
Chapter 6

Subspace Module Extraction and

Analysis-An application to

Parkinson’s Disease

6.1 Introduction

A living organism’s body consists of multiple cells. These cells comprises of num-

ber of genes within themselves. However, not all genes are turned on or express

themselves at the same time. The duration during which the genes are turned on

can be referred to as the expression point of that gene. This systematic on-off

mechanism in genes makes the cells behave differently in different organs of the

body. Gene regulation is the process which precisely captures the on-off activity

of genes within the organism. Recording the expression level of genes take place

mostly during the transcription phase, where in information from DNA passes into

the mRNA. The advent of microarray technology has enabled parallel investigation

of genes depending on their expression values. The expression level of genes can be

used in analyzing their roles under different conditions. A group of genes work in

coordination to accomplish different functions in the living body. Such set of genes

are said to be coexpressed and are represented by coexpression networks. Ana-

lyzing such a network unfolds the regulation mystery of genes, prioritization basis

for disease genes and can also be associated with the annotation related to genes.

However, these networks are effective only while identifying the group of genes ac-

tive under similar conditions. It does not provide any clue about their behavior at

different conditions. A gene might undergo mutation causing other genes to behave

abnormally. This dysfunctionality can be referred to as disease condition. Using a
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coexpression network study, it is very difficult to regulate the action of such genes.

In order to analyze the varying nature of genes, differential coexpression analysis

has come to rescue. This kind of study can be used in determining the participating

genes under different conditions or under different stages. Realizing the dynamicity

of genes at different conditions can be extended towards determining their role in

the phenotypic changes occurring during the different conditions.

Abnormality in the behavior of genes leads to the formation of malfunctioned

proteins. Such proteins then starts behaving peculiarly and disrupts the normal

functioning of the body leading to certain diseases. Diseases can be broadly classi-

fied into groups depending on the body parts they affect. One such class of disease

is the neurodegenerative disease which perturbs the brain and spinal cord in a per-

son. The term neurodegeneration is actually made up of two words-neuro meaning

nerve cells and degeneration meaning gradual damage. It therefore considers all

disorders affecting the nerve cells under its umbrella. However, research has fo-

cused only on few notable diseases such as Parkinsons Disease, Alzheimers Disease

and Huntington disease. These three diseases manifest themselves with different

phenotypic traits but at the cellular level they all lead to deteriorating cognitive

abilities such as loss of memory, inability to make decisions in a human etc. Statis-

tical data reveals the number of people affected by this class of disease. Alzheimers

Disease is known to affect nearly 4 million people of age more than 65 years. In the

United States, it is known to affect nearly 4-6 people out of every 100,000 people.

Statistics revealing the occurrence of Parkinsons Disease varies among individuals.

On an average, it is known to affect nearly 7-19 people out of every 100,000. The

cause of such diseases is still debatable. Only 5 % cases are known to be associated

with genetic mutations, the rest of the cases are still under study. Reserchers have

suggested the accumulation of toxic materials as one of the causes leading to the

death of neurons, thereby disrupting the normal function in the brain. The preva-

lence of such diseases is on rise, yet there is no effective treatment available till date.

The available medicines can only alleviate the symptoms and help the patients in

leading a better lifestyle. For instance, memantine and donepezil administered to

an Alzheimers patient can only reduce the rate of progression of dementia, Lev-

odopa when administered to a patient having Parkinsons disease would lead to an

increase in the dopamine level in the brain thereby providing temporary relief. 1.

Parkinsons Disease is one of the neurodegenerative disorder affecting a num-

ber of day-to-day activities in the person. Apart from memory loss and decisive

1https://www.news-medical.net/health/What-is-Neurodegeneration.aspx
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inability, he can also develop difficulty in swallowing food, might show sleep re-

lated disorders, bladder problems or blood pressure changes. It is known to affect

the overall well-being of a person 2. Therefore, this disorder calls for a thorough

understanding of its symptoms and ways to overcome them . In this work, I have

made one such effort to discover new biomarkers which may be associated with

the disease. These biomarkers have been established from literature sources and

therefore can be used by the drug designers to develop drugs targeting them.

6.2 Motivation

In co-expression analysis, it is important to consider the heterogeneity of the sam-

ples. Tissue-specific or condition-specific co-expression modules may not be de-

tectable in a co-expression network constructed from multiple tissues or conditions

because the correlation signal of the tissue/condition-specific modules is diluted by

a lack of correlation in other tissues/conditions. However, limiting co-expression

analysis to a specific tissue or condition also reduces sample size, thereby also de-

creasing the statistical power to detect shared co-expression modules. Therefore,

methods that do not distinguish between tissues or conditions should be used for

identification of common co-expression modules, while differential co-expression

comparing different conditions or tissues will be better for identifying modules

unique to a specific condition or tissue.

6.3 Related Works

Gene coexpression analysis is widely gaining popularity in the research community.

A number of studies have been proposed in the literature to perform anlaysis of

gene coexpression analysis and modular structure of gene networks. For example,

Tulika et al. [60] used the concept of border genes to identify interesting genes

on Alzheimer’s Disease. Their method relied on two parameters to point out the

novel genes asociated with the disease. Medina and Pilav [94] used Weighted Gene

Co-Expression Network Analysis (WGCNA) to identify modules. WGCNA works

by constructing the network by considering a Pearson correlation similarity ma-

trix, which is then transformed into a 0-1 matrix using a threshold. The next step

involves calculation of Topological overlap measure, TOM [117], which then pro-

2 https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-

20376055
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duces a disimilarity TOM. Hierarchical clustering is performed on this dissimilarity

TOM to produce modules. Medina and Pilav effectively used this method on Type

1 Diabetes caused by the destruction of pancreatic cells, which are responsible for

producing insulin. Yang et al.[163] use WGCNA to construct network and identify

modules. These modules are then used to identify various properties of biomarkers

associated with cancer. Most methods rely on the choice of a coexpression similar-

ity measure such as Pearson, Spearman or a similar measure and the appropriate

use of a threshold. Kumar et al. [73] show that statistical biases introduced by

each of these measures result in different networks for the same data. It has been

noted that the Pearson measure often results in low performance when identifying

coexpressed genes, especially, in the presence of noise. Moreover, coexpression net-

works are used to infer only a part of the information, i.e., which genes actively

participate during any given time, but do not provide much information about their

regulation. An extension of this is the differential coexpression analysis [146]. This

approach deals with genes having different coexpression partners under different

conditions. For examples, the approach explores how a gene changes its function in

a healthy person to give rise to a certain disease or how it is expressed in different

tissues. The role of such genes can be elaborately studied using module analysis

and module correspondence among the stages of the disease. Individual gene anal-

ysis is a time-consuming process and often is inadequate to derive unambiguous

conclusions about their behavior. Therefore, module analysis among the stages

of the disease can serve both the purposes. Some works have been carried out in

literature which are based on this logic. Ray and Maulik[118], Ray et al. [119],

Hossain et al. [50] have studied the behavior of genes during the progression of

HIV-1 disease from acute to chronic stage. Deshpande et al. [26] analyzed the gene

expression network using module analysis in the progression of artherosclerosis.

Work based on identifying modules from gene coexpression network and analyzing

the pattern of genes is reported by He et al. [45]. They analyzed the progression

of chronic hepatitis B and C to hepatocellular carcinoma. Ahmed et al. [1] study

a variation of gene coexpression network suggesting that two genes may be con-

nected over multiple sets of samples among the given dataset. This leads to the

formation of a multi-edge network, where the strength of each edge is determined

by the variations among the sample pairs it is made up of. They proposed a mea-

sure called TSOM (Topological Subspace Overlap Matrix, an extension of TOM)

over multi-edge networks. They extended their TSOM network to find groups of

coexpressed modules and validated them. This provided a framework to analyze

the effectiveness of TSOM over some disease datasets and studied their progression
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stages.

6.4 Proposed Method

In order to analyze the differential behavior of genes across the stages, the approach

used in my method is based on the multi-edge concept of network construction. The

overall process involves a series of steps which are discussed in detail in the following

subsections.

6.4.1 Preprocessing

The raw gene expression data is first normalized using the log2 transformation.

In order to determine a subset of active genes, we used the variance parameter

as suggested by [133]. The variance highlights the most important genes present

in the sample. The dataset comprises a number of samples for both control and

diseased stage, represented in the form of a matrix called GM having a number of

rows and b number of columns. The rows of the matrix corresponds to genes and

the columns correspond to the number of conditions. A discretization technique

suggested in [1] is then used on the GM matrix, which results in the transformation

of GM = a × b matrix into Dm = a × (b × (b − 1)/2) matrix. The calculation of

this new matrix, Dm is based on an adaptive discretization strategy that is used

to convert the a × b matrix to a a × (b × (b − 1)/2) matrix, where a represents

the number of genes and b represents the number of conditions. Since, we are

interested in finding multiple edges between genes, we have used the same line of

work as discussed in [1]. For each pair of conditions (p, q) for gene gk in both the

stages, the arctan value is computed for the difference in the expression values

obtained from the original gene expression matrix, GM for the two conditions.

Mathematically, it is represented as

ω = arctan(GM(gk, p)−GM(gk, q)). (6.1)

The arctan values for each sample pair is then discretized using a threshold

value η, which is calculated based on the standard deviation of the expression

matrix. The standard deviation is commonly used to understand the variability in

data 3. The arctan values closer to η are given the same discretized value. In this

3http://www.dummies.com/education/math/statistics/why-standard-deviation-is-an-

important-statistic/
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way, we get a new discretized matrix, Dm of order a× (b× (b− 1)/2).

6.4.2 Multi-edge network construction

The concept of multi-edge networks has been borrowed from [1], where authors

are of the opinion that two genes may be correlated, considering different sample

subsets. Using this concept, the entry for each pair of genes in Dm is analyzed

to obtain sample subsets. These sample subsets represent those conditions under

which the Dm matrix shows the same value for two genes. For example, assume

genes ga and gb have the value 1 for sample pairs dsp1 and dsp3, and a value 2

for samples dsp4, dsp6 and dsp7. Then ga and gb are connected via two edges: one

edge corresponds to sample subset {dsp1, dsp3} and other edge to sample subset

{dsp4, dsp6, dsp7}.

Example 1: Suppose we consider two genes g1 and g2 with expression values for

seven samples as given in Table 6.1. Using Pearson correlation coefficient, we see

that correlation value between g1 and g2 is 0.422. If we use a correlation threshold

value 0.5 to consider the pair (g1, g2) as connected, we see that these two genes do

not satisfy this requirement, and hence they are not connected (low correlation is

shown with dotted line in Figure 6.1).

Figure 6.1. Genes g1 and g2 are shown connected with dotted line since Pearson

correlation value between them is less than 0.5

Table 6.1 Gene expression value for dummy genes g1 and g2 for seven samples

Gene

name

S1 S2 S3 S4 S5 S6 S7

g1 0.33 0.29 0.129 0.72 0.11 0.03 0.86

g2 0.45 0.14 0.34 0.56 0.56 0.5 0.59

To determine whether g1 and g2 are connected or not, we find the absolute

difference between the expression values of the genes at each condition. If the

difference between the values is less than some threshold, say, Γ = 0.9 (as used in

[1]), we can use the same label for the two genes. This is shown in Table 6.2.
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Table 6.2 Labels for dummy genes g1 and g2 for seven samples using our edge

finding approach

Gene

name

S1 S2 S3 S4 S5 S6 S7

g1 c1 c1 c2 c1 c3 c3 c2

g2 c1 c1 c2 c1 c3 c3 c2

In Table 6.2, we see that g1 and g2 are connected via three sets of samples,

viz., {S1, S2, S4}, {S3, S7} and {S5, S6} (Figure 6.2). Using Pearson correlation,

we see that the subsets of samples comprising the three edges have a value greater

than 0.5, hence all the three edges connect genes g1 and g2. The same process is

repeated for each pair of genes for all pairs of conditions giving rise to a multi-edge

network or graph.

Figure 6.2. Genes g1 and g2 are shown to be connected via three subset of edges.

6.4.3 Calculating the topological subspace overlap matrix

It is well established that some information may be lost in a biological network due

to the presence of spurious interactions or due to incompleteness of data. To alle-

viate this issue, Ravasz [117] proposed the concept of a topological overlap matrix

incorporating mth- order neighbors (in addition to direct neighbors) between any

pair of nodes. Studies have also shown that two proteins with a higher topological

overlap are more likely to belong to the same functional group in a PPI network

[166]. However, the use of topological overlap matrix (TOM) has been restricted

to single edge networks, whether weighted or unweighted. In this work, we analyze

the gene network from multi-edge perspective, and hence we use a measure called

TSOM as proposed in [1]. We calculate the Topological Subspace Overlap Metric,
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TSbOM for a pair of nodes a and b in a network with n nodes as follows.

TSbOMab
= 0.5× αA+ 0.5× βB. (6.2)

where αA and βB represent the similarity between neighbors and connectivity

with direct connection respectively and are given by Equations [6.3] and [6.4],

respectively.

αA =

∑V
i=1 |Ep

gagi
∩ Eq

gigb
|∑V

i=1min(|Ep
gagi |, |Eq

gigb|)
(6.3)

where Ep
gagi

represents the edge between genes ga and gi; p and q represent the

sets of samples for which the Pearson correlation coefficients between (ga, gi) and

(gi, gb) are maximum; and Vg is the total number of genes in GM .

βB =
|Er

gagb
|

sm
(6.4)

where, 1 ≤ r ≤ Egagb , and Er
gagb

is the edge between ga and gb with as maximum

number of sample subsets and sm is the total number of samples in the original

matrix, GM . A factor of 0.5 is assigned to both the terms so that equal emphasis

is given to edges directly connecting the two nodes ga and gb, and also the common

edges between both ga and gb. This calculation gives rise to a subspace overlap

matrix, TSbOM having the same order as GM , i.e., V ×E, but with more interesting

values indicating connectivity between gene pairs.

6.4.4 Network module extraction

After the subspace overlap matrix is obtained in the previous step, we convert it

into a 0-1 matrix, Adj using a threshold value.

Adjga,gb =

1 if TSbOMga,gb
>nth

0 otherwise

The choice of nth is made wisely using the requirement that two nodes which

are connected by more than 50% connectivity has to be taken to be present in the

network. This is also supported by many other sources [133].

A network module in general is a set of nodes with high topological and neigh-

borhood similarity. To describe the module formation process, the following defi-

nitions are required.
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Definition 30 (Degree of node). The degree of a node gv is the total number of

neighbors of gv in the network. In other words,

d(gv) = |Adj(gv, gk) = 1| ∀gk ∈ V and k = {1, 2, ....}. (6.5)

Definition 31 (Nodedistance). The distance between two node, Nodedistance(gv, gk)

comprises of shortest path from each node, to every other node, gj,∀gj = {V −
{gv, gk}}

Nodedistance(gv, gk) =
∑
gj

|(Adj(gv, gj) == 1)&(Adj(gk, gj) == 1)| (6.6)

Definition 32 (Constrained neighbor). A node gk is a constrained neighbor of node

gv only if (i) Nodedistance(gv, gk) >= 1 and (ii) degree(gk) ≥ 2.

Definition 33 (Constrained node score). The constrained node score of a node gv

is the ratio of the number of constrained neighbors of gv in the network to the degree

of gv. Mathematically, it is represented as

CnS(gv) =
|NCN(gv)|
degree(gv)

(6.7)

where NCN(gv) is the constrained neighbor set of gv.

Definition 34 (Simpson Index). The Simpson Index [10] for a pair of nodes gv

and gk is given by the ratio of the common neigbors of gv and gk to the minimum

number of neigbors of gv and gk. Mathematically, it is given as

SI(gv, gk) =
N(gv) ∩N(gk)

min(|N(gv)|, |N(gk)|)
(6.8)

where N(gv) and N(gk) represent the sets of common neighbors of gv and gk.

Definition 35 (Seed node). A node gv is chosen as a seed node for module extrac-

tion iff CnS(gv) ≥ γ, where γ is a user defined threshold.

Definition 36 (Network module). A group of nodes {gv, gv1 , gv2 , ......gvk} with seed

node gv is defined as a network module, mi iff

(i) ∀gvi ∈ mi, TSbOM(gvi , gv) ≥ TSbOM(gvm , gv), where gvm /∈ mi and

(ii) SI(gvi , gv) ≥ δ ∀gvi ∈ mi

Definition 37 (Concerned network module). A module mi is said to be a concerned

network module iff ∃gvi ∈ mi such that gvi ∈ L, where L = {cg1 , cg2 , ....cgk} is the

set of causal genes associated with the disease as given in a database.
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The module extraction process begins by taking the TSbOM and the Adj matrix

as input along with two user-defined thresholds, γ and δ. γ is used during the seed

selection process. A node gi with CnS(gi) ≥ γ is chosen as the seed node as shown

in Line 8 of Algorithm 5. The seed is then expanded to form a cluster (Lines 9-20

of Algorithm 5). During the cluster expansion process shown by Line 10, a node

gj with TSbOMgi,gj
≥ TSbOMgi,gk

∀gk is chosen as a possible candidate for seed pair

expansion. The membership of gj in the partialCluster is further strengthened

by the Simpson Index measure. If SI(gi, gj) > δ, then gj can be added into the

partialCluster and the expansion process continues with the next gene with highest

TSbOM value (Lines 12-16 of Algorithm 5). The process stops when there is no node

gl with SI(partialCluster, gl) > δ. The elements in the partialCluster are declared

modules if |partialCluster| ≥ 3 (Line 17). A minimum limit of three elements has

been set in order to declare a cluster a module, because lower size clusters cannot

be used effectively for p-value analysis and for inferring the behavior of unknown

genes. This constraint has been suggested in [101], where it was assumed that a

cluster of proteins has to be of minimum size three. The new cluster formation

process begins with the node having the next highest CnS score. This process also

ensures the non-exclusive nature of genes in real life. The psueudocode for module

extraction method is given in Algorithm 5.

To establish the effectiveness of our method, we present the following proposi-

tions.

Proposition 8. Two genes gv, gj ∈ mi, the ithmodule, iff both are strongly con-

nected.

Explanation: A gene gj can be a member of a module mi given by our method

only when it is strongly connected with the seed gene of mi, say, gv. Strongly con-

nected genes can be determined with the help of both subspace overlapping scores

given by TSbOM and the Simpson Index score. A node gj ∈ mi iff TSbOMgv,gj
≥

TSbOMgv,gk
∀gk ∈ V and SI(gv, gj) > δ. To satisfy both the criteria at the same

time, the node gj needs to have maximum number of common neighbors with gv

and also the two nodes should share maximum correlation in terms of expression

values. This correlation is considered while calculating the subspace overlapping

matrix, TSbOM . Hence, genes gv and gj ∈ mi are strongly associated. �

Proposition 9. A module Mci from the control stage has high correspondence with

a module Mdj from the disease stage iff (i) both have large number of common genes

and (ii) both share a maximum number of common pathways.

Explanation: A gene gv1 ∈ mi, where mi = {gv, gv1 , gv2 , ......gvk} is ith module and
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Input : Adj = {V,E} (Gene gene network); TSbOM = {V,E ′} (TSOM

network); γ (Constrained neighbor score); δ (Simson Index

threshold);

Output: Modules = {C1, C2, · · · , CN}

1 Initialize clusterExpNode = V,NodeList = V,Modules = NULL, count =1;

2 .........Calculate constrained node score for each gene........

3 foreach gv ∈ V do

4 CnS(gv) = |NCN (gv)|
degree(gv)

5 end

6 ..........Module expansion..........

7 while |NodeList| > 2 do

8 choose ga from NodeList such that CnS(ga) > CnS(gk)∀gk ∈ NodeList
and CnS(ga) > γ

9 partialCluster = partialCluster
⋃
ga;

10 choose gy such that

TSbOM(partialCluster, gy) > TSbOM(partialCluster, gx)∀gx ∈ {V − ga}
11 SI(gy, partialCluster) = N(gy∩N(gk)

min(|N(gy)|,|N(partialCluster)|) ;

12 while SI(gy, partialCluster) > δ do

13 SI(gy, partialCluster) = N(gy∩N(gk)

min(|N(gy)|,|N(partialCluster)|)

clusterExpNode = V − partialCluster;
14 partialCluster = partialCluster

⋃
gy;

15 choose another gy such that TSbOM(partialCluster, gy) >

TSbOM(partialCluster, gx)∀gx ∈ clusterExpNode;
16 end

17 Mark partialCluster as Ccount only when |partialCluster| ≥ 3;

18 Modules = Modules
⋃
Ccount;

19 count+ +;

20 NodeList = V − ga;
21 end

22 Return Modules ;
Algorithm 5: Algorithm for module extraction from gene gene network



gv is the seed node iff (i) ∀gvi ∈ mi, TSbOM(gvi , gv) ≥ TSbOM(gvm , gv), where gvm /∈
mi and (ii) SI(gvi , gv) ≥ δ ∀gvi ∈ mi (as per Definition 36). A gene has to satisfy

these criteria in order to become a member of a module. If two modules, Mci (from

the control stage) and Mdj (from the disease stage) share a maximum number of

common genes, it indicates that the network structure of the two stages are similar,

which may be attributed to the expression patterns of the member genes, with high

correlation among them. A pathway gives a sequence of biochemical reactions with

a purpose occuring in the body. Therefore, if two genes share common pathways, it

either implies that they correspond to the same gene or they are functionally very

similar in nature and hence they validate that the expression patterns of these genes

are more coherent in nature. Therefore, modules Mci and Mdj high correspondence

[52]. �

Proposition 10. A non-causal gene gk is interesting for a given disease, Di w.r.t.

(i) a set of causal genes for Di and (ii) sets of corresponding concerned modules

from control and disease stages if any one of the following conditions is satisfied.

(i) gk has strong topological association with causal genes or

(ii) gk’s pathway is related to that of the causal genes’ pathways, or

(iii) gk has been shown to be associated with Di in the literature.

Explanation: In order to find new and interesting genes for the disease Di from

the topological perspective, we use the members of the concerned network modules

(Definition 37). Suppose we consider a module, mi = {gi, gj, gk, ....gp}, where gi

and gj are already established to be causal genes w.r.t. Di. We find the topological

partners of gi and gj within mi using the STRING tool [31] and find gk to be

interacting with the causal genes. From pathway point of view, gene gk’s association

with the disease, Di can be analyzed in terms of the number of common pathways

it shares with either gene gi or gj. A gene, gk can also be said to be associated

with disease Di, if there are ample evidences for its role in the disease established

in literature sources. �

A conceptual framework of the proposed module extraction method is given in

Figure 6.3.

6.5 Experimental Results

We implemented our method in MATLAB running on an HP Z 800 workstation

with two 2.4 GHz Intel(R) Xeon (R) processors and 12 GB RAM, using the Win-
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Figure 6.3. Conceptual framework of module extraction method

dows 7 operating system. The main objective of this work is to find functionally

enriched modules in both control and diseased stages. The functional enrichment

of a gene module is analyzed in terms of its p-value, which gives the probability of

random occurrence of functionally enriched genes together. We report the results

for gene subset at variance threshold of 0.9. We perform our module extraction

technique at different γ and δ values. The obtained cluster (i.e., module) set is

then fed into an online tool called Funcassociate [13] which gives the p-value for

each of these modules. We report the p-value of these sets in Table 6.3.

6.5.1 Comparison with existing work based on p-value

In order to establish our module extraction method, we have used for comparison

our previous work on module extraction [133] on the same dataset. This work uses

two parameters, CCT and SST, one being the topological threshold and the other

is the functional threshold, respectively. The p-value obtained using this method

are given in Table 6.4.

As seen in Table 6.4, p-values of both control and disease stages at CCT=0.5,

SST=0.7 are better than at other thresholds. The p-value obtained for the control

stage is at par with that of our proposed method, while the p-value in the disease

stage is better than the proposed method. One reason for the improvement in

p-value in case of the previous work can be attributed to the use of semantic

132



Table 6.3 p–values of modules obtained using different thresholds in both control

and disease stages

ModuleType

p-value

γ = 0.03

δ 0.2 0.4 0.6 0.8

Control 6.281E-

17

5.449E-

16

6.251E-

16

6.898E-

16

Disease 6.983E-

8

9.205E-

8

1.378E-

7

8.262E-

8

ModuleType

p-value

γ = 0.05

δ 0.2 0.4 0.6 0.8

Control 1.825E-

17

4.638E-

17

4.662E-

15

3.154E-

13

Disease 4.202E-

8

7.397E-

8

8.725E-

8

4.880E-

8

ModuleType

p-value

γ = 0.07

δ 0.2 0.4 0.6 0.8

Control 4.958E-

17

6.648E-

17

1.259E-

15

6.776E-

9

Disease 4.202E-

8

4.241E-

8

6.988E-

8

9.740E-

8

Table 6.4 Best p–value reported by modules obtained using different thresholds

in both control and disease stage using the method given in [133]

Stages CCT=0.5,

SST=0.5

CCT=0.7,

SST=0.5

CCT=0.5,

SST=0.7

CCT=0.7,

SST=0.7

Control 3.17E-13 8.15E-10 4.13E-16 2.16E-14

Disease 4.67E-5 5.53E-8 1.79E-10 5.719E-5

similarity during the module expansion process. We have also used another gene

module extraction technique called Module Miner [90] which uses the spanning

tree concept to identify modules. Table 6.5 reports the top p-value obtained from

our proposed method and two other existing methods both for control stage and
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disease stage.

Table 6.5 Best p–value reported using my proposed method and other existing

works.

Stage Proposed

work

My existing

work [133]

Module

Miner [90]

Control 4.638E-17 4.13E-16 3.67E-10

Diseased 7.397E-8 1.79E-10 5.45E-6

As can be seen from Table 6.5, the best p-value obtained in both control and

disease stage is given by our proposed method. Thus, we can say that our module

extraction process proposed here can take us a step further towards the use of

multi-edge information when constructing the gene gene network and thereafter in

finding functionally similar modules.

6.5.2 Comparison with biclustering techniques

Grouping of genes under subset of samples has been dealt with using biclustering

techniques. It is a two-way clustering technique performed considering two dimen-

sions, i.e., genes and conditions simultaneously. Since our proposed method also

considers genes under subset of conditions, therefore it has to be compared with

biclustering techniques. In this work, we have used two biclustering techniques,

namely, Cheng and Church (CC) algorithm and the BiMax algorithm for finding

the top three modules based on their p-value. The CC algorithm is based on a

greedy approach and uses the mean values of genes at different conditions to find

the Mean Squared Residue (MSR), which is then used for evaluating the quality

of biclusters The BiMax is based on a divide-and-conquer strategy for declaring

maximal bicliques as biclusters. The p-value of top three biclusters obtained from

the two algorithms using the BicAT tool [7] at default parameters for both control

and disease state are reported in Table 6.6.

As seen from Table 6.6, it is found that biclustering techniques reports func-

tionally coherent modules better than our proposed method both in the control and

disease stage. We can fine tune our method to get better quality modules which

are at par with those obtained using the biclustering techniques. We now find the

analogy between the modules obtained using our method in both the stages so as

to extend our analysis.
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Table 6.6 Best p–value reported by modules obtained using CC and BiMax bi-

clustering technique in both control and disease stage

Algorithm Control stage Disease stage

M1 M2 M3 M1 M2 M3

Cheng and

Church

(CC)

4.34E-10 1.25E-8 5.23E-7 1.39E-6 6.34E-4 1.95E-4

BiMax 4.14E-23 6.93E-17 5.13

E-11

1.39E-6 6.34E-4 1.95E-4

6.5.3 Module correspondence between the two stages

In order to analyze the behavior of genes responsible for the progression of a disease

from a healthy person to a diseased patient, we initially find the module correspon-

dence between the two stages. We chose the modules at γ = 0.05 and δ = 0.2 due

to better p-value w.r.t. other thresholds. We analyze the module correspondence

from two aspects: topological and pathways. A visual representation of module

correspondence is given in Figure 6.4. We now discuss these aspects in detail.

6.5.3.1 Topological aspect of module correspondence

Topology is concerned with the structure of the gene network. Our idea is somewhat

similar to the concept of maximum matching ratio [101]. For every module in the

control stage, Mci , we found its matching ratio with every module in the disease

stage, Mdj . This is repeated for all the 22 control modules w.r.t. the 7 diseased

modules. The matching ratio between the modules is given by Equation 6.9. The

diseased module, dj with which ci is found to be maximally matching is considered

the corresponding module for ci.

MR(ci, dj) =
(|Mci ∩Mdj |)2

|Mci| × |Mdj |
(6.9)

The control and disease module correspondences at γ = 0.05 and δ = 0.2

< Ci, Dj > from topological perspective are observed as follows: < 1, 5 >, < 2, 5 >,

< 3, 7 >, < 4, 7 >, < 5, 7 >, < 6, 7 >, < 7, 5 >,< 8, 7 >, < 9, 7 >,< 10, 7 >,<

11, 7 >,< 12, 7 >, < 13, 7 >, < 14, 7 >, < 15, 7 >,< 16, 7 >, < 17, 7 >,< 18, 7 >,

< 19, 7 >, < 20, 7 >,< 21, 7 >, < 22, 7 >. We observe here that all the 22 control

modules either correspond to module D5 or D7 in the disease stage.
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Figure 6.4. Conceptual framework of module correspondence between control

and disease stage

6.5.3.2 Module correspondence from pathway point of view

A pathway in a biological domain represents a series of related biochemical reac-

tions occurring in the living body. Molecules involved in promotion or inhibition

of any activity in the living body need to be studied carefully. The number of com-

mon pathways found among the members of modules in different stages can be an

interesting feature. We therefore use the PANTHER tool [97] to find the pathways

in each module in the control as well as disease stages. Table 6.7 represents the

number of common pathways as given by PANTHER among the modules in both

the stages.

In Table 6.7, we observe that disease modules numbered D7, D4 and D5 are the

top 3 modules which showed the maximum overlap with all the control modules in

terms of pathway. In this case, D7 emerges as the winner corresponding module

for each control module. We further analyze D7 for better understanding the

progression of the disease.
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Table 6.7 Number of common pathways for all the 22 control modules w.r.t. the

7 disease modules

Control

mod-

ules

Number of common pathways

Diseased modules

D1 D2 D3 D4 D5 D6 D7

C1 22 13 8 27 28 24 30

C2 22 13 9 28 29 25 31

C3 22 13 9 28 29 25 31

C4 22 13 7 26 27 24 29

C5 22 13 9 28 29 25 31

C6 22 13 9 28 29 25 31

C7 22 13 9 28 29 25 31

C8 22 13 8 26 27 23 29

C9 20 12 8 26 28 24 30

C10 22 13 9 28 29 25 31

C11 20 12 8 26 28 24 30

C12 20 12 8 26 28 24 30

C13 20 12 8 26 28 24 30

C14 22 13 8 27 28 24 30

C15 20 12 8 26 28 24 30

C16 22 13 8 27 28 24 30

C17 20 12 8 26 28 24b 30

C18 20 12 8 26 28 24 30

C19 22 13 9 28 29 25 31

C20 22 13 8 27 28 24 30

C21 20 12 8 26 28 24 30

C22 22 13 9 28 29 25 31

6.6 Identification of interesting biomarkers

We analyzed initially all the 22 modules for finding interesting features. However,

almost in all the modules there were overlaps among the elements in the range

(48-52)%. Therefore, in order to get a subset of modules for our analysis, we took

the help of GeneCard [120]. It is a repository which stores the list of causal genes
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for around 5000 diseases. From this repository, we got 54 genes associated with

Parkinson’s Disease. We used this list of causal genes to identify modules with

a high number of disease genes.We observed the inclusion of number of causal

genes in each control module, i.e., < module no., no of causalgenes > as follows:

< 1, 5 >, < 2, 6 >,< 3, 6 >,< 4, 2 >,< 5, 6 >, < 6, 6 >,< 7, 6 >,< 8, 4 >, < 9, 6 >,

< 10, 6 >, < 11, 6 >, < 12, 6 >, < 13, 6 >, < 14, 4 >, < 15, 6 >, < 16, 3 >,

< 17, 6 >, < 18, 6 >, < 19, 5 > < 20, 4 >, < 21, 6 >, < 22, 5 >.

We saw that the maximum number of causal genes found among the modules in

the control stage is 6 and {C2, C3, C5, C6, C7, C9, C10, C11, C12, C13, C15, C17, C18, C21}
module set showed the presence of maximum number of causal genes. Hence, fur-

ther analysis of these modules was carried out. For each of these 14 modules, we

performed an extensive study of the causal genes and their interacting partners

among the module members. The interacting partners of the causal genes were

found using the STRING tool [31], which obtains the partner genes using informa-

tions from coexpression data, other experimental data and text mining. In addition

to the causal genes listed in GeneCard, we analyzed each interacting partner with

the causal gene in terms of pathways. Table 6.8 -6.14 report the causal genes along

with their interacting partners and the number of pathways they share in common

with the causal gene. Apart from these information, these tables also higlights the

genes which can be possible suspected genes for the disease.

We carried out an analysis of the roles of suspected genes which were not yet

known to be sharing any pathway with the six causal genes found in the modules

from GeneCard. From literature sources, we gathered some information on the

association of such genes with the mechanisms involved in the progression of the

disease. We now discuss the role of these genes here.

a) ADCY2 : Dopamine neurons are rare in the brain and are associated with

many day-to-day activities such as movement and learning [38]. The ADCY2 gene,

which is an isoform of adenyl cyclase is known to be expressed in the brain. Sources

such as [57, 85] have reported mice expressing certain kinds of motor dysfunction-

ality that affect the striatal dopamine signalling.

b) CNR1 : About 40% patients suffering from Parkinson’s Disease show a ten-

dency to undergo depression. Experiments have established the role of cannabinoid

receptor gene (CNR1) to be associated with depression brought about by the dis-

ruption in the monoamine transmission [8].

c) GNB5 : Ample evidence is available to describe the role of GNB5 in causing

attention deficit hyperactivity disorder, which is one of the symptoms of Parkin-
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Table 6.8 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 ADCY2 (3), CNR1 (1), GNB5 (2), HTR2A (2), ACTL6B (0),

SYT1 (0), SLC18A2 (4), SLC6A3 (4), GRIN2A (6)

2

SLC6A3 DRD2 (4), TH (5), GRIN1 (3), DDC (4), PTK2B (0), GCH1

(0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1

TH HTR2A (0), SLC6A3 (5), GRIN1 (3), DDC (7)

DDC CACNG3 (0), SLC17A7 (0), GCH1 (0), SLC6A3 (4), GRIN2A

(4), SLC17A6 (0), MOXD1 (0)

SLC18A2 SLC6A3 (5), DRD2 (5), STX1A (2), GCH1 (0), SLC17A7 (1),

SLC17A6 (1)

GCH1 SYT1 (0), SLC6A3 (0), ADCY2 (0), DDC (1), SLC18A2 (0),

NRXN1 (0)

DRD2 ADCY2(3), GNB5 (2), FOS (3), ACTL6B (0), SYT1 (0),

SLC18A2 (4), SLC6A3 (4), PTK2B (0), GRIN2A (6)

SLC6A3 DDC (4), HTR2A (0), DRD2 (4), GRIN2A (3), GRIN1 (1)

3

TH DDC (7), DDN (0), GRIN1 (3), SLC17A6 (0), HTR2A (0), FOS

(2), SLC17A7 (0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN

DDC MOXD1 (0), TH (7), SLC17A6 (0), SLC17A7 (0)

SLC18A2 SLC6A3 (5), STX1A (2), HTR2A (1), DRD2 (5), SLC17A7 (1),

SLC17A6 (1), DDC (5)

GCH1 ADCY2 (0), SYT1 (0), SLC6A3 (0), NRXN1 (0)



Table 6.9 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 SLC6A3 (4), GRIN2A (6), CNR1 (1), ADCY2 (3), GNB5 (2)

SLC6A3 CACNG3 (0), STX1A (1), TH (5), SLC18A2 (5), DRD2 (5),

HTR2A (0)

5

TH DDC (7), SLC18A2 (5), SLC6A3 (5), SYT1 (0) ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, DUSP5

DDC MOXD1 (0), TH (7), GRIN2A (4), SLC18A2 (6), SYT1 (0),

GCH1 (0)

SLC18A2 SLC17A7 (0), DDC (5), STX1A (2), SYT1 (0), TH (5), NRXN1

(0), SLC6A3 (5)

GCH1 SYT1 (0), DUSP5 (0), ADCY2 (0), FOS (0)

DRD2 ADCY2 (3), GNB5, CCKBR (0), FOS (3), SLC18A2 (4), CNR1

(1), CXCR4 (0)

SLC6A3 SLC18A2 (5), TH (5), DDX3Y (0), KALRN (0), HTR2A (0),

DRD2 (5), CACNB2 (0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, CCKBR,

CXCR4, KALRN,

CACNB2, ACHE,

RET, AGTR1,

ATP1A3

6

TH GRIN1 (3), DDC (6), ACHE (0), CACNG3 (0), RET (0),

SLC6A3 (5)

DDC MOXD1 (0), SLC17A6 (0), SLC17A7 (0), TH (7), SLC6A3 (4)

SLC18A2 PTK2B (0), ACHE (0), FOS (2), SLC17A6 (1), DDC (5),

SLC6A3 (5), DRD2 (4), STX1A (2)

GCH1 CACNG3 (0), SLC17A7 (0), AGTR1 (0), SYT1 (0), ATP1A3

(0)



Table 6.10 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 SLC6A3 (4), SLC18A2 (4), ADCY2 (3), CNR1 (1), FOS (3),

CXCL9 (0), DDC (4)

SLC6A3 DDX3Y (0), DRD2 (5), STX1A (1), SLC18A2 (5), TH (5),

GRIN2A (4), DDC (4), RET (0), RAB3B (0)

7

TH SLC6A3 (5), SLC18A2 (5), KALRN (0), STX1A (1), GRIN1

(3), ACHE (0), GCH1 (0), DDC (6), SLC17A6 (0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, CXCL9,

DDX3Y, RET,

RAB3B, KALRN,

ACHE, CACNB2

DDC CACNB2 (0), GRIN2A (4), GCH1 (0), TH (6), SLC6A3 (4),

DRD2 (4), MOXD1 (0), RET (0)

SLC18A2 HTR2A (1), SLC17A6 (1), SLC17A7 (1), STX1A (2), DRD2

(4), TH (5), SLC6A3 (5)

GCH1 TH (1), ADCY2 (0), DDC (1)

DRD2 PTK2B (0), TH (4), CACNB2 (0), GRIN2A (6), CCK (0),

CHRM3 (1), CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 GCH1 (0), SLC17A7 (0), DDX3Y (0), STX1A (1), SLC18A2

(5), PTK2B (0), HTR2A (0), GRIN1 (3)

9

TH DDN (0), CHRNB3 (0), SLC17A6 (0), ACHE (0), GCH1 (0),

SLC18A2 (5), GRIN1 (3), DRD2 (4)

DDC MOXD1 (0), SLC18A2 (5), GCH1 (0), GRN1 (0), GRIN2A (4),

CACNB2 (0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, CACNB2,

CCK, CHRM3,

CXCR4, CXCL9,

DDX3Y, CHRNB3,

ACHE, KALRN,

GABRA1

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), KALRN (0), SYT1 (0)

GCH1 SLC17A6 (0), GABRA1 (0), SLC17A7 (0), SLC6A3 (0), ADCY2

(0), GRIN1 (0), TH (1)



Table 6.11 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 PTK2B (0), GRIN2A (7), TH (4), CXCL9 (0), AGTR1 (1), FOS

(3), GNB5 (2)

SLC6A3 DDX3Y (0), STX1A (1), SLC18A2 (5), GRIN1 (3), ACHE (0)

10

TH RET (0), DDC (7), SLC17A6 (0), GRIN2A (4), SLC18A2 (5),

DRD2 (4), CCK (0), CCKBR (0), GCH1 (0)

DDC MOXD1 (0), SLC17A6 (0), GRIN1 (3), CACNB2 (0), GRIN2A

(4), TH (6), GCH1 (0)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, CXCL9,

AGTR1, DDX3Y,

ACHE, RET, CCK,

CCKBR, CACNB2,

ATP1A3

SLC18A2 GRIN1 (3), SLC17A7 (1), SLC6A3 (5), STX1A (2), SYT1 (0),

PTK2B (0), TH (5), CACNB2 (0)

GCH1 DDC (1), TH (1), FOS (0), ATP1A3 (0)

DRD2 PTK2B (0), TH (4), GRIN2A (7), CACNB2 (0), CCK (0),

CHRM3 (1), CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 SLC17A7 (0), ACHE (0), GCH1 (0), GRIN1 (3), HTR2A (0),

PTK2B (0), SLC18A2 (5), STX1A (0), DDX3Y (0)

11

TH DDN (0), CHRNB3 (0), SLC17A6 (0), ACHE (0), GCH1 (0),

SLC18A2 (0), GRIN1 (3), DRD2 (4), DDC (7)

ADCY2,CNR1,GNB5,

HTR2A, ACTL6B,

SYT1, GRIN2A,

GRIN1, PTK2B,

GCH1, CACNG3,

SLC17A7, MOXD1,

STX1A, NRXN1,

FOS, DDN, CACNB2,

CCK, CHRM3,

CXCR4, CXCL9,

ACHE, DDX3Y,

DDN, CHRNB3,

CACNB2, KALRN,

GABRA1

DDC MOXD1 (0), GRIN2A (4), CACNB2 (0), SLC18A2 (5), GRIN1

(3), GCH1 (0)

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), KALRN (0), SYT1 (0)

GCH1 SLC17A6 (0), GABRA1 (0), SLC17A7 (0), SLC6A3 (0),

SLC18A2 (0), ADCY2 (0), GRIN1 (0), CACNG3 (0), TH (1)



Table 6.12 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 SLC6A3 (4), CACNB2 (0), DDC (4), SLC18A2 (4), SLC17A7

(0), ADCY2 (3), STX1A, CXCL9 (0), GRIN1 (6), GRIN2A (7),

GABRA2 (1)

SLC6A3 RET (0), DDX3Y (0), SLC17A6 (0), TH (5), DDC (4), RAB3B

(0), HTR2A (0), SLC18A2 (5), STX1A (1), KALRN (0), DRD2

(5), CACNB2 (0)

12

TH DDN (0), RET (0), DDC (7), GCH1 (0), SLC18A2 (5),

SLC17A7 (0), DRD2 (4), GRIN1 (3), SLC6A3 (5), SLC17A6

(0), ACHE (0)

CACNB2, SLC17A7,

ADCY2, STX1A,

CXCL9, GRIN1,

GRIN2A, GABRA2,

RET, DDX3Y,

SLC17A6,RAB3B,

HTR2A, KALRN,

DDN, GCH1, ACHE,

MOXD1, SYT1,

CNR1, RGS4,

ATP1A3, ADCY2

DDC MOXD1 (0), GCH1 (0), TH (7), SLC18A2 (5), SLC17A7 (0),

DRD2 (4), SLC6A3 (4), SLC17A6 (0)

SLC18A2 DDC (5), TH (5), SLC17A6 (1), SLC6A3 (5), DRD2 (5),

SLC17A7 (1), STX1A (2), SYT1 (0), CNR1 (0), RAB3B (0)

GCH1 RGS4 (0), DDC (1), ATP1A3 (0), ADCY2 (0), HTR2A (0)

DRD2 PTK2B (0), SLC18A2 (4), TH (4), CACNB2 (0), GRIN2A (7),

CCK (0), CHRM3 (1), CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 SLC17A7 (0), ACHE (0), GCH1 (0), DDX3Y (0), HTR2A (0),

PTK2B (0), SLC18A2 (5), STX1A (1)

13

TH DDN (0), CHRNB3 (0), SLC17A6 (0), ACHE (0), SLC17A7 (0),

GCH1 (0), SLC18A2 (5), GRIN1 (3), DRD2 (4), CACNG3 (0),

DDC (6)

PTK2B, CACNB2,

GRIN2A, CCK,

CHRM3, CNR1,

CXCR4, CXCL9,

SLC17A7, ACHE,

DD3Y, HTR2A,

STX1A, DDN,

CHRNB3, GRIN1,

CACNG3, MOXD1,

CACNB2, ADCY2,

GABRA1

DDC MOXD1 (0), GRIN2A (4), CACNB2 (0), SLC18A2 (5), GRIN1

(3), GCH1 (0)

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), DRD2 (5), STX1A (2)

GCH1 SLC17A6 (0), TH (1), CACNG3 (0), DDC (1), GRIN1 (0),

ADCY2 (0), SLC18A2 (5), SLC17A7 (0), GABRA1 (0)



Table 6.13 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 PTK2B (0), CACNB2 (0), GRIN2A (7), CCK (0), CHRM3 (1),

CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 SLC17A7 (0), ACHE (0), GCH1 (0), GRIN1 (3), HTR2A (0),

PTK2B (0), SLC18A2 (5), STX1A (1), DDX3Y (0)

15

TH DDN (0), CHRNB3 (0), SLC17A6 (0), ACHE (0), GCH1 (0),

SLC18A2 (5), GRIN1 (3), DRD2 (4), CACNG3 (0), DDC (7)

CACNB2, SLC17A7,

ADCY2, STX1A,

CXCL9, GRIN1,

GRIN2A, GABRA2,

RET, DDX3Y,

SLC17A6,RAB3B,

HTR2A, KALRN,

DDN, GCH1, ACHE,

MOXD1, SYT1,

CNR1, RGS4,

ATP1A3, ADCY2,

CCK, CHRM3,

CXCR4, CHRNB3,

CACNG3

DDC MOXD1 (0), TH (7), GCH1 (0), GRIN1 (3), SLC18A2 (5),

CACNB2 (0), GRIN2A (4)

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), KALRN (0), SYT1 (2)

GCH1 SLC17A6 (0), TH (1), GRIN1 (0), ADCY2 (0), SLC18A2 (5),

SLC6A3 (0), SLC17A7 (0)

DRD2 PTK2B (0), TH (4), CACNB2 (0), GRIN2A (7), CCK (0),

CHRM3 (1), CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 SLC17A7 (0), ACHE (0), GCH1 (0), GRIN1 (3), HTR2A (0),

PTK2B (0), SLC18A2 (5), STX1A (1), DDX3Y (0)

17

TH DDN (0), CHRNB3 (0), SLC17A6 (0), ACHE (0), SLC17A7 (0),

GCH1 (0), SLC18A2 (5), GRIN1 (3), DRD2 (4), CACNG3 (0),

DDC (6)

CACNB2, SLC17A7,

ADCY2, STX1A,

CXCL9, GRIN1,

GRIN2A, GABRA2,

RET, DDX3Y,

SLC17A6,RAB3B,

HTR2A, KALRN,

DDN, GCH1, ACHE,

MOXD1, SYT1,

CNR1, RGS4,

ATP1A3, ADCY2,

PTK2B, CCK,

CHRM3, CXCR4,

CHRNB3, CACNG3

DDC MOXD1 (0), TH (7), GRIN2A (4), CACNB2 (0), SLC18A2 (5),

GCH1 (0)

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), KALRN (0), SYT1 (2)

GCH1 SLC17A6 (0), TH (1), CACNG3 (0), GRIN1 (0), ADCY2 (0),

SLC18A2 (5), SLC6A3 (0)



Table 6.14 Causal genes along with their interacting partners among each control

module

Mod

ule

No.

Causal

gene

Interacting partners (No. of common pathways with

the causal gene)

Suspecting genes

DRD2 SLC18A2 (4), GRIN2A (7), STX1A (0), GNB5 (2), CNR1 (1),

ADCY2 (3), SLC6A3 (4), CACNB2 (0)

SLC6A3 DDC (4), TH (5), RASGRP1 (0), GCH1 (0), CACNB2 (0),

DRD2 (5), DDX3Y (0)

18

TH SLC17A6 (0), SLC17A7 (0), RASGRP1 (0), GCH1 (0), SLC6A3

(5), DDC (6), ACHE (0), DDN (0), RET (0)

CACNB2, SLC17A7,

ADCY2, STX1A,

CXCL9, GRIN1,

GRIN2A, GABRA2,

RET, DDX3Y,

SLC17A6,RAB3B,

HTR2A, KALRN,

DDN, GCH1, ACHE,

MOXD1, SYT1,

CNR1, RGS4,

ATP1A3, ADCY2,

GNB5, RASGRP1

DDC TH (7), SLC17A6 (0), RASGRP1 (0), SLC18A2 (5), GCH1 (0),

SLC6A3 (4), MOXD1 (0)

SLC18A2 SLC17A7 (1), GRIN2A (3), STX1A (2), DRD2 (5), GCH1 (0),

DDC (5), RASGRP1 (0), SLC17A6 (1)

GCH1 SLC18A2 (5), STX1A (0), HTR2A (0), CACNB2 (0), SLC6A3

(0), DDC (1), TH (1), RASGRP1 (0), ATP1A3 (0)

DRD2 PTK2B (0), TH (4), CACNB2 (0), GRIN2A (7), CCK (0),

CHRM3 (1), CNR1 (1), CXCR4 (0), CXCL9 (0)

SLC6A3 SLC17A7 (0), ACHE (0), GCH1 (0), GRIN1 (3), HTR2A (0),

PTK2B (0), SLC18A2 (5), STX1A (1), DDX3Y (0)

21

TH DDN (0), DDC (7), CACNG3 (0), DRD2 (4), GRIN1 (3),

SLC18A2 (5), GCH1 (0), SLC17A6 (0), ACHE (0)

CACNB2, SLC17A7,

ADCY2, STX1A,

CXCL9, GRIN1,

GRIN2A, GABRA2,

RET, DDX3Y,

SLC17A6,RAB3B,

HTR2A, KALRN,

DDN, GCH1, ACHE,

MOXD1, SYT1,

CNR1, RGS4,

ATP1A3, ADCY2,

CCK, CHRM3,

CXCR4, CXCL9,

CACNG3, GABRA1

DDC TH (7), MOXD1 (0), GRIN2A (4), CACNB2 (0), SLC18A2 (5),

GRIN1 (3), GCH1 (0)

SLC18A2 SLC6A3 (5), GCH1 (0), TH (5), DDC (5), CACNB2 (0), PTK2B

(0), KALRN (0), SYT1 (2)

GCH1 SLC17A6 (0), TH (1), CACNG3 (0), DDC (1), GRIN1 (0),

ADCY2 (0), SLC18A2 (5), SLC6A3 (0), SLC17A7 (0), GABRA1

(0)



son’s Disease [125]. GB5, a β subunit of the GTP-binding proteins is present in

the Central Nervous System. It is known to form complexes which control the

transmission activity of neurons, thus affecting the behavioral consequences.

d) HTR2A: Impulsive behavior is one of the consequences seen in a Parkinson’s

patient undergoing treatment [149]. Serotonin pathways associated with serotonin

2A receptor gene (HTR2A) and dopamine are known to be causing such behavioral

changes [69].

e) GRIN2A, GRIN1 : People who are heavily addicted to coffee have shown

chances of developing Parkinson’s Disease via mutation in the glutamate receptor

gene (GRIN2A) [42].

f) STX1A: The first symptoms of Parkinson’s Disease is attributed to the loss

of dopaminergic neurons [65]. A post-mortem experiment conducted in the brain

tissue samples of Parkinson’s Disease patients shows the association of STX1A with

neurotransmitters [115], and hence can be said to be indirectly associated with the

disease.

g) SLC17A7, SLC17A6 : Gluatamate is one of the most important neurotrans-

mitters associated with the brain’s activity. Any mutation in the activity of two

proteins- VGLUT1 (SLC17A7) and VGLUT2 (SLC17A6) affect the expression of

glutaminergic neurons, which can cause an imbalance to the brain’s functioning

leading to depression and ultimately resulting in Parkinson’s Disease [150].

h) SYT1 : Mutations in the Parkin gene may be associated with juvenile Parkin-

son’s Disease or late Parkinson’s Disease. It monitors the expression of synapto-

tagmin1 (SYT1) in the brain, which is indirectly associated with synaptic vesicle

release. A deficiency in the expression of the Parkin gene can cause an oxidative

stress in dopaminergic neurons, thus affecting people’s brain activity, ultimately

leading to Parkinson’s Disease 4.

i) FOS : Motor abnormality in Parkinson’s Disease is caused by the degeneration

of nigrostriatal pathway, which is often linked to changes in the pain perception

capability of the living being. To see its role, certain experiments were done on

the rat model of the disease. Rats with nigrostriatal abnormalities showed varying

pain perceptions and hyperalgesic responses when they were injected with formalin

drug. This kind of response to the injection lead to reduced expression levels of

FOS in the hypothalamus, which is dircetly linked with the sensory stimulus of

pain in the brain [142].

4grantome.com/grant/NIH/K01-NS047548-01AI
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Figure 6.5. Expression patterns of six causal genes and new suspected genes

j) ATP1A3 : Changes in the ATP1A3 gene is associated with both dystonia

Parkinsonism and hemiplegia of childhood [46].

6.6.1 Expression pattern of new suspected genes

In order to further strengthen our findings, we plotted the expression patterns of

suspected genes w.r.t. causal genes. Figure 6.5 depicts the expression level of new

suspected genes w.r.t causal genes.

In Figure 6.5, we see that genes such as ADCY2, GNB5, HTR2A, GRIN2,

GRIN1 and SLC17A6 have shown expression values at par or higher than DDC,

SLC18A2 and GCH1, which are already established as causal genes in the database.

6.7 Hub gene analysis in modules based on cen-

trality

In biological networks such as gene-gene or protein networks, the removal of a node

may lead to functional changes besides structural changes. Hence, identification

of such nodes is important. These nodes are often referred to as hub nodes or

essential nodes. Earlier work [174] suggests that a node with a high degree, i.e.,

more number of inter-connections with other nodes tends to act as one of the

central players in the network and removal of such a node would tend to cause

structural deformities in the network. However, this measure does not consider the

global structure of the network when deciding the significance of each node. To

decide upon the essentiality of nodes in the network, a centrality measure can be

used to rank nodes based on certain physical characteristics of the network. We
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used centrality measures [132], viz., betweenness, eigenvector, page rank, closeness

and radiality measure to discover the role of nodes in a human protein protein

interaction network and finally to pick up the best centrality measure(s) for our

purpose. Experimental results show that radiality and pagerank measures are more

most suitable while analyzing the importance of each node in such a network. We

therefore use these two measures to determine the essential gene (hub gene) among

the Parkinson’s disease gene network. Tables 6.15 and 6.16 give the hub genes for

each module using the radiality and page rank measures in both the stages. The

interacting partners of the hub genes along with their association types are also

given. Association type can be either direct or indirect. In direct association, a

hub gene is found to be at one hop distance with the other gene as given by the

network using the STRING tool whereas indirect association implies more than

one hop distance in the same network.

In Table 6.15 and 6.16, we see that RBFOX1, MAFF, MYH11, ACTR2, IG-

FIR, LY96, S100A9 and MARCKS were found as the hub genes among modules

obtained in the two stages. However, these genes are not found to be associated

with the causal genes in the STRING tool’s repository. Taking a closer view of

the role of these genes in Parkinson’s Disease, we find that four of them (RB-

FOX1, MAFF, MYH11, S100A9 ) are associated with the disease. An experiment

was conducted in vitro on mutations of the neurons in a person suffering from PD

showed an increase in the expression level of RBFOX1 which is associated with

RNA processing activities resulting in phenotypic changes of the patient [83]. An-

other transciptomic study conducted on disease and control olfacatory neurosphere

derived cells of a Parkinson’s patient revealed that MAFF was induced only in PD

cells [20]. Dementia is one of the early signs of PD and is diagnosed at least a

year before the actual diagnosis of PD 5. A protein called S100A9 has been estab-

lished as a biomarker of dementia progression and hence can be associated with

the disease [49]. Another interesting finding is the association of a hub gene MAFF

with FOS and CNR1 gene in the control stage. The associated genes FOS and

CNR1 are among our suspecting genes. The association of these two genes with

the disease is already discussed in Section 6.6. Hub gene, MOXD1 in module 3

of the control stage is directly found to be associated to the causal gene, which

makes it all the way more significant w.r.t. the disease. The other hub genes of

the control stage do not form part of modules during the disease stage at the given

threshold. This may be due to their low subspace overlap value with the seed node.

5http://www.alz.org/dementia/parkinsons-disease-symptoms.asp
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Table 6.15 Hub genes based on radiality and pagerank measure for each module

in control stage along with their associations with causal and suspected genes.

Associations with causal genes

Measure Hubgene Associated genes

Module No Gene name(s) Mode of associa-

tion

7 DRD2, SLC6A3,

TH, DDC, SLC18A2,

GCH1

Indirect

MAFF 1 DRD2, SLC6A3, TH,

DDC, SLC18A2

Indirect

14,20 DRD2, SLC6A3, TH,

DDC,

Indirect

Radiality MYH11 2, 5 DRD2, SLC6A3,

TH, DDC, SLC18A2,

GCH1

Indirect

8 DRD2, SLC6A3, TH,

DDC

Indirect

3,6,9,10,11,13,

15,17,18, 21

DRD2, SLC6A3,

TH, DDC, SLC18A2,

GCH1

Indirect

RBFOX1 4 DRD2, SLC6A3 Indirect

16 DRD2, SLC6A3, TH Indirect

19, 22 DRD2, SLC6A3, TH,

DDC, SLC18A2

Indirect

Associations with suspected genes

MAFF 7 FOS, CNR1 Indirect

1 FOS, CNR1 Indirect

Associations with causal genes

2,3,5,6,7,9,10,

11,12,13,15,17,

18,21

DRD2, SLC6A3,

TH, DDC, SLC18A2,

GCH1

Indirect

4 DRD2, SLC6A3 Indirect

Pagerank MOXD1 8 DRD2, SLC6A3, TH,

DDC

Indirect

14,20 DRD2, SLC6A3, TH,

DDC

Indirect

16 DRD2, SLC6A3, TH Indirect

19, 22 DRD2, SLC6A3, TH,

DDC, SLC18A2

Indirect

Associations with suspected genes

3 DDC Direct



Table 6.16 Hub genes based on radiality and pagerank measure for each module

in disease stage along with their associations with causal and suspected genes.

Associations with causal genes

Measure Hubgene Associated genes

Module No Gene name(s) Mode of associa-

tion

ACTR2 1,2,3 SLC6A3 Indirect

IGF1R 4 SLC6A3 Indirect

Radiality DDX3Y 5 SLC6A3, TH Indirect

LY96 6 SLC6A3, DDC, GCH1 Indirect

ACHE 7 SLC6A3, DDC, GCH1,

TH

Indirect

S100A9

2 SLC6A3 Indirect

3 SLC6A3 Indirect

Pagerank MARCKS 4 SLC6A3 Indirect

5 SLC6A3, TH Indirect

6 SLC6A3, DDC, GCH1 Indirect

7 SLC6A3, DDC, GCH1,

TH

Indirect

A low subspace overlap value indicates fewer connections of this gene with the rest

of the genes in the network. Although, we could not find grounded evidence for

the association of a few hub genes with the disease, it can be a good starting point

for the biologists to conduct experiments and analyze their roles in the genomic

structure of patients suffering from the disease.

Two hub genes, MAFF in modules 1 and 7 of the control stage and ACTR2

for modules 1 and 2 in the disease stage are shown in Figure 6.6(a) and 6.6(b),

respectively.

6.8 Discussion

In this chapter, we have explored the properties of genes expressed at different time

points under different conditions and extended the discussions to define multi-edge

gene-gene networks. We extract modules from the network at different stages.

The use of multiple edges highlights the presence of even those edges which are

eliminated due to the use of a higher threshold in Pearson correlation coefficient.

The work proposed in Chapter 5 lead to information loss due to thresholding in

the first step of network construction. In this work, it has been overcome by

considering genes under subset of conditions. The obtained gene network is more

reliable and informative and hence leads to better module extraction. The extracted

modules in both the stages are then used to find consensus modules that show high
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(a) Hub gene MAFF and its partners in control

modules 1& 7.

(b) Hub gene ACTR2 and its partners in disease

modules 1 & 2.

Figure 6.6. Visual representation of control module and disease module along

with their hub genes using STRING tool.

correspondence in terms of sharing of common genes and pathways. The concept of

consensus modules encourages a detailed analysis of the differentially coexpressed

genes across the stages. This analysis helps identify certain new genes such as

ADCY2, GNB5, HTR2A, GRIN2A, GRIN1 and SLC17A6 which have been found

strongly associated with the causal genes known apriori and, hence may also cause

a critical disease like Parkinson. However, the use of the concept of multi-edge

networks is limited by the ability of the hardware platform. Processing time is

directly proportional to the number of genes times the condition set. Hence, we

report the results for only one threshold. From the view point of centrality analysis,

genes such as RBFOX1, MAFF, S100A9 are found to be closely associated with

the disease. Although the network construction process is slightly time consuming,

a parallel implementation on CUDA platform is going on to overcome the issue.

The publication associated with this chapter is listed as Publication No. 3 and 7

under the Publication section.
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