
Chapter 5

Naturalness in Synthesised

speech: the Formant

Transformation way

5.1 Introduction

A formant is a concentration of acoustic energy around a particular frequency in

the speech wave. There are several formants, each at a different frequency, roughly

one in each 1000Hz band for average men and in every 1100Hz for average women.

They can be seen as peaks in the speech spectrum or in a wideband spectrogram

as dark bands; the darker the band, the stronger is the formant. At any one point

in time, there may be any number of formants, but for speech the most informative

are the first three, appropriately referred to as F1, F2, and F3. The energy in

a formant comes from the sound source. In the case of a voiced sound, it is the

periodic vibration of the vocal folds, producing a series of harmonic tones. With

vowels, the frequencies of the formants determine which vowel sound we hear and,

in general, are responsible for the differences in quality among different periodic

sounds. Therefore changing the formants of one vowel to another would make it

sound like the other. For example, the typical values of formants F1, F2 and F3

for vowel /u/ are F1=440Hz, F2=1020Hz, F3=2240Hz. If these formant values are

changed to say, F1=390, F2=1990 and F3=2550, corresponding to vowel /i/, the

/u/ will sound like an /i/. The F2 formant corresponds to vowel backness (the

higher the value, the more front is the vowel) and the F1 formant corresponds to

vowel height or vowel openness (the higher the value, the more open is the vowel

113



articulation). F3 corresponds to lip rounding. In other words, values of F1, F2,

F3 indicates how a particular vowel sound is produced or articulated. The most

common way of representing the vowel space of a language or dialect is the F2

versus F1 plot.

Formants, considered to be responsible for differences in vowel quality, also

represent regional variations in the vowel/diphthong sounds of a language. In this

work, we are considering the AIR and NAL varieties of Assamese, and three ap-

proaches based on Gaussian Mixture Models (GMMs) are used to develop mapping

functions to map the most informative formants, F1, F2 & F3 of vowels/diphthongs

of AIR to NAL variety. The first is based on a single GMM for vowel/diphthong

formants in training data. The second, maps the formants at four equidistant

temporal points of vowel/diphthong duration. The third approach trains separate

GMMs for the formants of each vowel/diphthong. In objective evaluation, all three

approaches bring the vowel/diphthong formants of the source variety closer to the

target variety. It is observed that the third approach outperforms the previous

two. The current study is limited to the six vowels /ax/ (as in /axmrit/- ‘nectar‘,

IPA:/O/), /aa/ (as in /aam/- ‘mango’, IPA:/a/), /i/ (as in /itaa/- ‘brick’, IPA:/i/),

/u/ (as in /uraa /- ‘fly’, IPA:/u/), /e/ (as in /etaa/- ‘one’, IPA:/e/) and /o/ (as

in /mor/- ‘mine’, IPA:/U/) and a number of commonly used diphthongs such as

/eaa/,/uaa/, /iaa/, /eu/, /iu/, /oi/, /ou/ etc.

The rest of the chapter is organised as follows. Section 5.2 presents a brief

review of literature related to Formants and Formant Transformation, Section 5.3

presents the motivation for this work, and Section 5.4 describes the experimental

framework used for developing the three approaches towards the transformation

of formants. Experimental results are presented in Section 5.5 and finally in Sec-

tion 5.6 conclusions and plans for future work are presented.

5.2 Literature Review

A number of studies relating formant frequencies to dialect variation have been

reported in the literature. Fox and Ewa [40] report the dynamic nature of spectral

change in the vowels of three varieties of American English spoken in Western

North Carolina, in Central Ohio and in Southern Wisconsin. Hagiwara [48] reports

considerable variation in the vowel spaces of contemporaneous regional variants of

American English. Likewise Clopper et al. [28] carried out an acoustic analysis of
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the vowel systems of six regional varieties of American English, results of which

reveal consistent regional variation with respect to production of vowels. Tamimi [3]

in his study on the Jordanian and Moroccan dialects of Arabic, show that use

of dynamic cues, i.e., formant slopes obtained from a linear regression analysis,

improves the correct classification rates of about 5% for Moroccan Arabic and 13%

for Jordanian Arabic. Williams and Escudero [153] compare the first two formants

of eleven nominal monophthongs and five nominal diphthongs in Standard Southern

British English and a Northern English dialect. Results of the study indicate that

most cross-dialectal differences are characterised by the formant trajectory means

(represented by zeroth DCT coefficients). Differences in the first DCT coefficients,

which represent magnitude and direction of formant trajectory changes, are more

for diphthongs. Labov [80] reports that the correlation between social factors and

vowels is almost entirely concentrated in F2, while for cognitive differentiation of

vowels F1 is more important. Grama’s 1 findings run counter to Labov’s claims and

report that social meaning can lie in both F1 and F2. His findings are supported

further by Teutenberg and Watson [140] who also infer that F1, F2 formants have

a significant contribution to vowel quality and points on the F1-F2 plane often

represent the pronunciation of a speaker. Therefore they attempt to modify the

source accent to match the target accent by mapping the vowel space of source to

target. Although vowel quality alone is not sufficient for accent modification, they

state that even a simple transformation can yield a significant shift in the perceived

accent. Since a dialect is almost always associated with an accent, transformation

of vowel space, in terms of formant frequencies, from source dialect to target dialect

is very likely to bring the source dialect closer to the target dialect.

Formant Transformation is a popular topic mainly associated with Voice Con-

version (VC) which aims to change the source speaker’s voice to sound like that

of the target speaker. Formants are commonly used to represent the features of

the vocal tract system and formant transformation is used to transform the vocal

tract system from source to target speaker. A number of techniques are used for

transforming formants. The method using artificial neural networks [97] captures

the non linear relation between source and target formants. Rentzos et al. [120]

model the statistical distributions of formants by a two-dimensional HMM. Two

methods are explored for mapping the formants of a source speaker to those of a

target speaker. The first method is based on an adaptive formant-tracking warp-

ing of the frequency response of the Linear Prediction (LP) model and the second

1http://www.ling.hawaii.edu/research/WorkingPapers/wp-Grama.pdf
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method is based on the rotation of the poles of the LP model of speech. Both meth-

ods transform all spectral parameters of the resonance at formants of the source

speaker towards those of the target speaker. Bohm and Nemeth [16] present a

method based on the LP model to track and modify formants in speech signals

which enables the modification of speech timbre and voice quality.

5.3 Motivation

In Chapter 3, we have observed that the position of vowels such as /e/, /o/,

/u/, /ax/ and /aa/ in the F1-F2 plane is significantly different for the two vari-

eties of Assamese considered for this study, i.e., AIR and NAL. Furthermore the

diphthongs in the AIR variety are perceptually more prominent than their NAL

counterparts. The dynamic formant plots of diphthongs in the two varieties indicate

incomplete movement from the first vowel in a Nalbaria diphthong to the second,

making it difficult to perceive the diphthong. Therefore if the formants of the vow-

els/diphthongs of a language/dialect can be transformed to match that of another

language/dialect, the vowel/diphthong sounds of the source variety would sound

more like their counterparts in the target variety. From our review of literature

regarding formants, their association with dialectal variation and their transforma-

tion, it is observed that though a number of works report on formants and dialectal

variation, most transformation works relate to the transformation of the vocal tract

characteristics from one speaker to another. To the best of our knowledge, FT has

not been used in any work related to the synthesis of dialects, i.e., for incorporating

naturalness to synthesised speech. This work therefore capitalizes on these obser-

vations and attempts to transform the vowel/diphthong formants of one dialectal

variety to another. Three approaches based on GMMs2 are taken to transform the

formants F1, F2 and F3 of the source variety (AIR) to that of the target variety

(NAL) using GMM based mapping functions.

5.4 Experimental Framework

This section presents a detailed description of how the speech corpus, required for

training and developing the mapping functions, is built. It gives an insight into the

2https://www.ll.mit.edu/mission/cybersec/publications/publication-files/

full papers/0802 Reynolds Biometrics-GMM.pdf

116

https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/0802_Reynolds_Biometrics-GMM.pdf
https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/0802_Reynolds_Biometrics-GMM.pdf


methodology used for developing the mapping function to be used for transforming

the vowel formants from one variety to another.

5.4.1 Building the Speech Corpus

A set of 60 text prompts (TP-FT) of short sentences in the Nalbaria variety is

prepared to include at least 10-20 occurrences of the vowels/diphthongs of the As-

samese language. The database previously described in Section 4.5.2.4 for voice

conversion experiments, has been updated with utterances containing additional

samples of frequently used vowels and diphthongs. These are recorded from the

speaker (SPK), fluent in both the varieties of Assamese, at a sampling rate of 48kHz

with 16 bit resolution in a sound proof room using a Zoom H4Next recorder. The set

of recorded wav files are then transcribed by a person and cross-checked by another,

both well-versed in transcription. The set of recorded sentences is our target set (T)

and TR represents the set of phonetic transcriptions of T. 50 utterances from T are

used for training the system, while the remaining 10 are used for testing. The set

of source utterances (S) is generated from a HMM-based TTS (TU-TTS) which we

have developed for the AIR/standard variety, with TR as input. TU-TTS is trained

with speech data in the AIR variety of Assamese from SPK with pronunciation and

syllabification rules pertaining to the standard variety of Assamese. Therefore S

containing Nalbaria vocabulary is of AIR variety. S is generated from a TTS and

not directly recorded from the speaker since our aim is to incorporate dialectal fea-

tures into synthesised speech. Therefore what we essentially have is (i) a source set

of utterances which we consider as the AIR variety since these have been generated

from a TTS for AIR although with Nalbaria text, and (ii) a target set of utterances

in Nalbaria, generated from a Nalbaria speaker. Both sets of speech data are down

sampled to 16kHz to reduce memory requirements for file storage without loss of

quality, and then cleaned to remove unwanted pauses, mispronunciations and noise.

TP-FT: Set of 60 text prompts in Nalbaria.

SPK: A speaker who speaks both the varieties of Assamese (AIR and NAL) fluently.

T: Set of utterances in the NAL variety (target) recorded from SPK using TP-FT.
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TR: Set of phonetic transcriptions of T

TU-TTS: A standard Assamese TTS trained with standard Assamese speech data

from speaker SPK

S: Set of utterances in AIR variety (source) generated using TR as input, from

TU-TTS

Both source and target sets of utterances, i.e., S and T are annotated with

vowel/diphthong labels and stored as textgrid files using the PRAAT tool [15] for

phonetic analysis. A sample textgrid containing annotations at different tiers is

shown in Figure 5.1. A PRAAT script is written to extract formant frequencies

F1, F2 and F3 from all vowel /diphthong segments in S and T at four equidis-

tant temporal locations corresponding to the 20%, 40%, 60% and 80% points of

vowel/diphthong segment duration and store the results in an Excel sheet as shown

in Figure 5.2. The formants are extracted in this manner to eliminate the effects

of adjacent consonants on formant transitions. Moreover the dynamic nature of

vowels and diphthongs can be captured by measuring the formants at such multi-

ple points instead of measuring formants at the nucleus. Using the popular Burg

algorithm [29], PRAAT extracts the specified number of formant frequencies at the

specified time instants. However PRAAT sometimes gives erroneous results dur-

ing formant extraction, therefore the formants are manually corrected for better

accuracy in modelling.

5.4.2 Methodology

5.4.2.1 Analysis of Vowel Space

A statistical analysis is carried out on the vowel/diphthong formants F1, F2 and F3

extracted from source and target vowel/diphthong segments /ax, /aa/,/i/, /u/, /e/,

/oi/, /o/, /ou/, /ui/, /axi/, /eu/, /eaa/ and /aai/. It is observed that there is not

much change in F3 values in the vowels of AIR and Nalbaria. This indicates that

F3 does not contribute much for the differences in vowel quality in the considered

variants and therefore its transformation will not be of much significance. Results in

terms of means and standard deviations (for F1 and F2) are presented in Figure 5.3.

These results show that there is considerable difference in F1 and F2 mean for most
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Figure 5.1. A sample textgrid in PRAAT showing annotations in three tiers

vowel, consonant and word.

Figure 5.2. A screenshot of the Excel sheet showing source formant data at 20%,

40%, 60% and 80% of vowel/diphthong duration.

of the vowels/diphthongs. It is also seen that F1, F2 values of target vowels deviates

more from their means compared to the F1, F2 values of source vowels, while F2

values of the source diphthongs deviates more from their means than F2 values of

target diphthongs. In short, the vowel space for source is different from that of

target and can be a candidate for transformation. Our study attempts to carry out

this transformation of formants using GMMs.

For comparison of vowel spaces, formant data is extracted from speech data
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(a) (b)

(c) (d)

Figure 5.3. Mean & Std.Deviation of F1,F2 formant frequencies in Source and

Target Vowels/Diphthongs

collected from two speakers in AIR, two in Nalbaria and also from speech gener-

ated from two Text-to-Speech systems, IITG-HTS (developed at IIT Guwahati)

and TU-TTS (developed at Tezpur University). In order to permit accurate cross-

speaker comparisons of vowels space layout, the formant data is normalised using

the Lobanov measure [38] of normalisation. When extrinsic normalisation is applied

to acoustic vowel data, the differences due to speakers can often be substantially

reduced and Lobanov normalisation is a very basic and effective extrinsic normali-

sation technique 3 which works well to eliminate physiologically caused differences

in formant values. In this method formant values are normalised by subtracting a

3https://www.phonetik.uni-muenchen.de/~jmh/research/pasc010808/old/ch3.pdf
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(a)

(b)

(c)

Figure 5.4. Normalised F2 vs F1 plot for (a) AIR, (b) NAL, (c) TTS
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(a)

(b)

(c)

Figure 5.5. F2 vs F1 plot (unnormalised) for (a) AIR, (b) NAL, (c) TTS
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speaker’s mean formant value (µi) across all vowel tokens and then dividing by the

standard deviation for the formant across all vowels (σi) of formant order ‘i’ for

that speaker using Equation 5.1. However, normalization may eliminate dialectal

differences as well and therefore if no significant differences exist among the speak-

ers in the lengths of their vocal tracts, comparison of vowel space areas without

normalisation would be a better choice [39].

The normalised vowel spaces for AIR (VS-AIR), Nalbaria (VS-NAL) and Nal-

baria synthesised from standard AIR TTSs, (VS-TTS), are plotted and presented

in Figure 5.4a, Figure 5.4b and Figure 5.4c. Since all our speakers are adult males

we do not expect significant differences in the length of their vocal tracts and

therefore the unnormalised vowel spaces for AIR, Nalbaria and Nalbaria synthe-

sised from standard AIR TTSs, are also plotted for comparison and presented in

Figure 5.5a, Figure 5.5b and Figure 5.5c. It can be observed that VS-TTS is similar

to VS-AIR in both the cases. This is because, although the input to TU-TTS is

a set of transcriptions of Nalbaria utterances, the TTS has been trained with the

phonetics, pronunciation and syllabification rules pertaining to the AIR variety and

therefore the output of TU-TTS is of the AIR variety, which also implies that the

vowels generated by TU-TTS are similar to the vowels in AIR in terms of formant

frequencies.

We also calculate the areas of VS-AIR, VS-NAL and VS-TTS. Vowel space

area (VSA) refers to the two-dimensional area bounded by lines connecting F1, F2

coordinates of vowels. Typically VSA is computed by making static measurements

of the F1,F2 values for each of corner or cardinal vowels at the the mid-point,

for several productions of each vowel. A cardinal vowel refers to a vowel sound

produced when the tongue is in an extreme position, i.e., either front or back, high

or low 4. Therefore the area of usually the quadrilateral or trapezoid, formed by

the corner vowels is computed using the mean F1,F2 value for each of the vowels at

the extreme points of articulation. From the vowel spaces presented in Figure 5.4a,

Figure 5.4b and Figure 5.4c, it is seen that the corner vowels (four in number) for

VS-AIR and VS-TTS are /u/, /ax/, /aa/ and /i/ while the corner vowels (five

in number) for VS-NAL are /u/, /o/, /aa/, /e/, and /i/. We have written a

MATLAB program to compute the area of VS-AIR, VS-NAL and VS-TTS using

F1, F2 values of these corner vowels. VSA for TTS (=3.06) is the largest, followed

by the VSA for NAL (=2.99), and VSA for AIR is the smallest (=2.73). Since

frequencies of the first and second formants roughly relate to the size and shape of

4https://en.wikipedia.org/wiki/Cardinal vowels
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the cavities created by the opening of the jaw, i.e., vowel height (F1) and tongue

position (F2), the VSA gives an indication of how displaced the articulators are

while producing the vowels. In general, studies have shown that VSA is larger

in speech that is clearer and more intelligible than speech associated with smaller

VSAs since a larger VSA corresponds to greater articulatory excursions and more

distinct acoustic-articulatory vowel targets [124]. From this comparison we can

therefore infer that vowels in the NAL variety of Assamese are more pronounced

than those of AIR but those of TTS are the most distinct.

FN
i = (Fi − µi)/σi (5.1)

To evaluate how far or close the vowels are in the three vowel spaces, i.e., VS-

AIR, VS-NAL and VS-TTS, we measure the Euclidean distance between like vowels

in the three vowel spaces using Equation 5.2 where ‘v1’ represents the first variety

and ‘v2’ represents the second variety. The vowel distance is measured with respect

to their positions in the vowel spaces, in terms of formant frequencies F1 and F2.

In other words we measure the distance between /u/ in VS-AIR and /u/ VS-NAL,

and also the distance between /u/ in VS-TTS and /u/ in VS-NAL. Likewise for

the other five vowels. The vowel distances are shown in Figure 5.6 in order to get a

better visualisation of how distant the vowels in AIR are from their corresponding

counterparts in NAL, and how distant the vowels in NAL are from their corre-

sponding counterparts generated by the TTS for the standard variety of Assamese.

It is observed from Figure 5.6 that the vowels in the two varieties, i.e., AIR and

NAL are different in terms of their positions in their respective vowel spaces. Fur-

thermore, the distance between vowels in NAL and the TU-TTS generated vowels

is much higher.

D =
√

(F1v1 − F1v2)2 + (F2v1 − F2v2)2 (5.2)

Another noticeable difference between source and target formant contours is

with respect to the formant contours of the diphthongs. It can be seen in Fig-

ure 5.7 that the formant contours in the source diphthongs are discontinuous, clearly

showing the component vowels, i.e., the primary and secondary vowels, in the diph-

thongs, while in the target diphthongs the formant contours are continuous.
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Figure 5.6. Distance between vowels in (a) VS-AIR and VS-NAL, (b) VS-TTS

and VS-NAL

Figure 5.7. Diphthongs /ui/ and /eu/ in Source and Target

5.4.2.2 Fitting a GMM to formant data

Formant data consisting of F1, F2 and F3 formant frequencies of vowels and diph-

thongs, from both source and target speech data is stored in an excel file. A
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MATLAB script is written to read F1-F2 data from the excel file, plot scatter plots

and cluster source and target formant data separately using GMM clustering. Re-

sults of the clustering are presented in Figure 5.8 and Figure 5.9. It is visually

observed from the marked clusters that the formant data for the different vowels

for the source, i.e. the AIR variety, is well separated and distinguishable, while the

clusters are overlapping in target formant data. This would imply that soft clus-

tering of the data would be more appropriate instead of giving the data points a

hard assignment to exactly one cluster. GMM is a soft clustering method whereby

a data point can be assigned to more than one cluster by assigning probabilities of

belonging to each of the clusters. This makes GMM a good option for modelling

our formant data. We also try to fit a separate GMM to each of source and tar-

get formant data with equal number of mixtures using the ‘fitgmdist’ function of

MATLAB. Results of this fit with number of mixtures set to 12, can be observed

by plotting the formant data over the fitted GMM contours. This is done using the

‘gscatter’ function for plotting the data and the ‘ezcontour’ function for plotting

the contours. The resulting plots are presented in Figure 5.10.

Figure 5.8. GMM clusters in Source Vowel Formant Data
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Figure 5.9. GMM clusters in Target Vowel Formant Data

5.4.2.3 Development of the Mapping Function

In a GMM based transformation, initially proposed for VC by Stylianou et al. [135],

the system learns by fitting a GMM model to the augmented source and target

feature vectors. During training, a GMM is adopted to model the distribution of

the paired feature sequence zt, representing the joint feature vector of source speech

vector xt and target speech vector yt at frame t. The Expectation Maximization

(EM) algorithm5 trains the GMM with the joint source and target vectors which

are already aligned since the formants are extracted at four equidistant points in

every vowel/diphthong segment.

The mapping function as described by Toda et al. [142], converting the formant

frequencies, of source to target speech data is given by

F (xt) =
M∑

m=1

P (m|xt, λ(z))E(y)
m,t (5.3)

5http://www.cse.iitm.ac.in/~vplab/courses/DVP/PDF/gmm.pdf
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(a)

(b)

Figure 5.10. Scatter Plot with GMM contours fitted to (a) Source Vowel Formant

Data and (b) Target Vowel Formant Data

where

P (m|xt, λ(z)) =
wmN(xt;µ

(x)
m ,Σ

(xx)
m )∑M

n=1wnN(xt;µ
(x)
n ,Σ

(xx)
n )

(5.4)
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E
(y)
m,t = µ(y)

m + Σ(yx)
m Σ(xx)−1

m (xt − µ(x)
m ) (5.5)

N(x;µ,Σ) denotes normal distribution with mean vector µ and covariance matrix

Σ. The total number of mixture components is M and the weight of the mth

mixture component is wm. µ
(x)
m and µ

(y)
m are the mean vectors, Σ

(xx)
m and Σ

(yy)
m are

the covariance matrices, Σ
(xy)
m and Σ

(yx)
m are the cross-covariance matrices of the

mth mixture component of source and target feature vectors.

F1, F2, F3 formants are extracted from all the vowels/diphthongs of source

and target speech data, at 20%, 40%, 60% and 80% of vowel/diphthong duration

to form the three-dimensional feature vector. This gives four samples each for every

occurrence of a vowel/diphthong segment. So if the number of vowels/diphthongs

is ‘m’ and each vowel/diphthong occurs ‘n’ times, the number of rows in the feature

matrix will be ‘m x n x 4’ and the number of columns will be 3. The augmented

feature vector consists of F1, F2, F3 values of vowel/diphthong segments in both

source and target speech data. The three approaches, based on GMMs, used to

carry out the transformation of formants, are implemented in MATLAB. The map-

ping functions are developed to transform F1, F2 and F3 formants from one variety

of Assamese to another. However since F3 transformation is not significant, trans-

formation results presented in Section 5, are confined to F1, F2 only. Following

subsections describe the three approaches in brief.

Approach 1: A single GMM for F1, F2, F3 formants The first three

formant frequencies, F1, F2 and F3, extracted from all the vowels/diphthongs of

source and target speech data, at 20%, 40%, 60% and 80% of vowel/diphthong

duration, form the feature vector. The augmented feature vector consists of F1,

F2 and F3 values of vowel/diphthong segments in both source and target training

speech data and a GMM is trained to model this data. The EM algorithm is then

used to determine the model parameters which are used to develop the mapping

function to map the formants from the source to the target.

Approach 2: Separate GMMs for F1, F2, F3 at equidistant temporal

points of vowel /diphthong segments The second approach uses four separate

mapping functions for the formants at the four temporal points 20%, 40%, 60%

and 80% of vowel/diphthong duration. This is done assuming that formants at a

particular time point may exhibit similar behavioral characteristics. So, F1, F2

and F3 extracted at 20% of vowel/diphthong duration, form one feature vector,
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those extracted at 40% form another feature vector, and so on. This gives us

four feature vectors to train the four mapping functions. In order to estimate

the parameters of the mapping functions, the probability distributions of the joint

vectors zi = [xTi , y
T
i ] are represented by separate GMMs. xi and yi are vectors

containing the source and target formant frequencies F1, F2, F3 at i=20%, 40%,

60% and 80% of vowel/diphthong duration and ‘T’ represents the transposition of

the vector. Each mapping function maps the formants at the specified time instant.

This means we have a separate mapping function to map the formants at 20% of

vowel/diphthong duration, another to map the formants at 40% of vowel/diphthong

duration, and so on.

Approach 3: Separate GMM for each vowel/diphthong segment In this

approach, label files consisting of vowel/diphthong labels are assigned to the utter-

ances. These label files are used to cluster extracted formants from training speech

data into separate vowel/diphthong groups. A separate GMM is built for each

vowel/diphthong and a mapping function is developed for each of the vowels and

diphthongs. The number of mixture components (M) for each vowel/diphthong

GMM is selected after experimenting with different values for best results. During

transformation, the label file associated with the test feature vector specifying the

vowel/diphthong identity, is used to select the appropriate mapping function for

formant transformation. Transformed formant contours for the vowels/diphthongs

in the test utterances are passed through a Moving Average (MA) filter to get

smooth trajectory.

5.5 Results and Evaluation

5.5.1 Objective Evaluation using RMSE

The mapping functions are tested with different values of M, to transform formants

F1, F2 of the vowels/diphthongs in a set of 10 test utterances. For the first ap-

proach best results are obtained with M=16, for the second with M=8, while for the

third, M is set to different values (4, 8, 16) for individual vowels/diphthongs. The

transformation is evaluated objectively in terms of root mean square error (RMSE)

between test and target formants and between mapped and target formants. Trans-

formation results for the test utterance “baamuntui saagaaltuk puihbaaklegi kinsil”
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Figure 5.11. Transformation of F1 formant frequencies

having the vowels/diphthongs /aa/, /u/, /ui/, /aa/, /aa/, /u/, /ui/, /aa/, /e/, /i/,

/i/, /i/ in order of occurrence, using the three approaches are presented in Fig-

ure 5.11 for F1 transformation and Figure 5.12 for F2 transformation. The first

three figures present the results of the transformation using the three approaches.

The fourth subfigure presents the results of the third approach after smoothing the

contours with a MA filter.

In order to provide a quantitative representation of the transformation results,

percentage improvement of RMSE values before and after transformation, using

the three approaches, are calculated for all vowel/diphthong tokens in the test set

of utterances. Figure 5.13 presents a comparison of the results using Approach 1

(single GMM for entire formant training data) with different number of mixture

components. Figure 5.14 presents a comparison of the results using the three
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Figure 5.12. Transformation of F2 formant frequencies

approaches.

Furthermore, formants F1, F2 extracted from the vowels occurring in the set

of test utterances and in the corresponding set of target utterances are plotted

in Figure 5.15 and Figure 5.16. The transformed vowel formants are plotted in

Figure 5.17. The transformed vowel space is observed to be much closer to the

target vowel space than the source vowel space. The distance between like vowels

in the source and target vowel spaces before and after the transformation are plotted

in Figure 5.18 for a better visualisation of transformation results. It is observed

that the transformation has brought the source vowels closer to the target vowels

in the vowel space except for the vowel /o/.
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Figure 5.13. Plot showing %improvement in RMSE values after transformation

using Approach 1

Figure 5.14. Plot showing %improvement in RMSE values after transformation

using the 3 approaches

5.5.2 Comparison with the ANN based method of Formant

Transformation

Not many works have been reported in the field of Formant Transformation. Prob-

ably the earliest is that of Narendranath et al. [97] where ANNs are used to carry

out the transformation of formants from source to target. The authors in this work

transform the formants of a source speaker to match that of a target speaker for the

purpose of converting voice quality. Rentzos et al. [120] report another work where

the statistical distributions of formants are modelled by a two-dimensional Hidden
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Figure 5.15. F2 vs F1 for Source(s)

Figure 5.16. F2 vs F1 for Target(t)

Figure 5.17. F2 vs F1 for Converted(c)
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Figure 5.18. Vowel distance after Formant Transformation using the GMM-based

Mapping Function

Markov Model (HMM) spanning time and frequency dimensions. Two methods are

explored for mapping the source speaker formants to target speaker formants. The

first method uses adaptive formant-tracking warping of the frequency response of

the LP model. The second method is based on the rotation of poles of the LP model

of the speech signal. Both methods are reported to transform all spectral parame-

ters of the resonances at formants of the source speaker towards those of the target

speaker. We have taken a different approach for transforming the formants. Our

approach models the joint source and target formant data by a GMM or GMMs.

As a preliminary comparison, we have compared our results with that of the ANN

based method of formant transformation by Narendranath et al. The aim of our

work is to explore a different approach for transforming the formants from source

to target data and apply the transformation function so developed, to transform

the vowel formant space of one variety of Assamese to another. The larger goal is

to make the vowels/diphthongs of one variety of Assamese (AIR) sound more like

their counterparts in the other variety (NAL).

The formant data, F1, F2 and F3 values are extracted frame wise for every 25ms

frame with a 10ms overlap, from the vowels/diphthongs in both source and target

sets of utterances. Since the duration of vowels/diphthongs are not equal in the

source and target data sets, source and target formant data are aligned using DTW.

The warped and joint data is now used by neural networks to learn a mapping

function which can transform spectral features from source to target. Various

architectures in terms of number of hidden layers, number of neurons in each layer,

etc, are tested before settling for the best architecture. Experimentally the best

transformation results with a set of ten test utterances, are obtained with two
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hidden layers having sixty neurons each using the tangent sigmoid transfer function,

together with the input and output layer having three neurons each corresponding

to F1, F2 and F3. The output layer uses a linear transfer function and the network

is trained by a training function which uses the BFGS quasi-Newton method. The

ANN architecture is shown in Figure 5.19.

Figure 5.19. ANN architecture for formant transformation with 2 hidden layers

having 60 neurons each

In order to compare the results so obtained, with the results of our GMM-

based approach, the first step is to generate the vowel/diphthong formant contours

from the transformed formants at the four temporal points, i.e., at 20%, 40%,

60% and 80% of vowel/diphthong duration. This is done using the cubic method of

interpolation where the formants at 20%, 40%, 60% and 80%points are interpolated

using cubic splines. The number of points to be used for interpolation is given by the

product of the duration of the vowel/diphthong and the sampling rate of the speech

wave file. The duration is determined from the label files associated with each

utterance containing the vowel/diphthong labels together with the duration. These

transformed and regenerated formant contours for the vowels/diphthongs in the test

set of utterances are then compared to that transformed by the ANN-based method

using the RMSE measure. The average RMSE for each of the vowels/diphthongs

categories in the test set of utterances, are then calculated for both the methods

and the results are presented graphically in Figure 5.20.

Observation 1: The RMSE values after transforming the formants from source

to target, using the ANN-based method and the GMM-based method, for the
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Figure 5.20. RMSE values after transformation using (i) ANN-based & (ii) GMM-

based methods

vowel/diphthong segments in three of the test utterances are also presented in the

Figures 5.21, 5.22 and 5.23. For most of the vowel/ diphthong segments in these

test utterances, the RMSE values after the transformation using the GMM-based

method is comparatively reduced.

Figure 5.21. RMSE values after transformation using the (i) ANN-based & (ii)

GMM-based methods for Utterance 1

Observation 2: The formants F1 & F2, of the vowel/ diphthong segments in a

test utterance, after transformation using the ANN-based method and our GMM-

based method, are presented in Figure 5.24 and Figure 5.25. Our method performs

better, specially for the diphthongs. In this test utterance, the diphthong /ui/
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Figure 5.22. RMSE values after transformation using the (i) ANN-based & (ii)

GMM-based methods for Utterance 2

Figure 5.23. RMSE values after transformation using the (i) ANN-based & (ii)

GMM-based methods for Utterance 3

occurs twice and is highlighted in green circles. The discontinuity in the formants

of the source diphthongs as the formant trajectory moves from the primary vowel

to the secondary vowel, is made continuous by the GMM-based transformation

function.

5.5.3 Graphical representation of results using SSANOVA

SSANOVA or Smoothing Spline Analysis of Variance is a test that determines

whether there are significant differences between curves that are fitted to data sets

being compared. For our work we have used the R package gss [47] for nonparamet-

ric statistical modelling which is a suite of functions implementing smoothing spline

ANOVA models. We use SSANOVA for comparing the vowel/diphthong formant

contours in two datasets; the first consisting of formant contours extracted from
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Figure 5.24. Transformation results for a test utterance (utt2) using the ANN-

based method

Figure 5.25. Transformation results for a test utterance (utt2) using the GMM-

based method

the vowels/diphthongs generated by the TU-TTS (source1) and those extracted

from the set of utterances recorded from the Nalbaria speaker (target), the second

consisting of formant contours generated from the transformed formants (source2)

and those extracted from the set of utterances recorded from the Nalbaria speaker

(target). The steps for carrying out the SSANOVA test are listed below:

(i) For source1 and target vowels/diphthongs, formants are extracted frame wise

(10ms frame).

(ii) For the transformed formants (source2) at 20%, 40%, 60% and 80% of vowel/
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diphthong duration, the formant contours are regenerated by interpolating

accordingly.

(iii) Formant data (F1, F2, F3) from the vowels/diphthongs in source1 and tar-

get formant contours are provided as input (in the required formant) to the

‘compareformants’ function of the ‘gss’ package, the output of which are plots

with spline estimations and 95% confidence intervals.

(iv) Formant data from the vowels/diphthongs in source2 (converted) and target

formant contours are provided as input to the ‘compareformants’ function.

Results from the SSANOVA test are presented in Figures 5.27 : 5.35. Each

figure contains two sets of three contour lines. The three contour lines show the

smoothing spline fit for each of the three formants. Each set represents the F1,

F2, F3 contours for either source and target contours or converted and target

contours. The pair of dotted lines indicate 95% Bayesian confidence intervals. An

overlap of the contours (source and target or converted and target) indicates that

the difference between the contours are not significant. It is observed from the

smoothing splines also that the transformation has brought the source formant

contours closer to the target formant contours. Best results are obtained for the

vowels /ax/, /aa/, /i/, /u/, /aai/, /ui/ and /oi/.

(a) (b)

Figure 5.26. Smoothing Splines for vowel /ax/ (a) Source vs Target (b) Converted

vs Target
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(a) (b)

Figure 5.27. Smoothing Splines for vowel /aa/ (a) Source vs Target & (b) Con-

verted vs Target

(a) (b)

Figure 5.28. Smoothing Splines for vowel /i/ (a) Source vs Target & (b) Con-

verted vs Target
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(a) (b)

Figure 5.29. Smoothing Splines for vowel /u/ (a) Source vs Target & (b) Con-

verted vs Target

(a) (b)

Figure 5.30. Smoothing Splines for vowel /e/ (a) Source vs Target & (b) Con-

verted vs Target
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(a) (b)

Figure 5.31. Smoothing Splines for vowel /o/ (a) Source vs Target & (b) Con-

verted vs Target

(a) (b)

Figure 5.32. Smoothing Splines for diphthong /oi/ (a) Source vs Target & (b)

Converted vs Target
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(a) (b)

Figure 5.33. Smoothing Splines for diphthong /ou/ (a) Source vs Target & (b)

Converted vs Target

(a) (b)

Figure 5.34. Smoothing Splines for diphthong /aai/ (a) Source vs Target & (b)

Converted vs Target
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(a) (b)

Figure 5.35. Smoothing Splines for diphthong /ui/ (a) Source vs Target & (b)

Converted vs Target

5.5.4 Graphical Comparison of formant transformation re-

sults obtained using VC and FT

In Chapter4 we have discussed how the technique of VC has been successful to

an extent in incorporating naturalness to synthesised dialectal speech. The VC

method resulted in the transformation of spectral features (MCEPs) which is fur-

ther equivalent to the transformation of formant frequencies. In this chapter we

have attempted to transform the formant frequencies of vowels/diphthongs using

GMM based mapping functions. We now compare graphically the results obtained

using VC and FT. We have taken three test utterances together with their respec-

tive target utterances, common to both the VC based transformation and the FT

based transformation. F1, F2 formant frequencies of the vowels/diphthongs in the

target utterances, in the converted utterances using VC and those converted using

FT are plotted for comparison in Figures 5.36, 5.37, 5.38, 5.39, 5.40 and 5.41. It

is observed that compared to the VC based transformation, the FT based trans-

formation has resulted in better (closer to target formant contours) and smoother

formant contours of vowels/diphthongs.
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Figure 5.36. Diphthong /iu/ (a) Target, (b) Converted(VC) & (c) Converted(FT)

146



Figure 5.37. Vowel /i/ (a) Target, (b) Converted(VC) & (c) Converted(FT)
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Figure 5.38. Vowel /ax/ (a) Target, (b) Converted(VC) & (c) Converted(FT)
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Figure 5.39. Diphthong /oi/ (a) Target, (b) Converted(VC) & (c) Converted(FT)
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Figure 5.40. Diphthong /aai/ (a) Target, (b) Converted(VC) & (c) Con-

verted(FT)
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Figure 5.41. Diphthong /axaa/ (a) Target, (b) Converted(VC) & (c) Con-

verted(FT)
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5.5.5 Subjective Evaluation

The Klattworks [14] interface to the 1988 Klatt synthesiser is used to generate

speech stimuli using the transformed formants. Although Klatt is not state-of-art,

it was the best possible way we could resynthesize vowel segments using transformed

formants only. A human evaluator is presented with three sets of stimuli, ‘A’, ‘B’

and ‘X’, and asked to find out which one out of ’A’ and ’B’ is closer to ’X’. Set

‘A’ consists of a set of ten test words, i.e., the words generated by the standard

TTS, TU-TTS. Vowels/diphthongs in words in set ‘A’ are annotated in PRAAT,

formants F1, F2 and F3, are extracted in Klattworks and written to a text file.

The formants F1, F2 and F3, in this text file, are converted using the GMM based

transformation method which is implemented in Matlab. Klattworks then generates

new stimuli with the transformed formants and this forms Set ‘B’. Set ‘X’ consists

of target words, i.e., the corresponding words in the NAL variety. However since

we are going to compare synthesised stimuli to Set ‘X’, therefore instead of using

the target words recorded directly from the speaker, we have used the Klattworks

[14] interface to the 1988 Klatt synthesiser, to read the formants from the target

words and resynthesise them so that each of ‘A’, ‘B’ and ‘X’ contain synthesised

stimuli. Results of this test indicate that the stimuli generated using transformed

formants are perceptually closer to the respective words in the target dialect.

5.6 Summary

Objective evaluation results indicate that in most of the transformations, with any

of the three approaches, the source formants are brought closer to the target for-

mants. In most cases the third approach, where a separate mapping function is

built for each of the vowels/diphthongs, outperforms the other two. The disad-

vantage of this approach is the additional requirement of label files (containing

vowel/diphthong identity and duration) for each of the utterances. Results of the

comparison with an existing ANN-based method of FT show that our GMM-based

method performs better specially for the diphthongs. Compared to the source

vowel space, the transformed vowel space is observed to be closer to the target

vowel space. The distance between like vowels in the source and target vowel for-

mant spaces after the transformation is also reduced except for the vowel /o/. It

is expected that a careful transcription of /o/ and /u/ vowels in the training data

would improve transformation results.
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In a bid to study the effects of training data size on the efficiency of the mapping

functions developed, the mapping function developed using Approach 1 described

in Section5.4.2.3, is trained with varying amounts of training data. The function is

trained four times, with first 25%, first 50%, first 75% and 100% of the total speech

corpus. Accordingly the functions are tested on the same set of 10 test utterances

and the RMSE values of the vowel formants before and after transformations are

recorded. In general it is observed that the efficiency of the mapping function

increases with the increase in data size. However this is not always the case. A

probable reason is the process of selecting the training data. When we increase the

data size from first 25% to first 50% of the total corpus, it does not necessarily mean

that the frequency of occurrence of a vowel/diphthong also has been increased by

the same amount. A better method therefore, would be to increase the training

data in a way that would result in the increase of vowel/diphthong samples also,

and this can be taken up as a future task.
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