
Chapter 3

Protein Complex Finding

Methods

3.1 Introduction

Any cellular function in the living body is brought about by the interactions among

proteins. These interactions can be static or dynamic in nature. Groups of proteins

which dynamically interact in nature are termed as functional modules, whereas

those groups of proteins which are assumed to interact irrespective of time are

referred to as protein complexes. The task of identifying protein complexes has

become much popular compared to functional modules due to the inherent inabil-

ity of PPI detection methods to report time related information. PPI detecting

methods such as Yeast-two-Hybrid and TAP-MS are inadequate in capturing the

spatial and temporal information regarding interacting proteins [80]. Therefore, a

large fraction of the research community is working in the direction of identifying

protein complexes only. Protein complex identification has been targeted as a clus-

tering problem, which deals with identifying densely connected groups of proteins

from a PPI network.

Identified complexes can be used to analyze the structural and functional prop-

erties of a PPI network. They can also be used in tracking down the evolutionary

orthology pattern [131]. For example, a protein complex consisting of cytochrome

C protein is known to aid in aerobic respiration in humans. This protein is also

found in mice and fish and is associated with the same function. They can also

be used for predicting functions of uncharacterized proteins. Identification of pro-

tein complexes from PPI network can be modelled in the form of a mathematical

problem as follows.
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Problem formulation Given a graph G = (V,E) corresponding to a PPI

network (where V represents proteins and E represents interactions among the

proteins) and a set of benchmark complexes, BC (where each element of BC is

a group of proteins), the task is to extract groups of vertices (clusters), C in G

using some internal criteria defined on G, such that matching between BC and C

is maximized.

3.2 Related Work

A number of methods have been proposed in literature tp detect protein complexes

as dense subgraphs in a PPI network. MCODE [4], a well established protein com-

plex finding method works in three steps-vertex weighting, molecular prediction

and post-processing. In the first step, all vertices are weighed using the concept

of highest k-core concept of the vertex neighborhood. Weighing the vertices itself

requires two more steps - calculating the density of the highest k-core of the imme-

diate neighorhood of v, known as the core clustering coefficient and assigning the

final score as the product of the core clustering coefficient with the highest k-core

level of the successive neighorhood of the vertex. The second step involves starting

with the highest score seed vertex and expanding it recursively by adding those

vertices in the cluster whose score is higher than some threshold. This process is

repeated until no further nodes are left satisfying this criterion. The next cluster

begins with the next highest score which is yet to be seen and cluster expansion

continues. The third and final step is an optional post-processing step, which in-

volves some kind of filtering of these clusters. The filtered clusters are returned as

complexes in this method. FAG-EC [79], which is an agglomerative approach starts

with singleton vertices as seed nodes for clusters. These vertices are expanded us-

ing a queue. This queue holds the edges in ascending order of their weights. At

each iteration, the top of the queue is checked w.r.t. certain criteria such as: if

two edges connect the same cluster elements, then they belong to the same cluster

otherwise they belong to different clusters. This generates the sequence of com-

plexes. Another method, FT [40] is a two step process involving a hierarchical

and a transfer procedure for complex generation. During the hierarchical stage,

each atomic class is joined with another and a score is calculated. Two classes

are joined only if they lead to a maximum score. This process continues until no

further fusions can be carried out. The next stage involves a transfer of elements

from one class to another. If the value of an element in a class is not maximized,
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it is transferred to a different class so as to maximize its contribution. If none of

the transfers leads to a higher score, the element is returned as a singleton set.

This method leads to the possibility of throwing out certain proteins which do not

take part in complex fomation. TFit [33], a complex finding method works on the

principle of clique finding. In this technique, the vertices of a cluster are transferred

among many clusters, until there is a change occurring in the modularity function,

defined by the ratio of the outward edges to the inward edges. Once this is done,

the group of vertices belonging to the same cluster are merged. A non-exclusive

complex finding method called OCG [11] is based on a partitioning process which

begins with an initial set of overlapping classes. These classes are hierarchically

merged among themselves provided the merging leads to an increase in modular-

ity function. The process stops either when the expected number of clusters are

formed or the modularity is maximized. However, there is a slight trick involved

in constraining the process using maximum modularity. The modularity function

may decrease or may not be repetitive w.r.t. the initial class. Therefore, an opti-

mization function is used to assign each element to its proper class depending on

its contribution. This step further refines the performance of the method by elim-

inating loosely coupled elements. A heuristic method called QCUT [121] uses the

KCUT method to divide the graph into subnetworks. These subnetworks are then

compared among themselves. The next stage involves refinement of these subnet-

works based on modularity. The modularity of a network can be improved either

by adding a new vertex into a community or by transferring an existing vertex to

another community. ClusterONE [101] is one of the most remarkable methods for

complex finding. It is based on a greedy approach of seed selection and expansion.

The first step begins with a seed node, which grows by adding or removing vertices

to find groups with high cohesiveness. Cohesiveness is decided by the number of

edges within and outside the cluster. This process is repeated for multiple seeds.

In the next step, the overlap extent among groups is calculated and groups with

overlap score greater than some threshold are merged into one. The last step in-

volves eliminating groups with less than three proteins or whose density is below

a certain threshold from the list of complexes. PEWCC [169] uses the weighted

clustering coefficients to predict complexes. A two step process, TINCD [102] uses

the clustering results along with the TAP data to predict complexes. CPredictor2.0

[161] assumes a set of clusters based on functional similarity between proteins. It

then uses Markov clustering to discover complexes from the assumed groups.

A number of methods for protein complex finding have been published. These

methods are basically seed expanding methods which require at least two criteria-
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one for seed selection and another for its expansion. One can use a set of criteria

either in sequential or parallel fashion. However, in this domain, much work uses

the serial approach for complex finding. Due to widespread use of protein com-

plexes in predicting uncharacterized protein functions and also their disorientation

in disease states, it is an utmost priority to accurately identify these complexes.

The more accurate is the complex finding process, the higher are the chances of ex-

tracting relevant and appropriate disease related information. Experimental studies

show that a proper combination of topological and biological properties leads to

an increased accuracy of the protein complex finding methods. An optimal subset

of properties for this problem can be obtained using the multi-objective optimiza-

tion approach when using multiple criteria in any problem, the goal is to solving

is to get a fair trade-off among the criteria so that the results are not compro-

mised. This logic has led a few researchers to use optimization technique to get

biologically significant complexes. The first work called PROCOMOSS (Protein

Complex Detection using Multi-objective Evolutionary Approach based on Seman-

tic Similarity) [99] uses a combination of density and a number of interconnecting

nodes not present in a cluster for the topological feature and semantic similarity

for the biological feature. The density and semantic similarity of complexes are

maximized so as to get densely connected complexes from the graph, whereas the

number of interconnecting nodes not present in the cluster is minimized so as to

get well separated clusters. In order to maximize the functional significance of

complexes, it uses a combination of Lin, Jiang and Conrath and Kappa measure

of semantic similarity between twoproteins. This set of features is optimized using

the NSGA II optimization technique. Another recent work by Bandyopadhya et

al. [5] used three topological properties–density, contribution of a node to a cluster

and closeness centrality, and a functional property which is the semantic similarity

among proteins to decide upon the set of complexes. In this method, they used

a Relevance Semantic Similarity to calculate the similarity among proteins. They

also used the NSGA II optimization technique [24] to get an optimal subset of these

parameters based on a fitness score. A summary of some existing complex finding

techniques is given in Table A.2.

3.3 Motivation

Various classes of methods can be used to find protein complexes from a PPI

network. These methods are either solely based on topological properties or are
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Table 3.1 Summary of some protein complex finding techniques

Cate

gory

Method Salient feature Datasets

Used

Availability

MCODE [4] Works on the highest

k-core concept to find

complexes

Gavin 2002

,

MIPS,SGD

ClusterViz (Cy-

toscape)

FAG-EC [79] Based on an agglom-

erative approach

with members stored

in queue

DIP ClusterViz (Cy-

toscape)

FT [40] Based on a hierarchi-

cal and transfer ap-

proach

Plasmod

ium

ClustnSee (Cy-

toscape)

TFit [33] Based on fusion and

transfer approach on

clique partitioning

problem

Plasmod

ium

ClustnSee (Cy-

toscape)

OCG [11] Requires overlapping

classes as input

Yeast ClustnSee (Cy-

toscape)

Serial QCUT [121] based on KCUT

method and maxi-

mizes modularity

MIPS CommFinder

(Cytoscape)

ClusterONE

[101]

Based on a cohesive-

ness measure to iden-

tify complexes

MIPS,

SGD

ClusterONE

(Cytoscape)

Parallel PROCO

MOSS [99]

Uses a combination

of density, number

of interconnecting

nodes and seman-

tic similarity as

objective functions

DIP, MIPS -

Bandyopad

hya et al. [5]

Uses a combination

of density, contri-

bution of nodes in

a cluster, closeness

centrality and se-

mantic similarity as

objective functions

HPRD Matlab code



based on a combination of both topological and biological features. An empirical

analysis [131] on eight existing methods using four yeast datasets was done to find

the most appropriate method that performed well in all situations. Unfortunately

none of these existing methods could live up to my expectations. These methods

were highly parameter dependent and had to be fine-tuned to obtain good results.

Further, no clear conclusion could be drawn on the performance of each of these

methods. Therefore, I tried analyzing the PPI network using an obvious feature,

connectivity. My aim was to design a method which was based on not more than

two parameters and was able to perform consistently well over all datasets. In this

process, I designed the CNCM approach. This method uses only two parameters

and the results did not show much fluctuations with changing parameters. However,

it did not perform well on the HPRD dataset and was beaten by ClusterONE in

terms of accuracy. Another line of work discussed in this chapter is based on

the use of multi-objective optimization. Bandyopadhya et al. proposed a method

based on optimizing both topological and biological properties of a PPI network

during complex finding. In their method, they used density, contribution of a

node and closeness centrality as the topological measure and Relevance Semantic

Similarity for the biological measure. I did an empirical analysis on the different

centrality measures [132] and found that none of these measures were effective

in analyzing PPI networks. Therefore, I proposed a method called DCRS, which

works on the same framework as that of Bandyopadhya’s except changing the

topological features. I used reachability contribution instead of closeness centrality

because reachability of nodes is already established to be effective in identifying

the importance of genes in yeast [41]. I also used Wang’s semantic similarity for

the biological property as it is known to be the best available semantic similarity

measure [151]. I successfully used DCRS on the HPRD dataset and found an

accuracy of around 48%, which is higher than Bandyopadhya’s method. Thus, my

target of obtaining quality complexes from human PPI dataset is achieved by my

proposed method.

3.4 Contributions

In this chapter, I make the following contributions.

• A method called CNCM is proposed to detect protein complexes from a PPI

network. This method is based solely on the topology of the inherent network.

• I have proposed a multi-objective method called DCRS for the same. This
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method uses NSGA II to optimize the topological properties of PPI network

to get quality complexes.

3.5 Protein complex finding based on topological

information: CNCM

A PPI network is a visual representation of nodes (proteins) and their associations.

The topology of a network mainly decides the pattern of subgroups which might

exist in the network. A careful analysis of this physical appearance might lead

to identification of groups of proteins (known as complexes) which coordinate to

achieve certain functions.

The methods discussed so far use topological properties of a PPI network to

detect protein complexes. However, these methods use a number of parameters

which are difficult to tune to obtain quality complexes. Therefore, I have pro-

posed a method called CNCM which uses just two parameters for effective complex

detection. Following are the notable features of CNCM.

• CNCM uses a combination of topological properties of a PPI network to

detect complexes.

• Unlike other methods, it uses only two parameters for complex finding. These

parameters are simple and easy to use.

• CNCM detects overlapping complexes, which are characterized by the multi-

functional nature of proteins.

• This method detects sparse complexes which are otherwise difficult to to

detect.

CNCM is a graph-based approach for identifying protein complexes. This

method ensures detection of effective complexes w.r.t. benchmark dataset. It

also ensures detection of sparse and overlapping complexes. This technique has

been used with four yeast datasets and the results are satisfactory in terms of pre-

cision, recall and f-measure as well as in biological terms of co-localization score

and p-value.
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3.5.1 Proposed Method : CNCM

Clustering is an effective way of grouping elements based on similarity. We pro-

pose a method called CNCM (Connectivity based Network Clustering Method) for

complex finding. It uses two properties, connectivity and clustering coefficients of

nodes in the PPI network. Following definitions are used in this algorithm.

Definition 1 (Neighborhood). A node vi ∈ V is said to be a neighbor of node

vj ∈ V if vi and vj are connected by an edge e.

Definition 2 (Degree of a node). The degree d of a node vi ∈ V represents the

number of partners (connected nodes) vi has in G.

Definition 3 (Clustering coefficient). The clustering coefficient of a node vi ∈ V
is the ratio of the number of links among the neighbors of vi, i.e., lvi to the total

number of possible links among its neighbors, kvi.

CCf(vi) =
2lvi

kvi(kvi − 1)
(3.1)

Definition 4 (Connectivity). The connectivity of a node vi ∈ V to a subgraph

G′ is defined as the ratio of the number of links, lvi shared between the vi and the

members of the subgraph G′ to the degree of the node, dvi.

Connt(vi, G
′) =

l(vi,G′)

dvi
(3.2)

Definition 5 (Core). A core of a complex Ci is defined as a node (or protein)

vi ∈ V such that the clustering coefficient, CCf(vi) ≥ CCfT , where CCfT is a

user defined threshold and CCf(vi) is the maximum among all nodes in Ci.

Definition 6 (Core complex). A core complex, Ci = {v1, v2, v3} is a set of three

nodes (one is the core, v1 and two other nodes, v2, v3) whose connectivity is highest

among themselves compared to other nodes in complex Ci.

Definition 7 (Periphery). A node vi is considered a periphery node (or protein)

or a border node in a complex, Ci, if it is loosely attached to Ci, i.e., dvi = 1 and

Connt(vi, Ci) = 1.

Definition 8 (Protein Complex). A protein complex is a subgraph G′ ⊆ G with at

least a core complex attached to other nodes vk such that Connt(vk, G
′) ≥ α (α is

a user defined threshold) which is also greater than connectivity of all other nodes

vl ∈ V .

38



Definition 9 (Neighbor of Complex). A node vi is a neighbor of a complex Ci, if

∃vm ∈ Ci such that Ng(vm) = vi.

CNCM is a seed expanding technique for finding complexes from a PPI network.

It takes CCfT and α as user defined thresholds. It starts with assigning all its

elements to a data structure called RemList. The first step involves finding the

clustering coefficient of each element in the RemList. The cluster finding process

then begins with the node vh having the highest clustering coefficient among all

other elements in RemList. It then checks if CCf(vh) ≥ CCfT and calls it the

core protein, if successful. This element is inserted into pC, another data structure

to hold track of cluster elements. The next two elements expand the core protein

depending on connectivity values. At this stage, these three nodes in pC gives rise

to a core complex. The assumed core complex size is three because finding good

intra-node and inter-cluster connectivity values for clusters with less than three

elements is very difficult. The next step involves expansion of the core complex

with other nodes in RemList in terms of decreasing connectivity values w.r.t. the

pC. This process is constrained by the use of another user defined threshold, α.

A node, vn gets added to the pC only if Connt(vn, pC) ≥ α. This process iterates

until no new node satisfies the α criterion. The elements in the pC are returned as

a Cluster if pC has more than three elements. The next cluster formation begins

by choosing a new seed node from the set of remaining nodes in RemList and the

whole process is repeated to get another set of clusters. This process continues until

no more nodes are left satisfying the CCfT cut off. The algorithm for CNCM is

given in Algorithm 1.

To analyze the effectiveness of CNCM, we present the following three proposi-

tions.

Proposition 1. CNCM detects overlapping complexes.

Explanation: CNCM expands a cluster using a node-addition approach. Node vm

gets added to the core complex, Ci, if Connt(vm, Ci) ≥ α. A number of clusters are

formed in a similar fashion. If any node va ∈ Ci also satisfies connectivity criteria

w.r.t. Cj (where both Ci and Cj are core complexes), it is added into the cluster

Cj . Hence, clusters identified by CNCM may overlap.�

Proposition 2. CNCM can detect sparse (or small) complexes effectively.

Explanation: Sparse or smaller complexes are ones with two to three nodes [137].

CNCM starts with a seed core complex containing three nodes. The core complex is

then expanded to include more nodes depending on the connectivity threshold (α)
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Input : G = {V,E}, (PPIN); CCfT , (Clustering coefficient threshold);

α, (Connectivity threshold)

Output: Cluster = {C1, C2, · · · , CN}, (set of N complexes)

Initialize RemList = V,Cluster = NULL, ccount = 1;

foreach vi ∈ V do
Compute CCf(vi);

end

while |RemList| ≥ 3 do

pC = NULL ;

//Find Core Protein, vi

Choose vi ∈ RemList such that ∀ vj ∈ RemList, CCf(vj) ≤ CCf(vi) ;

if CCf (vi) < CCfT then
Exit;

end

pC = vi; RemList = RemList− vi;

//Find Core Complex of vi

Choose vj ∈ RemList such that ∀vm ∈ RemList and

Connt(vj, pC) ≥ Connt(vm, pC);

pC = pC
⋃
vj;

RemList = RemList− vj;
Choose vk ∈ RemList such that ∀vm ∈ RemList and

Connt(vk, pC) ≥ Connt(vm, pC);

pC = pC
⋃
vk;

RemList = RemList− vk;

//Expand Core Complex of vi

Choose vn ∈ V − pC and vn ∈ NgCp(pC) such that

∀vl ∈ V − pC, Connt(vn, pC) ≥ Connt(vl, pC);

while vn exists and Connt(vn, pC) ≥ α do

pC = pC
⋃
vn;

RemList = RemList− vn;

Choose next vn;

end

Mark pC as Ci;

Cluster(ccount) = Cluster
⋃
Ci;

ccount++;

end

Return Cluster;
Algorithm 1: Steps involved in CNCM Algorithm



set by the user. The minimum size of a core complex is set to three because smaller

size clusters unnecessarily add to the processing time and are usually redundant in

nature. If no new node exists satisfying the connectivity criterion of getting into

the pC, the core complex is returned as the cluster. Hence CNCM is capable of

detecting small or sparse complexes. �

Proposition 3. CNCM detects periphery proteins.

Explanation: A periphery protein is a node in the PPIN with a very low con-

nectivity with the complex. Low connectivity generally implies one link between a

node and the pC. In CNCM, a node which is connected to a complex with a single

link has connectivity value one and hence considered a member of the complex and

therefore detected. �

Computational Complexity In a given network comprising of n nodes, com-

puting the clustering coefficient requires O(nunique × n′unique
2) time, where n′unique

is the average number of neighbors of a node and nunique is the number of unique

elements in the graph. To expand the clusters using connectivity value each time

takes O(nunique−1) time. This is an iterative process and requires O(n2
unique) time.

Thus the overall complexity is O(nunique × n′unique
2) +O(n2

unique) ≡ O(n2
unique).

3.5.2 Experimental Results

CNCM has been implemented in MATLAB running on an HP Z800 workstation

with two 2.4 GHz Intel(R) Xeon (R) processors and 12 GB RAM, using the Win-

dows 7 operating system. The method has been evaluated on four yeast datasets–

Gavin 2002, Gavin 2006, Krogan 2006 and Tong 2004. A detail description of these

datasets is given in Subsection 2.1.6.1 of Chapter 2. Results of this method is com-

pared with few existing methods like MCODE [4], FAG-EC [79], FT [40], TFit

[33], OCG [11], QCUT [121], ClusterONE [101] and GMFTP [171] using MIPS as

benchmark dataset. The details of the benchmark set is given in Subsection 2.1.7.1

of Chapter 2.

Performance measures based on Precision, Recall and F-measure In

order to compare the effectiveness of the method with others, indices such as pre-

cision, recall and f-measure are used. A predicted cluster cannot exactly match

a benchmark complex. So an overlapping threshold between the predicted cluster

and the benchmark set is used to decide upon the effectiveness of prediction. Two

overlapping schemes are commonly used in the literature– Bader’s scheme [4] and

Wang’s scheme [153]. The details of these schemes are discussed in Subsection 2.1.9

41



Figure 3.1. Performance of CNCM for various α threshold values for Gavin 2002

dataset.

of Chapter 2. During validation, most techniques [4, 153] use threshold values of

0.2 and 0.6 for Bader’s scheme and Wang’s scheme, respectively. I therefore use

the same threshold values to make a fair comparison of my method with the other

methods. In order to fix the threshold value for reporting the results of CNCM,

I varied the α value in the range 0.1-0.9 as shown in Figure 3.1. In Figure 3.1,

we see that CNCM shows stable performance for threshold value 04-0.7. However,

the performance has shown a decline at 0.6 and a rise again at 0.7. Therefore, for

further comparison, the results obtained at the α = 0.4 are used.

Graphs 3.2 - 3.5 show the precision, recall, and f-measure values for CNCM

and other methods for the four yeast datasets. From Figures 3.2 - 3.5, we conclude

that no single method performs well in terms of these indices over all datasets.

MCODE performs well in some cases but it detects very large size cluster, thereby

misses smaller significant groups. FT and TFiT both rely on the modularity calcu-

lation during complex formation. ClusterONE is based on a greedy approach using

cohesiveness whereas GMFTP uses a complex combination of both functional and

topological information for complex detection. Considering the complexity of these

algorithms, CNCM is based on a simple concept of connectivity between nodes

to detect complexes. Using this trivial analysis, it has been found to show better

performance than some of these existing methods.

The remarkable performance of CNCM is shown as higher average f-measure
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(a) At Bader’s threshold=0.2

(b) At Wang’s threshold=0.6

Figure 3.2. Precision, Recall and F-measure of CNCM and other algorithms on

the Gavin 2002 dataset using MIPS as benchmark.



(a) At Bader’s threshold=0.2

(b) At Wang’s threshold=0.6

Figure 3.3. Precision, Recall and F-measure of CNCM and other algorithms on

the Gavin 2006 dataset using MIPS as benchmark.



(a) At Bader’s threshold=0.2

(b) At Wang’s threshold=0.6

Figure 3.4. Precision, Recall and F-measure of CNCM and other algorithms on

the Krogan 2006 dataset using MIPS as benchmark.



(a) At Bader’s threshold=0.2

(b) At Wang’s threshold=0.6

Figure 3.5. Precision, Recall and F-measure of CNCM and other algorithms on

the Tong 2004 dataset using MIPS as benchmark.



compared to all other methods as seen in Figure 3.6. A high value of f-measure

indicates the superiority of the method in detecting biologically significant clusters.

In Figure 3.6, we see that CNCM is at the top followed by FAG-EC and MCODE

for Krogan 2006 dataset. Hence, we can say that CNCM gives significant results

and is more suitable for protein complex detection than the other algorithms.

Figure 3.6. Average F-measure using Bader’s overlapping scheme with MIPS as

benchmark on Krogan 2006 dataset (Higher value implies better performance)

Performance measure in terms of co-localization score Co-localization

score is used to evaluate the effectiveness of complexes found by CNCM and and

other algorithms. The co-localization measure computes the proximity between

proteins in a complex. Details are discussed in Subsubsection 2.1.9.3 of Chapter

2. ProCope tool is used to calculate this score over two localization datasets- Huh

et al. and Kumar et al., details of which are discussed in Subsection 2.1.7.2 of

Chapter 2. Figures 3.7 and 3.8 shows the co-localization scores of the four datasets

using the two localization data. In Figure 3.7, we see that MCODE has the best

co-localization score among all the existing methods for the Huh et al. benchmark

dataset. In Figure 3.8, CNCM is the winner among all four datasets using Kumar

et al. co-localization set.

Validation using Gene Ontology Gene Ontology is a repository which stores

genes, its associated GO terms and their associations with other GO terms corre-

sponding to other genes in the form of a tree. GO can be used to find how two genes

47



(a) Co-localization score over Gavin 2002 and Gavin 2006 datasets using

Huh et al. localization data

(b) Co-localization score over Krogan 2006 and Tong 2004 datasets us-

ing Huh et al. localization data

Figure 3.7. Co-localization score for four yeast datasets using Huh et al., local-

ization dataset (Higher value implies better performance).

(proteins) are related semantically. This is the functional enrichment of genes, i.e.,

how many genes work together to achieve a certain biological function, which is

calculated by p-value. p-value and its calculation in described in Subsubsection

2.1.9.4 of Chapter 2. We use the BinGO plugin [89] of Cytoscape to compute p-
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(a) Co-localization score over Gavin 2002 and Gavin 2006 datasets using

Kumar et al. localization data

(b) Co-localization score over Krogan 2006 and Tong 2004 datasets using

Kumar et al. localization data

Figure 3.8. Co-localization score over four yeast datasets using Kumar et al.

localization data.



values of proteins in each complex. Table 3.2 - 3.5 report the p-values of some

common enriched terms found by CNCM and other algorithms.

3.5.3 Discussion

CNCM is a topology based technique that ensures high intra-cluster connectivity by

adding nodes with higher connectivity to other nodes in the complex. The effective-

ness of CNCM was validated for four yeast datasets using statistical and biological

measures. The next work is based on the use of a multi-objective optimization to

detect protein complexes.

3.6 Finding Protein Complexes using Multi ob-

jective Approach : DCRS

Complex finding has been broadly studied as a clustering problem. However, not all

methods work well for all datasets. Inefficiency of these methods may be attributed

to the presence of different patterns of complexes. For example, not all complexes

are dense and some complexes may not be overlapping at all. Therefore, it requires

an optimal combination of topological as well as biological properties to identify

the complexes. In this section, a method called DCRS has been proposed, which

is based on the use of an optimization technique called NSGA II to obtain the

optimal set of parameters, which can lead to the formation of biologically significant

complexes.

3.6.1 Proposed Method:DCRS

Analyzing protein complex finding as an optimization problem allows us to use a

number of topological properties, which are otherwise difficult to regulate. During

the course of analysis, we found that centrality measures are not reliable for graph-

based problems, i.e., one centrality measure is suitable for one type of network

while another measure works well for a different network. So, we used a new

measure called reachability contribution in addition to the two other features used

by Bandyopadhya et al. The following are the notable features of my method.

• DCRS uses a set of topological and biological features in a parallel fashion

for complex extraction.
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Table 3.2 Comparison with MCODE, FAG-EC, FT, TFit, OCG, QCUT, Clus-

terONE and GMFTP in terms of p-value for Gavin 2002 dataset.

GO-ID CNCM MCODE GO-ID CNCM FAG-EC

GO:051123 2.27E-26 1.72E-07 GO:0006378 5.36E-39 1.70E-30

GO:000398 3.32E-24 4.31 E-06 GO:031124 6.86E-35 2.79E-27

GO:000377 3.79E-24 4.52E-06 GO:006379 2.06E-32 4.12E-25

GO:070897 5.23E-25 4.53E-07 GO:070271 2.93E-15 2.89e-10

GO:000375 1.05E-23 6.52E-06 GO:006461 2.93E-15 2.89E-10

GO-ID CNCM FT GO-ID CNCM TFit

GO:031124 6.86E-35 128E-28 GO:070271 2.93E-15 7.68E-09

GO:006399 2.34E-15 2.61E-09 GO:006461 2.93E-15 7.68E-09

GO:006378 5.36E-39 1.96E-33 GO:031124 6.86E-35 1.28E-28

GO:070271 2.93E-15 4.82E-10 GO:OO6399 2.34E-15 3.59E-09

GO:006461 2.93E-15 4.82E-10 GO:006378 5.36E-39 1.96E-33

GO-ID CNCM OCG GO-ID CNCM QCUT

GO:006378 5.36E-39 1.35E-22 GO:071038 3.78E-27 2.86E-18

GO:009304 1.29E-28 5.79E-14 GO:016078 3.78E-27 2.86E-18

GO:042797 1.29E-28 5.79E-14 GO:071042 4.73E-28 2.43E-19

GO:006379 2.06E-32 4.70E-18 GO:071047 4.73E-28 2.43E-19

GO:031124 6.86E-35 5.28E-22 GO:071025 3.05E-25 4.43E-18

GO-ID CNCM Cluster

ONE

GO-ID CNCM GMFTP

GO:006378 5.36E-39 1.99E-32 GO:031124 1.39E-23 5.66E-14

GO:043631 4.50E-36 3.81E-30 GO:000447 2.13E-21 7.35E-09

GO:043631 4.50E-36 3.81E-30 GO:000447 2.13E-21 7.35E-09

GO:006379 2.06E-32 8.74E-27 GO:000398 1.73E-16 7.15E-08

GO:031124 6.86E-35 1.66E-29 GO:006364 6.39E-10 2.65E-06

GO:006357 4.06E-11 1.87E-06 GO:019941 3.48E-10 2.29E-08



Table 3.3 Comparison with MCODE, FAG-EC, FT, TFit, OCG, QCUT, Clus-

terONE and GMFTP in terms of p-value for Gavin 2006 dataset.

GO-ID CNCM MCODE GO-ID CNCM FAG-EC

GO:042273 8.77E-41 3.28E-09 GO:042766 6.89E-14 1.62E-05

GO:000462 4.77E-34 5.56E-05 GO:006356 1.61E-15 8.87E-11

GO:030490 2.07E-33 7.90E-05 GO:051329 5.65E-13 2.93E-09

GO:042255 1.79E-21 5.83E-07 GO:051325 9.19 E-13 4.69E-09

GO:000447 3.52E-18 1.98E-04 GO:000349 1.91E-11 8.56E-08

GO-ID CNCM FT GO-ID CNCM TFit

GO:006413 5.11E-18 1.26E-09 GO:006413 5.11E-18 4.10E-12

GO:032986 1.99E-32 3.44 E-25 GO:051325 9.19E-13 5.05E-07

GO:006476 1.42E-23 5.83E-17 GO:051329 5.65E-13 3.07E-07

GO:016479 5.83E-18 8.40E-12 GO:000086 1.43E-12 2.18E-07

GO:031938 1.49E-16 6.06E-11 GO:022411 2.45E-21 1.37E-16

GO-ID CNCM OCG GO-ID CNCM QCUT

GO:006476 1.42E-23 9.44E-15 GO:006476 1.42E-23 8.67E-16

GO:006333 4.79E-32 1.00E-23 GO:006413 5.11E-18 4.70E-11

GO:006413 5.11E-18 7.94E-12 GO:016479 5.83E-18 2.85E-11

GO:006354 1.05E-26 5.73E-22 GO:031938 1.49E-16 3.06E-10

GO:034728 6.33E-32 9.59E-28 GO:032986 1.99E-32 3.32E-26

GO-ID CNCM Cluster

ONE

GO-ID CNCM GMFTP

GO:006356 1.61E-15 2.86E-12 GO:000398 7.81E-78 3.86E-56

GO:000349 1.91E-11 9.93E-09 GO:042254 1.34E-58 4.01E-50

GO:006376 5.44E-09 1.14E-06 GO:043044 1.61E-50 2.53E-36

GO:000390 3.85E-07 4.71E-05 GO:006378 2.47E-48 6.76E-31

GO:032988 3.85E-07 4.71E-05 GO:042273 8.19E-19 6.69E-19



Table 3.4 Comparison with MCODE, FAG-EC, FT, TFit, OCG, QCUT, Clus-

terONE and GMFTP in terms of p-value for Krogan 2006 dataset.

GO-ID CNCM MCODE GO-ID CNCM FAG-EC

GO:034661 1.37E-36 1.05E-16 GO:006351 2.93E-31 1.55E-45

GO:016075 1.37E-36 1.05E-16 GO:032774 3.55E-31 2.19E-45

GO:071029 3.72E-35 1.22E-15 GO:032986 8.93E-40 1.00E-31

GO:043633 3.72E-35 1.22E-15 GO:034661 1.37E-36 9.30E-34

GO:071046 3.72E-35 1.22E-15 GO:016075 1.37E-36 9.30E-34

GO-ID CNCM FT GO-ID CNCM TFit

GO:006508 2.46E-28 6.12E-14 GO:034661 1.37E-36 9.36E-21

GO:034661 1.37E-36 3.03E-22 GO:16075 1.37E-36 9.36E-21

GO:016075 1.37E-36 3.03E-22 GO:031123 3.93E-28 7.49E-14

GO:031124 1.51E-26 1.94E-13 GO:071029 3.72E-35 3.53E-21

GO:006353 6.68E-30 5.78E-17 GO:043633 3.72E-35 3.53E-21

GO-ID CNCM OCG GO-ID CNCM QCUT

GO:006334 7.98E-25 5.64E-15 GO:006366 4.39E-34 2.80E-16

GO:000459 1.18E-34 6.32E-25 GO:034661 1.37E-36 1.10E-19

GO:031125 2.16E-33 8.04E-24 GO:016075 1.37E-36 1.10E-19

GO:031497 1.33E-23 3.76E-14 GO:031123 3.93E-28 9.43E-13

GO:000469 3.58E-26 2.41E-17 GO:071029 3.72E-35 3.46E-20

GO-ID CNCM Cluster

ONE

GO-ID CNCM GMFTP

GO:051568 2.73E-23 1.58E-02 GO:000398 1.78E-46 4.80E-39

GO:043486 2.92E-18 2.10E-04 GO:006351 1.91E-44 5.08E-38

GO:007059 3.75E-11 5.59E-04 GO:043044 3.00E-40 7.77E-34

GO:006403 5.15E-10 3.55E-03 GO:051123 5.48E-36 3.44E-28

GO:006348 2.27E-10 2.62E-04 GO:034661 5.48E-31 3.47E-22



Table 3.5 Comparison with MCODE, FAG-EC, FT, TFit, OCG, QCUT, Clus-

terONE and GMFTP in terms of p-value for Tong 2004 dataset.

GO-ID CNCM MCODE GO-ID CNCM FAG-EC

GO:071555 1.02E-31 1.88E-06 GO:032197 1.57E-34 2.73E-04

GO:045229 1.02E-31 1.88E-06 GO:000375 2.08E-47 2.18E-28

GO:007067 2.89E-34 3.26E-09 GO:000377 2.32E-48 2.36E-29

GO:000087 3.92E-34 3.70E-09 GO:051656 1.17E-22 1.14E-04

GO:000398 1.74E-48 1.40E-24 GO:006397 1.06E-39 6.02E-22

GO-ID CNCM FT GO-ID CNCM TFit

GO:007062 4.24E-22 2.11E-10 GO:000398 1.74E-48 2.25E-34

GO:000375 2.08E-47 4.87E-36 GO:000377 2.32E-48 2.92E-34

GO:000377 2.32E-48 5.06E-37 GO:000375 2.08E-47 2.12E-33

GO:000398 1.74E-48 3.76E-37 GO:008380 3.02E-44 1.53E-30

GO:007059 4.21E-29 2.82E-18 GO:006397 1.06E-39 1.93E-26

GO-ID CNCM OCG GO-ID CNCM QCUT

GO:000398 1.74E-48 2.64E-35 - - -

GO:000377 2.32E-48 3.23E-35 - - -

GO:000375 2.08E-47 1.51E-34 - - -

GO:008380 3.02E-44 2.60E-32 - - -

GO:006397 1.06E-39 4.60E-29 - - -

GO-ID CNCM Cluster

ONE

GO-ID CNCM GMFTP

GO:000087 3.92E-34 1.43E-20 GO:051248 1.56E-37 4.62E-33

GO:007067 2.89E-34 1.05E-20 GO:070882 6.23E-36 4.14E-17

GO:007059 4.21E-29 3.06E-16 GO:006351 1.38E-30 2.39E-22

GO:000280 1.28E-33 2.07E-22 GO:006260 2.13E-25 1.31E-24

GO:009892 6.07E-19 1.04E-09 GO:045229 6.17E-15 9.57E-12
∗No significant clustering results were found when we use QCUT algorithm on

tong 2004 dataset, so we could not perform the validations on them. Hence the

entries for this field in Table 3.5 were NIL.



• It is based on the elitism property of NSGA II which guarantees its improved

performance.

• The performance of DCRS is dependent on the initial population set and the

number of iterations performed.

DCRS uses a set of objectives to find quality complexes. Handling multiple

objectives in parallel gives rise to a number of solutions, generally known as the

pareto optimal solutions. One cannot make a comparison among these solutions as

making it better for one objective makes it worse for another objective. In order to

get the best set of solutions with diversity, we use an optimization technique called

NSGA II. The steps involved here are the same as those of any multi-objective

optimization problem. These are - Population initialization, choosing the objective

functions, intermediate population generation and the final population generation.

These steps are discussed in detail next.

A. Population initialization: The process begins with declaring a set

of chromosomes as the initial population set. A protein complex is a set, Ci =

{v1, v2, ...vn}, where vi ∈ V is a chromosome. The initial population can be derived

using any clustering technique on the PPI dataset. We use complexes from the first

method, CNCM as the initial population set. The technique used in this method

is discussed in Subsection 3.5.

B. Choosing the set of objective functions: The ultimate target of any

complex finding technique is to get biologically enriched complexes. In line with

this aim, we use both topological and biological properties of the PPI network.

From the perspective of topology, density, contribution of a node into a cluster and

reachability contribution are used while from the biological perspective, semantic

similarity between nodes in the network is used. The overall framework is similar

to that of Bandyopadhya et al.’s work [5]. The first two features–density and

contribution of a node in a cluster are already known to be useful for complex

finding in PPI networks. An additional feature called reachability contribution

is used for better topological representation of the PPI network. Reachability

contribution is the aggregate sum of the reachability indices of nodes in a cluster.

The literature [41] suggests using degrees of adjacent nodes to determine essential

proteins in yeast. We therefore use this notion in the form of reachability index to

improve the complex finding process.

1. Objective functions based on topology: The physical interactome of the

PPI network defines its inherent properties. The literature [4] suggests the
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presence of a dense structure for protein complex formation. We therefore

use density as the first objective function. In order to obtain a compact

and functionally coherent structure, density of such subgroups needs to be

maximized. For a complex Ci, density is given by Definition 21.

The second objective function is calculated as the aggregate contribution

contbnvi of all nodes within a cluster. Maximizing the contribution of each

cluster results in the formation of well-separated clusters. The overall contri-

bution of a cluster, Clcontbn is given as the sum of the individual contribu-

tion, contbnvi of its nodes, i.e.,

ClcontbnCi
=

k∑
i=1

contbnvi (3.3)

where Ci = {v1, v2...vk} is the cluster with members, vi and the individual

node contribution is
contbnvi =

DNcvi

dvi
(3.4)

where DNcvi
represents the direct neighbors of vi within cluster Ci and dvi is

the total degree of node vi.

The third objective function relies on the reachability of the direct neighbors

of a node within a cluster. This function when maximized leads to the for-

mation of coherent complexes. The reachability contribution of a cluster, Ci

is given as the sum of the reachability of its member nodes, Rbtyvi , i.e.,

RbyContbn(Ci) =

k∑
i=1

Rbtyvi (3.5)

where Rbtyvi is the reachability of a node vi in a cluster Ci and is given as

the ratio of the total number of links its direct neighbors have within Ci to

the total number of edges in the cluster. Mathematically,

Rbtyvi =
∑

DNcvi

lwC

tedgesC
(3.6)

where DNcvi
is the set of direct neighbors of node vi within cluster Ci, lwC

is the number of links each node vx ∈ DN has within the cluster, where

DN =
x∑
i=1

DNcvi
and tedgesC is the total number of edges in the cluster, Ci.

2. Objective function based on biological characterisitics: In addition

to the three topological functions, we use a biological measure called semantic

similarity for complex finding. The use of a biological feature enhances the
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chance of obtaining more biologically relevant complexes. We use Wang’s

semantic similarity [151]. The overall semantic similarity of a cluster, Ci,

is given as the sum of the semantic similarity of the combination of all its

member nodes, Ci = {v1, v2...vk}. Mathematically,

SmSimCi
=

k∑
i=1,j 6=i

semsim(vi, vj) (3.7)

, where semsim(vi, vj) is given by Definition 12.

The semantic similarity criterion is maximized in addition to the other three

topological objectives for a cluster so as to get functionally enriched clus-

ters corresponding to biologically relevant complexes. The method is called

as DCRS as it uses Density, Contribution, Reachability contribution and

Semantic similarity as its objective functions.

C. Intermediate Population Generation: The next step is the genera-

tion of an intermediate population for a user specified number of iterations. This is

accomplished using the genetic operators–selection, crossover and mutation. How-

ever, we do not use crossover as it produces disconnected components. The selection

operation is based on the traditional crowding distance metric and uses the objec-

tive function space to prioritize the solutions. Mutation is performed either by

adding new nodes or deleting a few nodes. A perturbed node is chosen with prob-

ability, p = 0.9 for the mutation to take place. For addition of new nodes, a set of

random nodes is chosen around the perturbed node, then their direct neighbors are

added to produce a new chromosome. For deletion, we remove randomly selected

nodes to get a new chromosome. During this step, there are chances of generating

ambiguous populations, which is taken care of by using the non-domination sorting

method.

D. Final population generation: The final set of chromosomes is returned

to the user once the number of iterations are over. The result set is also arranged

using non-domination sorting method.

Computational Complexity In a given network consisting of n nodes, let the

initial number of complexes generated be M ′. Let n′ be the number of members in

each complex. Therefore, for calculating density, i.e., the first objective function, it

requires O(n′) time. The calculation of the other two topological function requires

O(M ′n′2) each since both of them needs to traverse the whole n′ members for each

complex to identify the number of interacting partners. In order to get the semantic

similarity for n′ elements in each complex, it takes O(2n′2 − n′) since 2n′2 − n′
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combinations of elements need to be analyzed. Once the objective functions are

done, the role of NSGA II comes, which is a three step process- non dominated

sorting requires O(M ′2N2
i ) since it involves M ′ individual sortings of Ni initial

set of populations. The next step is the calculation of crowding distance which

takes O(M(2Ni)log2Ni). The final step is sorting the candidates in the front,

which requires O(2Nilog(2Ni)). This process is repeated for user defined number

of iterations. Thus, the overall time complexity is given by O(n′) + O(M ′n′2) +

O(2n′2 − n′) +O(M ′2N2
i ) +O(M(2Ni)log2Ni) +O(2Nilog(2Ni)) ≡ O(n′2).

3.6.2 Experimental Results

The DCRS method is implemented in MATLAB running on an HP xw6600 work-

station. Analysis of the proposed method was carried out on the HPRD dataset

[111] consisting of 39,237 interactions and 9088 proteins. Wang’s semantic similar-

ity used in the objective function is computed using R’s GOSemSim package [168],

whose details have been discussed in Subsection 2.1.5 of Chapter 2. For the initial

population, we use the results obtained using the first method, CNCM and the

number of iterations are fixed at 5. Another constraint is that we use only the top

50 complexes from CNCM as the initial population set. The performance analy-

sis was performed using Sensitivity, Positive Predictive Value and Accuracy. The

performance of DCRS is compared to a few well-known methods such as MCODE

[4], FAG-EC [79], FT [33], TFit [33], OCG [11], QCUT [121], ClusterONE [101],

GMFTP [171], CNCM [130] and Bandyopadhya et al.[5] in Figure 3.9.

In Figure 3.9, we observe that DCRS takes the top rank in terms of sensitivity,

however, it is beaten by Bandyopadhya’s method and ClusterONE in terms of PPV.

In order to draw the final conclusion, Accuracy of DCRS with other methods is

compared. It is found that DCRS is the clear winner among all methods.

Effect of initial population on the clustering results DCRS was also an-

alyzed by varying the initial population set. This analysis reports the performance

of DCRS using a proper complex set obtained from any complex finding method

w.r.t. any random set obtained using any clustering method. The performance

of DCRS using k-means and CNCM as the initial population set on the HPRD

dataset is given in Figure 3.10. In this figure, we see that DCRS gives better

performance when using clustering results from CNCM as compared to that of k-

means. Moreover, k-means is not suitable in this domain as it requires the number

of clusters as input, which is difficult to decide. The performance improvement of

our method using CNCM as the initial population set can be attributed to the fact
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Figure 3.9. Performance measures in terms of Sn, PPV and Acc of DCRS com-

pared with other methods over HPRD dataset.

that k-means is a partitoning approach whereas CNCM is a graph-based method.

Moreover, graph-based methods such as MCODE and IPCA have already been

shown to be effective in PPI analysis [131].

3.6.3 Discussion

This section introduced a complex finding approach based on the parallel evaluation

and optimization of a set of features. We observe that by careful selection of

the initial population and the number of iterations, one can obtain high quality

complexes. This method performs well in terms of accuracy using ten different

methods, which are either sequential or parallel, when tested on the HPRD dataset.

This work can be further extended to see its performance at different iterations.
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Figure 3.10. Performance measures of DCRS compared with other methods over

HPRD dataset and variations in results using two different set of initial population.

3.7 Conclusion

We explore a number of possibilities to identify quality complexes from a PPI Net-

work. We proposed a method called CNCM, which completely relies on topological

characteristics of the PPI network. The number of parameters used in this method

was limited to two as compared to methods such as MCODE and ClusterONE that

depend heavily on five or six parameters each. CNCM is able to detect overlapping

as well as sparse complexes, the two major issues in any complex finding technique.

We also analyzed the parallel evaluation of the objective functions involved during

complex finding and developed a method called DCRS. This method used NSGA II

as the optimization algorithm to find an optimum solution set. The performance of

this method is better than other methods for the human PPI dataset. The results

of the proposed method are reported for the best threshold. Using this threshold,

the maximum set of complexes obtained are analysed. With variations in threshold,

other combinations of complexes would be found which will need further analysis.

The contribution made in this chapter is shown in the form of publication as listed
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down in Publication No. 1 & 2.

To study the association between disease and protein complexes, the prime

requirement is to have a biologically enriched set of complexes. Thus, functional

information along with topological properties of PPI data can be used to achieve

the desired objective. The next chapter discusses two such works, which are based

on this concept.
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