours of the synthesised speech to bring it

closer to the target dialect.

4.5 Methodology

In this work dialectal speech is produced in four different ways by the four systems

A, B, C and D as presented in Figure 4.4. System A is a TTS system for the

standard variety of Assamese where the text input is transcriptions of dialectal

speech samples. System B uses VC techniques to modify the output of System

A. Systems C and D carry out manual manipulations of prosodic features on the

outputs of Systems A and B respectively. We then compare the outputs of these

four systems to analyse the scope of using these systems in generating dialectal

speech.

4.5.1 System A: The standard HTS

The input to the VC system is synthesised speech lacking naturalness with respect

to the target dialect. The first step therefore is to generate this synthetic speech

from a TTS for the standard variety of Assamese. Initially an existing syllable based

unit selection TTS built by IITG1 using Festival is used to synthesise transcribed

Nalbaria utterances. But because of differences in the syllable inventories in the

two varieties, the TTS failed to produce quality output. For example, for the word

1http://www.iitg.ernet.in/cseweb/tts/tts/Assamese/festival/iitg ass sameer/
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Figure 4.4. Block Diagram Representation of Systems A, B, C and D

‘boirhaan’ meaning ‘rain’ in Nalbaria, the syllables are ‘boir’ and ‘haan’ do not exist

in the syllable inventory of the AIR variety of Assamese. Therefore the TTS system

breaks them into the corresponding phonemes and uses the respective models to

generate output speech, resulting in poor output quality. We attempted to generate

the Nalbaria utterances by a HMM based TTS system (IITG-HTS) developed at

IITG2. In order to normalise the effects of the vocal tract system and also to nullify

the effects of speaker-dependent features, we finally decided to use training data for

both systems A and B from a single speaker SPK, who is fluent in both AIR and

Nalbaria. This required building an entirely new TTS system trained with speech

data from speaker SPK. Therefore an HTS system which simultaneously models

spectrum, excitation, and segment duration using context-dependent HMMs, is

developed for our proposed system using training data in the AIR variety from

SPK.

HMM based speech synthesis is a statistical parametric model that extracts

speech parameters from the speech corpus, trains the system and produces sound

equivalent to the input text. Advantages of this method include its ability to syn-

thesise speech with various speaker characteristics/speaking styles and low memory

requirements as it does not require recording of large databases. Adaptation to new

speakers and speaking styles is simple as it involves modification of HMM param-

eters using relevant techniques. To develop such an HMM based system the tool

2http://www.iitg.ernet.in/cseweb/tts/tts/Assamese/HTS/IITG Assamese MaleHTS/
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used is the HTS toolkit.

A typical HMM-based speech synthesis system consists of two parts, a training

part and a synthesis part, as is shown in Figure 2.6 of Chapter 2. The training

part extracts both spectrum and excitation parameters from a speech database

and models context dependent HMMs taking into account phonetic, linguistic and

prosodic contexts. In the synthesis part, text to be synthesised is converted to

a sequence of context-dependent labels and an utterance HMM is constructed by

concatenating context-dependent HMMs according to this label sequence. State

duration probability functions are used to determine the state durations of the ut-

terance HMM. A speech parameter algorithm is then used to generate the sequence

of spectral and excitation parameters that maximize their output probabilities. Fi-

nally, a speech waveform is generated directly from the spectral and excitation

parameters using a speech synthesis filter.

4.5.1.1 Speech Database for the HTS system

The speech corpus for our HTS (TU-TTS) is built using approximately 45 minutes

of speech recorded from SPK. The text prompts (TP-TTS) are prepared with care

to include most of the frequently occurring words and also all phones of the AIR

variety, with a minimum frequency of 10. The text prompts are prepared mainly by

collecting text from short stories and essays in Assamese. The text prompts are then

recorded from the SPK at a sampling rate of 48kHz using a Zoom H4Next recorder

in a sound proof room and saved in the ‘.wav’ format. During recording care is

taken to prevent DC wandering or baseline wandering, by using the unidirectional

Zoom H4Next recorder with a pop filter mounted in front of the microphone. A

pop filter serves to reduce or eliminate popping sounds caused by the mechanical

impact of fast-moving air on the microphone during speech recording. The popping

sounds lead to wandering of the DC-bias or base axis of the signal. This data

is broken up into wave files of 6-8s resulting in around 400 wave files which are

preprocessed to remove unwanted pauses, noise, pronunciation errors and clipping.

The Assamese phoneset used, is prepared at IITG and consists of twenty-four

consonants and eight vowels. Phone level transcriptions are carried out using the

HTK label editor. Phone boundaries are further manually corrected by a person

well versed in Nalbaria and then cross checked by another.
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4.5.1.2 Building the HTS

The HMM-based Speech Synthesis System toolkit3 is developed by the HTS work-

ing group and others, and is implemented as a modified version of the Hidden

Markov Model Toolkit (HTK). HTS is designed to be patched to HTK and is re-

leased under a free license although it requires the user to obey the license of HTK

to which it is patched. HTK4 is a portable toolkit for building and manipulating

HMMs. It is mainly used for research in speech recognition although it is also

widely used in other applications such as research into speech synthesis, character

recognition and DNA sequencing. To build an HMM voice, utterance files consist-

ing of textual features and duration of each unit in the text to be synthesised, is

required. These utterances need to be built in Festival. Festvox is required to gen-

erate these utterances in Festival. So together with HTS − 2.2, HTK − 3.2.1 and

HDecode− 3.4.1, festvox− 2.5.3, festival− 2.1, SPTK − 3.5, speech tools− 2.1,

ActiveTcl8.4.19.6 and other support software tools are also installed to complete

the set up for the TTS experimentation. All the software are freely downloadable

from their respective websites.

Some of the basic components required for building the HTS are listed below :

1. Text data in the language: This refers to the text prompts that are used for

recording speech data to be used for training the TTS. The text data (first

100 utterances) used for building the HTS is stored in the file ‘txt.done.data’

and is included as Appendix A.

2. Speech data corresponding to the text: This refers to the speech wav files

(‘.wav’) corresponding to each of the utterances in the text data file.

3. Time-aligned phonetic transcription: The phonetic transcription together

with the phoneme boundaries and duration of each phoneme in a speech

file is stored in a corresponding label file (‘.lab’). For a sample speech file

‘TR AIR 1.wav’, the text data is “ ek raxjaar dujoni raani aasil” and the

corresponding label file is ‘TR AIR 1.lab’ and is included as Appendix B.

3http://hts.sp.nitech.ac.jp/
4http://htk.eng.cam.ac.uk/
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4. A phoneset for the language: The phoneset or phoneme set, i.e., the list of

phones, for developing the HTS for Assamese consists of a total of 32 phones,

i.e., 8 vowels and 24 consonants as can be seen in Figure 4.5. The phone

features are defined in a separate file with features such as whether it is a

vowel (v) or consonant (c), vowel height (high, mid, low), vowel length (short,

long, diphthong, schwa), vowel frontness (front, mid, back), consonant type

(stop, fricative, affricate, nasal, liquid), etc.

5. A set of letter to sound rules (L2S), Lexicon and Post-lexical rules: A lexicon

is a long list of words together with their pronunciations. If a word is not

found in the lexicon, L2S rules are used as a backup to to get its pronuncia-

tion. Post lexical rules are a general set of rules which can modify the segment

relation after the basic pronunciations have been found. These rules operate

on the phoneme string which is output by the L2S module in an attempt to

rewrite the string to account for contextual effects when the word is spoken

in context and not in isolation.

6. A set of syllabification rules: These are a set of rules used to syllabify the

words in the utterances. A good set of syllabification rules is highly impor-

tant in the development of a syllable-based TTS system like the one we have

developed for Assamese.

7. Context specific features to be added to each of the context dependent phones.

For each of the context dependent phone, context specific features such as

phoneme identity before the previous phoneme, previous, current and next

phoneme identity, whether previous, current and next syllable is stressed or

not, number of syllables in the previous, current and next word, etc. can be

found in the context-dependent label format for HMM-based speech synthe-

sis5.

8. A question set to be used during the training phase of context dependent

phone models. A question set is a primary requirement for tree-based clus-

tering in an HMM-based speech synthesis system. Relevant linguistic and

5http://www.cs.columbia.edu/~ecooper/tts/lab format.pdf
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Figure 4.5. Phoneset for Assamese

phonetic classifications that influence the acoustic realisation of a phone are

included in this question set.

The phoneset, letter to sound rules, question set, syllabifier etc. for the As-

samese language, has been acquired from the Speech Processing Group at IITG.

The basic files required for HTS building has been developed by Carnegie Melon

University (CMU). We have made slight modifications to suit our needs.

Spectral parameters include cepstral coefficients and their dynamic features

while excitation features include fundamental frequency (F0) and its dynamic fea-

tures. 105 dimensional mel generalized cepstral coefficients (MGC), 3 dimensional

log-F0 and composite features are extracted from raw files and are used to model

context dependent phoneme HMMs using HTK. The training of phone HMMs us-

ing pitch and Mel cepstrum simultaneously, is enabled in a unified framework by

using multi-space probability distribution HMMs and multi-dimensional Gaussian

distributions. This simultaneous modelling of pitch and spectrum results in the

set of context dependent HMMs. Decision based clustering based on the Mini-

mum Distance Length (MDL) criterion is applied in isolation to MGCs, log-F0

and state durations of context dependent phoneme HMMs. In addition to tying

contextual factors, the MDL clustering technique also generates spectrum and ex-

citation parameters of newly observed vectors. The EM algorithm is further used

to re-estimate clustered context dependent phoneme sequences.

In the testing part, text to be synthesised is input, analysed and transformed

to a sequence of context dependent labels, using the ‘dumpfeats’ function of Festi-

val. Using this label sequence, trained context dependent HMMs are cascaded to

generate the sentence HMM. State durations of the label sequence are determined

by the state duration distributions. The speech parameter generation algorithm

uses labels from the text analyser in Festival and context dependent HMMs to

generate spectrum and excitation parameters which are further used by the Mel
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Log Spectrum Approximation (MLSA) filter to produce the corresponding speech

waveform. It is observed that the output generated by this HTS with transcribed

Nalbaria utterances as input, is of good quality, but lacks naturalness with respect

to the target dialect. System A is also able to synthesise correctly the set of tran-

scribed Nalbaria text corresponding to the set of test utterances provided as input.

The IITG-HTS has some limitations which have been overcome by the TU-TTS.

For example, the word ‘maxi’ is generated as ‘mi’ by IITG-HTS probably because

it assumes /ax/ to be the inherent /ax/ with the consonant /m/ instead of being

the primary vowel in the diphthong /axi/. Similarly IITG-HTS generates the word

‘jaxaakaali’ as ‘jaakaali’, ‘naxkaxu’ as ‘naxku’ for the same reason.

4.5.2 System B: The VC System

The VC system is implemented in two basic modules, the training and testing

modules. These modules consist of four basic steps: acoustic modelling, alignment

of features, development of a mapping function, and finally synthesis using con-

verted features. During the acoustic modelling step, short-term spectral properties

of the speech signal are captured into a low-dimensional feature vector, for both

source and target speech signals. This is carried out using the speech processing

tool SPTK 4.5.2.3. During the alignment step, source and target utterances are

time aligned, typically in an automatic fashion by using Dynamic Time Warping

(DTW)6 or Hidden Markov Models (HMMs) [104]. During the mapping step, a

mapping function is learnt using techniques such as vector quantization(VQ) [1],

neural networks [97], and GMMs [142]. Both warping for alignment and building of

mapping functions is implemented in MATLAB. The final step of synthesis using

converted features is again carried out with SPTK. The raw files generated with

SPTK are imported into Audacity, an audio software, and saved as wav files.

4.5.2.1 Selection of features for conversion

According to the source-filter theory of speech production, the speech signal is the

result of a convolution between the source of excitation and the impulse response of

a filter. The filter represents the acoustic effects of the vocal tract, which depends

not only on the shape and size of the vocal tract but also on the positions of the

6http://www.ee.columbia.edu/~dpwe/resources/matlab/dtw/
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articulators like lips, jaws and tongue, corresponding to the uttered sounds. At

the segmental level Dialect specific information is observed in the form of unique

sequences of the shapes of the vocal tract for producing the sound units. The shape

of the vocal tract is characterised by the spectral envelope which can be represented

by Mel Frequency Cepstral Coefficients (MCEPs). At the prosodic level, dialect

specific knowledge is embedded in the duration patterns of syllable sequences and

dynamics of pitch and energy contours. The pitch contour is often considered to

be an important signal of linguistic stress. Therefore MCEPs that take human

perception sensitivity with respect to frequencies into consideration are selected

to represent the filter parameters while fundamental frequency (F0) estimates are

selected as source parameters like most VC systems do. Furthermore, a prior

analysis carried out to study durational differences between the two varieties of

Assamese under consideration, show significant difference in mean vowel duration

in the two varieties indicating that in addition to MCEPs and F0, vowel duration

can also be considered for transformation.

4.5.2.2 Choosing a model for the mapping function

Although the basic models used for developing mapping functions for carrying out

feature transformation in the VC framework are based on GMMs [2], ANNs [31],

Dynamic Frequency Warping(DFW) [42] and Mapping Codebooks [1], a number

of improvements on the basic models have been proposed by researchers for the

conversion function such as the use of Radial Basis Function Neural Networks [98],

Weighted Codebook Mapping [150], Codebook Mapping with fuzzy VQ and differ-

ence vectors [128], Eigen Voice GMM [141] and Trajectory-based conversion using

GMMs with Global Variance [59]. However review of the state-of-art techniques for

developing mapping functions have revealed that the most widely used approaches

are based on GMMs. Likewise it is also seen that ANN based techniques are also

becoming increasingly popular. One of the earliest techniques is the VQ method

using codebooks which is also popular for its simplicity. Therefore these two mod-

els, i.e., GMM and ANN, together with VQ, have been selected for developing our

mapping functions.
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4.5.2.3 The Speech Processing Toolkit (SPTK)

The Speech Signal Processing Toolkit7 is a suite of speech signal processing tools for

UNIX environments, e.g., LPC analysis, Partial Correlation (PARCOR) analysis,

LSP analysis, PARCOR synthesis filter, LSP synthesis filter, VQ techniques, and

other extended versions of them. For our work, we have used SPTK for extracting

cepstral coefficients as well as pitch values from our source and target training data,

and also for generating speech using the converted features. The ‘mcep’ function

extracts mel-cepstral coefficients from data which is windowed with fixed length

frames, the ‘pitch’ command extracts the pitch values using the RAPT or SWIPE

algorithm, the ‘excite’ command generates an excitation sequence from the pitch

period information in the ‘.pitch’ file which is then passed through a synthesis

filter to generate the utterance. When the pitch period is nonzero (i.e., voiced)

the excitation sequence consists of a pulse train at that pitch; when it is zero (i.e.,

unvoiced) the excitation signal consists of Gaussian noise. Finally the ‘mlsadf’

command of SPTK derives a MLSA digital filter from mel-cepstral coefficients and

is used to filter an excitation sequence and synthesise speech data.

4.5.2.4 Speech Database for the VC system

Most VC systems require a parallel database containing the same set of utterances

recorded from the source and target speaker. In our case we are trying to apply VC

techniques to synthetic dialectal data. The building of the speech corpus starts with

designing TP-VC, a set of text prompts in Nalbaria consisting of approximately

5-8 words each, carefully selected to contain all the phonemes of the Assamese lan-

guage. We choose to use a set of 50 text prompts for our VC system considering the

fact that a GMM based VC system requires about 30-50 parallel utterances [31].

Moreover our aim is to find out whether VC can be used to incorporate natural-

ness into the synthesized dialectal speech. This does not require us to concentrate

much on the efficiency of the VC system output which could be affected by the

size of the training data. Our target set ‘T’ is the set of utterances recorded from

speaker SPK in Nalbaria using TP-VC as text prompts, with a sampling frequency

of 16kHz and resolution of 16 bits. We manually transcribe the Nalbaria utterances

to form the set of transcriptions TR. The set of utterances, generated from TTS-

AIR using TR as input with Nalbaria vocabulary and grammar, but AIR phonetics

7http://sp-tk.sourceforge.net/
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and prosodic rules, is our source set, ‘S’. In effect, we have a hypothetical person

speaking Nalbaria without the knowledge of the phonetics and prosodic rules of

Nalbaria and this hypothetical speaker is our source speaker. MCEPs of the order

of 21 and pitch values are extracted from both ‘T’ and ‘S’ using a shell script in

SPTK 4.5.2.3 after aligning each pair of utterances using DTW. MCEPS are ex-

tracted using a Hanning window, with a frame size of 25ms and a frame period of

5ms resulting in a [22532 × 21] dimensional feature matrix for each of source and

target MCEPs. The energy coefficient is not used in the conversion and therefore

a [22532 × 20] dimensional feature matrix for both source and target MCEPs is

used as training data while developing mapping functions for the spectral features

using (i) VQ with codebooks (ii) GMMs and (iii) ANNs. Pitch values are extracted

using the RAPT algorithm, with an overlap of 5ms with upper and lower limits

of F0 defined. Segmentation of ‘T’ and ‘S’, to mark vowel/diphthong boundaries,

is carried out using HTK. The boundaries are manually corrected and segments

are annotated with the PRAAT tool8. Vowel/diphthong duration values are then

extracted using a PRAAT script. Since the aim of this work is not to develop a VC

system but to explore the scope of using VC techniques on synthesised dialectal

speech to make it more natural, we simply select 10 random utterances from the

training data as test utterances. This is Ss which will be generated by system A

and used as input by the VC system, i.e., system B. The output of System B is

denoted by Svc.

In short:

TP-VC: Set of 50 text prompts in Nalbaria.

SPK: A speaker who speaks both the varieties of Assamese (Nalbaria and AIR)

fluently.

T: Set of utterances in Nalbaria variety (target) recorded from speaker SPK us-

ing TP-VC.

TR: Set of phonetic transcriptions of T

TU-TTS: A standard Assamese TTS trained with standard Assamese speech data

from speaker SPK

8www.fon.hum.uva.nl/praat/
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S: Set of utterances in AIR variety (source) generated using TR as input, from

TU-TTS

Ss: Set of test utterances generated by System A.

Svc: Corresponding set of utterances (output) generated by System B.

4.5.2.5 Transformation of Spectral features using VQ with Mapping

Codebooks

In this method, the conversion of spectral features from the voice generated by the

TTS (source) to those of the voice of the speaker speaking Nalbaria (target), is re-

duced to the problem of finding a correspondence between the codebooks developed

for source and target speech [1]. A codebook is generated for the MCEPs in source

data and another for MCEPs in target data. The vector correspondences between

source and target speakers are accumulated as histograms. Using the histogram for

each codevector of the source as a weighting function, a mapping codebook from

source to target is defined as a linear combination of the target speaker’s vectors.

During conversion, for the test vector, the closest centroid vector in the source

vector is found and then mapped to the corresponding codevector in the target

codebook. The mapping function so developed is tested with different number of

centroids ‘m’, i.e., m=32, 64, 128, 256.

4.5.2.6 Transformation of Spectral features using GMM

The VC algorithm based on GMMs was proposed by Stylianou et al. [135]. Such

a transformation, aims to fit a GMM model to the augmented source and target

feature vectors. During the training phase, the GMM is adopted to model the

distribution of the paired feature sequence zt, which represents the joint feature

vector of source speech vector xt and target speech vector yt at frame t. The joint

probability density is given as follows:

P (zt|λ(z)) =
M∑

m=1

wmN(zt;µ
(z)
m ,Σ(z)

m ) (4.1)

M is the total number of mixture components and wm is the weight of the mth

mixture component. λ(z) represents the GMM parameter set consisting of weights,
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means, covariance matrices for individual mixture components. Mean vector µ
(z)
m

and covariance matrix Σ
(z)
m of the mth Gaussian component N(zt;µ

(z)
m ,Σ

(z)
m ), can be

expressed in terms of mean source and target vectors µ
(x)
m , µ

(y)
m , covariance matri-

ces of source and target feature vectors Σ
(xx)
m , Σ

(yy)
m , cross-covariance matrices of

source and target feature vectors Σ
(xy)
m , Σ

(yx)
m all corresponding to the mth Gaussian

component, in the following manner:

µ(z)
m =

∣∣∣∣∣ µ
(x)
m

µ
(y)
m

∣∣∣∣∣ ,Σ(z)
m =

∣∣∣∣∣ Σ
(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

∣∣∣∣∣ , (4.2)

The Expectation Maximization (EM) algorithm is used to train the GMM

with the joint source and target vectors aligned with DTW to yield highly robust

parameters. The conditional probability density of yt given xt can be represented

as a GMM as follows:

P (yt|xt, λ(z)) =
M∑

m=1

P (m|xt, λ(z))P (yt|xt,m, λ(z)) (4.3)

where

P (m|xt, λ(z)) =
wmN(xt;µ

(x)
m ,Σ

(xx)
m )∑M

n=1wnN(xt;µ
(x)
n ,Σ

(xx)
n )

(4.4)

P (yt|xt,m, λ(z)) = N(yt;E
(y)
m,t, D

(y)
m ) (4.5)

Mean vector E
(y)
m,t and covariance matrix D

(y)
m of mth conditional probability distri-

bution is:

E
(y)
m,t = µ(y)

m + Σ(yx)
m Σ(xx)−1

m (xt − µ(x)
m ) (4.6)

D(y)
m = Σ(yy)

m − Σ(yx)
m Σ(xx)−1

m Σ(xy)
m (4.7)

The converted target feature vector ŷt is given by

ŷt = E[yt|xt] =
M∑

m=1

P (m|xt, λ(z))E(y)
m,t (4.8)

The mapping function, so learnt, is used to convert MCEPs of a test utterance

and is evaluated with different numbers of Gaussian mixtures ranging from 16 to

128 (M=16, 32, 40, 64, 72, 128).
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4.5.2.7 Transformation of Spectral features using ANN

Multi-layer feed forward neural networks for mapping the MCEPs (20th order, ex-

cluding the energy coefficient), are used to capture the non-linear relations between

acoustic features. These neural net models consist of interconnected nodes, each

node representing the model of an artificial neuron. The interconnection between

two such nodes has a weight associated with it. ANNs consist of multiple lay-

ers, each performing a mapping (usually non-linear) of the type y = f( Wx + b

) where ‘f’ is called the activation function that can be implemented either as a

sigmoid, a tangent hyperbolic, rectified linear units, or as a linear function. ‘W’

and ‘b’ are the weight and bias for that particular layer. The input and output

size are usually fixed depending on the application while the size of the middle

layer and the activation functions are chosen depending on the experiment and

data distributions [96].

A feed forward neural network can be designed to perform the task of pattern

mapping. Acoustic features of the source speaker is given as input to the network,

while that of the target speaker is given as output, during the training process.

These two data sets are used by the network to learn and capture a non-linear

mapping function based on the minimum mean square error. In an attempt to

minimize the mean squared error between the desired and the actual output val-

ues, the weights of the neural network are adjusted using Generalized back prop-

agation learning 9. Optimization parameters in training include the selection of

initial weights, the architectures of ANNs, learning rate, momentum and number

of iterations. On completion of the training process, we get a weight matrix that

represents the mapping function between the acoustic features of the given source

and target speakers. This weight matrix can be used to predict acoustic features of

the target speaker from acoustic features of the source speaker. Different network

structures are possible by varying the number of hidden layers and the number of

nodes in each of the hidden layer.

Various network architectures with different parameters are experimented in

MATLAB, before finally settling for the 5 layer network 20L-60N-60N-60N-20L

shown in Figure 4.6, yielding the best results. The first and last layers are the

input-output layers, with linear units (L), having the same dimension as that of

input-output acoustic features (20 in our case, excluding the zeroth coefficient in the

21st order mceps). The second layer (first-hidden layer), third layer (second-hidden

9https://en.wikipedia.org/wiki/Backpropagation
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Figure 4.6. 5-layer ANN architecture with 20 input and 20 output nodes

layer) and fourth layer (third-hidden layer) have non-linear nodes (N), which help

in capturing the non-linear relationship that may exist between the input-output

features. The neural network is then trained with the number of epochs set to 200.

4.5.2.8 Transformation of Pitch and Duration

Glitches in the TTS generated F0 contours are observed which resulted in incorrect

values of source mean and variance. The F0 contours of ‘S’ are therefore corrected

manually by comparing them with corresponding target F0 contours of ‘T’ before

calculating the mean and variance values from source and target F0 data. The F0

contour of a test utterance is then transformed to match that of the target speaker

using the commonly used mean-variance formula 4.9.

f0conv = µtgt + σtgt/σsrc(f0src − µsrc) (4.9)

where µsrc and σsrc are the mean and variance of the fundamental frequencies for

the source speaker, µtgt and σtgt are the mean and variance of the fundamental

frequencies for the target speaker, f0src is the speaker pitch of a test utterance and

f0conv is the converted pitch for the target speaker.

F0 conversion is also carried out by a GMM based mapping function. A GMM

is trained using the EM algorithm with the joint source and target F0 feature
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vectors aligned with DTW in a similar way as already described in section 4.5.2.6

for MCEP conversion.

In order to carry out the transformation of segmental duration from source to

target, the first step is to calculate a scaling factor for normalisation of segmental

durations. Durations of test utterances are modified to match that of the target by

using a scaling factor K. K is the ratio of the average duration of phonemes in the

source and target training data. The durations of the test utterances are normalised

by multiplying the number of phonemes in a source utterance by the scaling factor

K. In the second step, the durations of vowels and diphthongs in the normalised

test utterances are further transformed to match that of the corresponding target

using the mean-variance formula 4.9 with f0conv and f0src replaced by durconv and

dursrc respectively. Thus this process of segmental transformation is a two-fold

process which is seen to perform better than simply transforming the durations

using either the scaling factor or the mean-variance method.

4.5.3 Systems C and D: PID Manipulation

Prosodic features or suprasegmental features, play an important role in bringing

naturalness to speech and variation of such features have been observed across

dialects in a number of studies. The mapping functions we have used in System B,

converts the spectral features, ie, MCEPs, F0 global range and vowel/diphthong

durations from source to target. In order to bring about the local F0 variations

and also the variations in intensity and segmental durations in a more accurate

manner, we have used the PRAAT tool for PID (P: pitch, I: intensity, D: duration)

manipulation. However these manipulations can be carried out for a test utterance

only when the target utterance is known since the manipulations are to be carried

out to match the source PID values to the target PID values. These manipulations

are therefore for experimental purposes only where the aim is to study the effect

of PID manipulation on the outputs of Systems A and B.

The mean intensity of the test utterance is adjusted to match the mean in-

tensity of the target utterance. Using the PRAAT tool the mean intensity of the

target utterance is measured. The intensity of the test utterance is then scaled to

match that of the target. The durations of the vowels and diphthongs in the test

utterance are then modified to match their counterparts in the target utterance by

adding duration points into the duration manipulation object and then modifying

the duration points accordingly to lengthen or shorten the segment. PRAAT allows
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replacement of the F0 contour of an utterance by another F0 contour. Therefore in

the final step, the test F0 contour is replaced with the target F0 contour. Manipu-

lation of prosodic features on the outputs of System A is carried out in System C

which results in output Ss′ . Similar manipulations are carried out on the outputs

of System B in System D resulting in output Svc′ as can be seen in Figure 4.2.

4.6 Results and Evaluation

Output speech from the four systems, i.e., A, B, C and D, are evaluated and

compared.

4.6.1 Results of spectral conversion

MCEP conversion from source to target is carried out with mapping functions de-

veloped using VQ codebooks, joint probability GMMs as well as neural networks.

Since the GMM based mapping function gave better results in terms of Mel Cep-

stral Distortion (MCD), it is chosen to convert the MCEPs of the test utterances.

Figure 4.7 shows the MCEPs of a test utterance plotted against the MCEPs of the

corresponding target while Figure 4.8 shows the converted MCEPs plotted against

the MCEPs of the corresponding target utterance. MCD is an objective error mea-

sure known to have correlation with subjective test results. The smaller the value,

the better the conversion. It is essentially a weighted Euclidean distance defined

as:

MCD = (10/ln10) ∗
√

2 ∗
∑

i(mc
t
i −mcei )2

where mcti and mcei denote target and estimated MCEPs respectively.

MCD values are calculated between MCEPs of test and target utterances

(mcd tt) and between corresponding converted MCEPs and MCEPs of target utter-

ance (mcd mt). The conversions are carried out via (i) VQ with mapping codebooks

having ‘m’ centroids, (ii) the joint-density GMM method with different number of

mixture components ‘M’ and (iii) by the ANN method with varying number of

hidden layers ‘h’ and number of neurons ‘n’.

Table 4.1, Table 4.2 and Table 4.3 presents a comparison of MCD scores for

five of the test utterances (Test 1 to Test 5) using (i) VQ with codebooks (with
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m=32, 64, 128,256 centroids), (ii) GMM (with M=40, 64, 72, 128) and (iii) ANN

(with h=2, n=40; h=2, n=60; h=3, n=60) mapping functions respectively. It can

be seen that the GMM method with M=128, outperforms both the VQ method

as well as the ANN method for the three different architectures used in our work.

The best results for the test utterances with the three methods are compared in

Figure: 4.9.

Figure 4.7. Source vs Target MCEPs of a Test Utterance

Figure 4.8. Converted vs Target MCEPs of a Test Utterance
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Table 4.1 Comparison of MCD values before and after conversion of MCEPs via

the VQ method

Utterance mcd tt mcd mt mcd mt mcd mt mcd mt

(m=32) (m=64) (m=128) (m=256)

Test 1 11.7 12.1 11.7 11.4 10.5

Test 2 11.8 12.2 11.4 11.3 10.9

Test 3 16.5 15.4 15.1 14.6 14.3

Test 4 18.4 17.3 16.6 15.9 15.2

Test 5 11.8 11.2 11.0 10.4 9.4

Table 4.2 Comparison of MCD values before and after conversion of MCEPs via

the GMM method

Utterance mcd tt mcd mt mcd mt mcd mt mcd mt

(M=40) (M=64) (M=72) (M=128)

Test 1 11.7 8.5 8.6 8.1 7.3

Test 2 11.8 8.5 7.7 7.4 6.0

Test 3 16.5 11.9 11.5 12.0 9.9

Test 4 18.4 13.2 12.2 12.7 10.8

Test 5 11.8 8.3 7.8 7.9 7.0

Table 4.3 Comparison of MCD values before and after conversion via the ANN

method

Utterance mcd tt mcd mt mcd mt mcd mt

(h=2,n=40) (h=2,n=60) (h=3,n=60)

Test 1 11.7 8.9 8.5 7.6

Test 2 11.8 9.5 7.4 7.2

Test 3 16.5 12.3 11.5 10.0

Test 4 18.4 13.4 12.3 11.5

Test 5 11.8 9.0 7.9 7.6
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Figure 4.9. Comparison of MCDs with the 3 methods

4.6.2 Results of F0 conversion

The prediction accuracies of both the linear mean-variance mapping function and

the GMM based mapping function used for predicting F0 values are evaluated us-

ing the objective measures of root mean square error (RMSE). RMSE is calculated

with the following equation:

RMSE =
√

(
∑N

n=1(f0t
n − f0c

n)2)/N

where f0t and f0c are the target f0 and converted f0 respectively for each voiced

frame and N is the total number of frames per utterance.

The conversion using the linear mean-variance method showed almost no im-

provement. While the second conversion using the GMM based mapping function

with 64 number of mixture components, resulted in the lowering of RMSE values,

by converting the global range of F0 and to some extent the local variations as

well. Results of F0 conversion, for a test utterance is shown in Figure 4.10 and

Figure 4.11.

RMSE values between test and target f0 (rmse tt), between corresponding

converted and target f0 using mean-variance method (rmse mt lmv) and between

corresponding converted and target f0 using the GMM method (rmse mt gmm) for
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Figure 4.10. Source F0 contour vs Target F0 contour

Figure 4.11. Mapped F0 contour vs Target F0 contour

five of the test utterances (Test 1 to Test 5) are presented in Table 4.4.

4.6.3 Results of duration conversion

Mean and standard deviation values of the duration of vowels/diphthongs in both

source and target training data are represented in Table 4.5. Duration of vow-
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Table 4.4 Comparison of RMSE(F0) values

Utterance rmse tt rmse mt lmv rmse mt gmm

Test 1 19.3 19.3 13.0

Test 2 15.1 15.4 13.8

Test 3 29.8 29.5 27.3

Test 4 17.3 16.6 14.3

Test 5 26.0 25.0 24.0

els/diphthongs in target data, i.e., in Nalbaria, is seen to deviate more from the

mean. The bar diagram in Figure 4.12 shows the results of the conversion of

vowel/diphthong durations in the test utterance (“tor bhuk nalgiliu khaba lagbo”).

Durations of vowels/diphthongs in order of occurrence in the test utterance, before

and after the conversion are plotted. It can be seen that for most of the segments,

the converted vowel/diphthong duration is closer to that of the target.

Table 4.5 Mean and Standard Deviation(StdDev) of duration of vowels in Source

and Target data

Vowel Mean StdDev Mean StdDev

(IPA) (source) (source) (target) (target)

/O/ 0.07 0.022 0.07 0.030

/a/ 0.08 0.023 0.07 0.030

/i/ 0.06 0.020 0.09 0.050

/u/ 0.06 0.022 0.07 0.040

/e/ 0.06 0.020 0.07 0.030

/oi/ 0.12 0.038 0.08 0.037

/o/ 0.07 0.034 0.07 0.020

/ou/ 0.10 0.052 0.12 0.042

4.6.4 Subjective evaluation using MOS

Since the GMM method is seen to outperform the ANN method in the conversion

of MCEPs from source to target, it is used convert the source MCEPs to match

that of the target. The converted MCEPs and F0 values of the ten test utterances,

are used to resynthesise the test utterances in SPTK. The resynthesised raw files
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Figure 4.12. Transforming vowel/diphthong durations of a Test Utterance

are imported by the Audacity software 10 whereby they are saved as wav files.

A Mean Opinion Score (MOS) test is carried out on the synthesised utterances

with and without prosodic modification. The MOS is calculated as the arithmetic

mean over single ratings (R) performed by human subjects for a given stimulus

in a subjective quality evaluation test11 as shown in Equation 4.10, where ‘N’ is

the number of evaluators, (N=8). A total of 10 sets of utterances are given to

each of the 8 evaluators, 5 male and 3 female, who are well versed in the Nalbaria

variety of Assamese. Each set consists of 5 utterances, (1) the HTS generated

utterance (System A), (2) the HTS generated utterance with PID modification

(System C), (3) the HTS generated utterance after using VC (System B), (4) the

HTS generated utterance after using VC with PID modification (System D) and

finally (5) the target utterance spoken in Nalbaria. Therefore there are a total of

50 utterances which are to be given scores by the 8 evaluators. Finally the average

MOS for each of the four systems, i.e., Systems A, B, C and D, is calculated using

Equation 4.11, where ‘M’ is the total number of sets of utterances (M=10).

MOS =
N∑

n=1

Rn/N (4.10)

MOSavg =
M∑

m=1

MOSm/M (4.11)

Since the conversion and prosody modification are carried out on TTS gener-

10https://www.audacityteam.org/
11https://en.wikipedia.org/wiki/Mean opinion score
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Table 4.6 MOS Results

Sl.No. System Utterance Type Score(avg)

1 System A HTS 2.3

2 System C HTS + PID 2.9

3 System B HTS + VC 3.2

4 System D HTS + VC + PID 4.0

ated utterances, the final utterances are slightly noisy. However our aim is to find

out how close the converted and manipulated utterances are to Nalbaria in terms

of naturalness, and therefore the evaluators are asked to listen to each of the 5

utterances in each set, compare the first four utterances in each set to the target

utterance and give a score using a 5-point scale in terms of naturalness, based on the

question ‘Which utterance is closest to the target Nalbaria utterance?’ or ‘Which

utterance is most likely to be spoken by a Nalbaria speaking person?’. Results of

the MOS test are presented in Table 4.6 while Figure 4.13 provides the details of

the test.

Figure 4.13. Details of the MOS test

An analysis of variance (ANOVA) test is also carried out on the MOS results to

find out whether the effect of the different systems on the MOS scores is significant

and at the same time to find the consistency of the scores given by the different

evaluators. For this the MOS scores are first normalised and inserted into a table

with columns representing the different evaluators and rows representing the dif-
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ferent systems, i.e., A, B, C and D. A two-way ANOVA test is then carried out

on this data. The results show that the between group (i.e., between rows in the

above mentioned table) P-value is equal to 1.9x10−8 with F(=57.3) much greater

than Fcrit(3.29). This indicates that the type of systems used for generating the

test utterances have a significant effect on the quality of the generated speech. The

within group (i.e., between columns in the above mentioned table) P-value is equal

to 0.376 (greater than 0.01) which indicates that the MOS scores assigned to the

outputs of the different systems by the different evaluators is consistent and do not

show any significant differences.

4.7 Summary

The GMM based mapping function outperformed the VQ based mapping function

as well as the ANN based mapping function while converting MCEPs from source

to target. However listening tests performed on the resynthesised test utterances

using converted MCEPs using the three different mapping functions, and F0, in-

dicate that there is a degradation in quality in the test utterances using MCEPs

converted by the VQ based mapping function; this is also indicated by the MCD

values. MCD values indicate a better conversion of MCEPs with the GMM based

mapping function. However there is no perceptual difference between the resynthe-

sised test utterances using MCEPs converted by either the GMM based or ANN

based mapping functions. The GMM based method of F0 conversion converted

the global F0 range while the local variations of target contours could be achieved

only to a very minimal extent. This does not have much effect on a normal VC

system. However, our aim is to convert speech from one dialect to another and the

prosody of a dialect is reflected in the local variations of the F0 contour. Therefore

inaccurate mapping of the local variations resulted in lack of naturalness in the

converted utterances. Duration conversion using the mean-variance method after

scaling with factor K, produced good results although it is expected that inclu-

sion of contextual information such as position of vowel/diphthong segments in the

word/phrase and stress, would lead to better results.

Results of the subjective test presented in Table 5, show that farthest from

the target utterances are the ones generated by TU-TTS, meaning that a TTS for

the standard variety of a language is not the best option for generating dialectal

speech. Closest to the target utterances are the ones where prosodic manipulations
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are carried out manually on the outputs of system B indicating that VC techniques

may be used for Dialect Conversion provided the prosodic features such as pitch,

intensity and duration (PID) are also converted appropriately. System B using

VC, produces better results than system A and C (prosodic manipulations on the

outputs of A). This is an interesting result since it implies that in addition to

prosodic features, spectral features also carry paralinguistic information and play

a crucial role in bringing the HTS (for the standard variety) synthesised utterance

closer to the chosen dialect. Another point to note here is that training data for both

systems A and B are from the same speaker SPK. Therefore the fact that System

B produces better results than System A in terms of naturalness, implies that the

conversion function used in System B converts speaker independent features such

as linguistic features pertaining to the dialectal variants as well.

In addition to the experiments carried out in this chapter, an attempt has been

made to implement the three VC mapping function discussed in this chapter into a

tool. In order to use VC to convert one type of speech to another, researchers have

to carry out a number of steps such as speech feature extraction, feature alignment,

development of mapping functions, conversion of features, evaluating the efficiency

of the conversion using various measures, graphical representation of results etc.

Based on the results of conversion the researcher decides whether or not to use VC

for his work, or which mapping function to use. However this requires in-depth

knowledge of each and every step and each and every mapping technique as well as

intensive coding which is not only tedious but also highly time consuming. In an

effort to ease the researcher of such tasks we have built a MATLAB GUI based tool

which has been named as VoiCon. VoiCon carries out the various steps required

for the VC process and at the same time also allows the researcher to analyze his

results both objectively and graphically.

The present work mainly concentrates on using VC to convert speech synthe-

sised by a TTS of the standard variety to target speech in the Nalbaria variety of

Assamese. Although the findings are positive, local variations in prosodic features

are necessary in order to bring the converted speech closer to the target dialect. One

difference that has been observed in the speech of these two varieties of Assamese is

that some of the vowel/diphthong sounds are different. This has also been proved

by the results of the feature analysis in Section 3.3 whereby the formant spaces for

the vowels and dynamic formant trajectories of diphthongs are seen to be different

in the two varieties. The VC approach described in this chapter is also capable

of shifting formants. However in order to convert the formant contours of vow-
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els/diphthongs exclusively, since the vowel sounds in the two varieties of Assamese

under study are seen to vary considerably, it may be beneficial to concentrate on

the transformation of vowel/diphthong formants. So the next phase of work, elabo-

rated in Chapter 5, is directed towards transforming the vowel/diphthong formant

space from one variety to another, in order to make the vowels/diphthongs of one

variety sound more like their counterparts in the other variety.
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