
Chapter 3

Extracting Spatial Relations of

Extended Objects

3.1 Introduction

In most QSR approaches for HAR, humans are abstracted using single bounding

boxes. However, abstracting the whole body using a single bounding box abstracts

away a lot of important interaction details. For example, Figure 1-1 in Chapter 1

shows the handshaking activity from the UT Interaction dataset [3] with two

different types of abstraction. If a single bounding box is used to abstract the

human bodies involved as shown in Figure 1-1a, then the activity can best be

seen as a sequence of qualitative relations expressing the following - the bodies

(abstracted as bounding boxes) are far away from each other initially, then they

come closer, and thereafter the bounding boxes overlap and move away from one

another. However, such a description does not describe the handshaking activity

at the desired level of fineness. The description does not include important details

pertaining to the handshaking activity, such as the fact that hands of the two

persons involved came in contact rather than the whole body. This was lost in

the coarse abstraction of the interacting bodies using a single bounding box.

Human interactions are better described when the human body is viewed as

a collection of parts [15]; each part abstracted through a bounding box. This is

shown in Figure 1-1b, where separate bounding boxes are used to abstract different

parts of the human body. If a qualitative description of such an abstraction is

obtained then it would express the following - the bounding boxes corresponding

to the right hands of the two interacting humans are at first far away, then they

come closer and overlap, then finally they move away; the rest of the bounding
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boxes remain away from each other. In contrast to the single bounding box based

description, this description includes the important interaction details involving

the hands of the interacting human bodies. However, such a part-based model of

the human body mostly view body parts as independent entities; this is counter-

intuitive to the notion of body-parts being part of a whole body.

In this chapter, we investigate the importance of abstracting human bodies as

extended objects for human activity recognition in video. In the context of HAR,

we define extended objects as a set of components, such that each component

is approximated by an axis-aligned minimum bounding rectangle. We develop a

framework for effectively representing spatial relations between extended objects,

and efficiently obtaining such relations using a generic algorithm.

This chapter defines extended objects and discusses the shortfalls of existing

models for extended objects. The Extended CORE9 framework is presented for

computing topological, qualitative direction, and qualitative distance relations

between a pair of extended objects. Furthermore, the results of experiments con-

ducted using Extended CORE9 is reported along with a discussion on their sig-

nificance.

Experiments are performed to show that a representation that abstracts human

bodies as extended objects may lead to better representation of human activity

within a video. In the experiments, we compare representations of video activities

using simple bounding box abstraction of human bodies and an extended object

representation of video activities. For each type of abstraction, we extract quali-

tative relations between human bodies and objects involved in the activity. The

relations are treated as words in a bag-of-words representation of the activities.

Experiments are performed using four classifiers - KNN, SVM, Naive Bayesian,

and Deep Learning with a basic architecture. These experiments are conducted

to show that a better classification of activities would be obtained if relations

obtained using Extended CORE9 rather than relations obtained using CORE9.

3.2 Extended Objects

In literature, extended objects, which can be seen as disconnected regions, have

been discussed. Extended objects have been referred to as complex objects, dis-

joint objects, multi-component objects and composite regions [16, 17, 75] (see Sec-

tion 2.2.4 of Chapter 2). In this thesis, we define an extended object as a set of

axis-aligned rectangles, where each rectangle is an approximation of a component.

A component, in this context, is a part of some entity that can have an individual
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identity. For example, the hand is a component of the human body ; such compo-

nents can be approximated using individual bounding rectangles. Intuitively, more

the number of such bounding rectangles used to abstract a body, the more precise

is the abstraction. For example, if the human body is abstracted considering the

head, torso, forearm, arm, fingers, thighs, legs and feet as separate components

then a more precise description of the human body is obtained compared to an

abstraction that uses only head, torso, hands and legs as components.

Definition 3.1. An extended object A consisting of m components is defined as,

A = {ai|ai is an axis-aligned rectangle bounding a component of A, 1 ≤ i ≤ m}

In any video frame there is only a finite set of objects that can be detected. Of

these detected objects certain objects, such as human bodies, can be decomposed

into a set of components. Each set of components describing an entity (such

as a human body) can be considered an extended object. Any entity or object

in the video frame, which can not be decomposed into its components can be

considered an extended objects comprising of a singleton set of one component.

Given that this thesis addresses HAR from video using extended objects, the

following observation is crucial to establish the completeness of the extended object

based abstraction.

Observation 1. Given any video frame, all objects of interest can be seen as

extended objects.

3.2.1 CORE9 and Desiderata for Extended CORE9

CORE9 is a compact representation for various spatial aspects of a pair of rectangle

objects [13] that was designed considering the requirements and restrictions of

video analysis (see Section 2.3 of Chapter 2). As shown in Figure 2-5, objects are

assumed to be single-piece, axis-aligned rectangles in CORE9. On the other hand,

by definition, extended objects have multiple components. There can be two ways

to handle extended objects using CORE9.

a. Approximate the whole object using a single axis-aligned rectangle: We

write this as CORE9w. The problem with CORE9w is it cannot distinguish

between configurations shown in Figure 3-1. This is because all components

of A are abstracted away as a single rectangle MA and all components of B

are abstracted as MB.
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b. Treat components as individual single-component entities approximated us-

ing separate axis-aligned rectangles; We write this as CORE9c. The problem

with CORE9c is it fails to recognize the relation between entities A and B

as a whole. Additionally, it computes all m+nC2 relations (where m and n

are the number of components in A and B respectively). All relations be-

tween components of the same object are included despite being relatively

uninteresting, especially for human interactions. For example, in the hand-

shaking activity shown in Figure 1-1, it is interesting to note the sequence

of relations between one person’s hand with the other person’s hand rather

than the relations between the person’s hand and his/her own hand.

(a) (b)

Figure 3-1: Two configurations that would be indistinguishable to CORE9w

Due to the difficulties of representing extended objects and computing the

relations between them efficiently using CORE9, we propose Extended CORE9.

Within Extended CORE9, the relation between a pair of extended objects is de-

fined using component relations and whole relations. Further we show that a

recursive algorithm using geometric reasoning can reduce the number of com-

putations while extracting qualitative spatial relations of two extended objects.

Extended CORE9 is capable of computing topological, directional and distance

relations between a pair of extended objects.

3.3 Extended CORE9

To express binary spatial relation between two extended objects, two types of

relations are used: component relations and whole relations. This is close to

the two-level description of topological relations for composite regions introduced

in [16].

• Component relations are the relations between components of one extended

object and the components of the other extended object, i.e. inter-object
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component-component relations. This is similar to the detailed level rela-

tions defined in [16].

• Whole relation is the general relationship between the extended objects,

computed using the component relations. This is similar to the coarse level

relations in [16].

However, the work described in [16] is a formal model for expressing topological

relations between multi-component composite regions where each component is a

closed connected point set. While the formulation in this thesis follows a similar

model, we further propose methods for efficiently obtaining not only topological

but also qualitative directional and distance relations between a pair of extended

objects. We assume each component of the extended object is an axis-aligned

rectangle. This is because most tracking information is given as coordinates of

rectangles within a video frame. More importantly, such an assumption allows

us to use geometric reasoning for opportunistically inferring multiple qualitative

relations with fewer computations. Axis-aligned rectangles also require simpler

geometric computations for finding overlap and intersection of components, com-

pared to other enclosing structures such as, circle or oriented rectangles. For the

sake of convenience, hereafter the term rectangle will be used to mean axis-aligned

rectangle, unless stated otherwise.

Let us consider a pair of extended objects, say A and B. A has m components

that are abstracted using rectangles, a1, a2, ..., am. Similarly B has n components

that are abstracted using b1, b2, ..., bn. To extract binary spatial information be-

tween A and B, we first obtain the minimum bounding rectangles (MBRs) of A

and B. The MBR of a set of rectangles, MBR(a1, a2, ..., an), is defined as the

rectangle with the smallest area enclosing all the rectangles. In Figure 3-1, MA is

MBR(A), where extended object A = {a1, a2}; similarly MB is MBR(B).

In Extended CORE9, we obtain cores for MBRs of extended objects A and

B, in a manner similar to CORE9 [13] (see Section 2.3 of Chapter 2). The nine

cores for the extended objects are obtained by extending the endpoints of the

corresponding MBRs in both directions parallel to the axes (as shown in Figure 3-

1). However for extended objects, instead of the state information defined in

CORE9, we compute an extended state information that allows computation of

several component relations at a time; a detailed discussion of this is given in

Section 3.3.1. The extended state information tells us which components of the

extended objects A and B overlap a core and is defined as follows:
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Definition 3.2. The extended state information for corexy(A,B), x, y ∈
{1, 2, 3} of MBR(A) and MBR(B), is denoted by σxy(A,B) and is computed as

follows,

σxy(A,B) =


{ai|ai ∩ corexy(A,B) 6= φ}∪

{bj|bj ∩ corexy(A,B) 6= φ} if corexy(A,B) 6= NULL

� if corexy(A,B) = NULL

(3.1)

σxy(A,B) is φ if no components of A or B intersect with corexy(A,B).

Definition 3.3. The extended state information of a pair of objects, A

and B, is denoted by σ(A,B) and is computed as follows,

σ(A,B) =


σ1,3(A,B) σ2,3(A,B) σ3,3(A,B)

σ1,2(A,B) σ2,2(A,B) σ3,2(A,B)

σ1,1(A,B) σ2,1(A,B) σ3,1(A,B)

 (3.2)

3.3.1 Component Relations

The extended state information is designed to allow inference of relation R(ai, bj)

without CORE9 computation where possible; such inference is possible if ai and

bj are not in the same core. Lemma 3.1 proves that if ai and bj are in the same

core then it would only be in core22. It follows from Lemma 3.1 that in order to

determine whether two components ai and bj are in the same core, it is sufficient

to look at the state of core22 i.e. σ22. It is to be noted here that default relations

can be inferred for all components that are not in σ22; a detailed discussion of such

inference is given in Section 3.3.1.1.

Lemma 3.1. Given two extended objects and the extended state information, the

state of the central core, i.e. σ22, determines whether two components ai and bj

are in the same core.

Proof. Let A and B be two extended objects with m and n components respec-

tively. For any two extended objects the extended state information consists of

the states of nine cores formed using boundaries of MBR(A) and MBR(B); we

refer to this as the core grid. To prove that, in order to determine whether any

two components ai and bj are in the same core it is sufficient to examine the state

of the central core, σ22. We show that if any component (say bj) is not in σ22 then
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it is not possible for that the component to be in the same core as a component of

the other extended object (say ai).

For the proof we consider the possible cases how the nine cores may be formed

by MBR(A) and MBR(B). There are three possible cases how the two opposite

boundaries parallel to the X-axis may be formed; similarly there are three cases

for the opposite boundaries parallel to the Y-axis. Herein, we give the proof only

with respect to boundaries parallel to the X-axis as similar arguments can be given

for boundaries parallel to the Y-axis. The three possible cases are:

(a) MBR(A) and MBR(B) coincide and define at least one of the two opposite

boundaries of the core grid.

(b) Both the opposite boundaries of the core grid are defined by either MBR(A)

or MBR(B) (but not both).

(c) One of the opposite boundaries of the core grid is defined by MBR(A) and

the other MBR(B).

The three cases are illustrated in Figure 3-2. Let us consider components ai and

bj such that bj /∈ σ22 and bj ∈ σp3 where p ∈ {1, 2, 3} i.e., bj is in either of the

upper cores. For ai and bj to be in the same core, ai ∈ σp3.

Figure 3-2: The three possible cases for core boundaries parallel to the X-axis

From Figure 3-2, it is clear that for the first case the area covered by core13, core23

and core33 is zero. Therefore it is impossible for ai or bj to be in any of these

cores. For the second and third cases, there can be two further possibilities for ai:

1. ai defines a boundary of the MBR(A).

2. ai does not define any boundary of the MBR(A).

Assuming that ai defines the upper boundary of MBR(A), ai would also define

the upper boundary of the middle cores, core12, core22 and core32, i.e. ai ∈ σq2

where q ∈ {1, 2, 3} (see Figure 3-2). It would appear that if only ai were to move
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slightly upwards it would be in σq3 and if p = q, then ai, bj ∈ σq3. But by moving

ai upwards, the upper boundary of coreq2 also moves upward; therefore ai /∈ σq3.
On the other hand if ai does not define the upper boundary of MBR(A), then

some other component, ak, would define the upper boundary of MBR(A); this in

turn would mean that ak is above ai. So if ai ∈ σq3 ⇒ ak ∈ σq3. However, it has

already been shown that if ak defines the upper boundary MBR(A), then ak /∈ σq3.
Therefore, ai /∈ σq3 and ai and bj are not in the same core.

Similar arguments can be given for each of the outer cores of the core grid,

that if bj /∈ σ22 then ai and bj are never in the same core.

Given Lemma 3.1 and the fact that default relations can be inferred for all

components that are not in σ22, a recursive algorithm is formulated that oppor-

tunistically computes the topological, directional and distance relations between

a pair of extended objects. For any two extended objects A and B (with m and

n components respectively), in the average case, only some components of either

object are in σ22, say p components of A and q components of B. At the topmost

level of the recursion, the relations corresponding to m−p+n−q components not

in σ22 are inferred by default. In the next level of recursion, new extended object

A′ is created using the p components and B′ is created using the q components.

At this level too, some relations are obtained by default and for the remaining we

go down to the next level of recursion. The recursive call is continued until one

reaches a level where both objects have one component each or all components

of both objects are in the central core. If it is the latter case, all of the remain-

ing relations are computed by pairwise CORE9 computation. The details of the

recursion are given in Algorithm 1.

Given Lemma 3.1, it can be shown that there are four distinct possible config-

urations. The following lemma proves that Extended CORE9 is able to compute

qualitative spatial relations for all possible configurations.

Lemma 3.2. Given any two extended objects, all topological, directional and dis-

tance relations between them can be computed using Extended CORE9.

Proof. For a given pair of extended objects, only one of four possible cases may

occur, as shown in Figure 3-3. The four cases are as follows:

Case 1. No components in σ22; shown in Figure 3-3a.

Case 2. Components of only one object in σ22; shown in Figure 3-3b.

Case 3. Some components of both objects are in σ22; shown in Figure 3-3c.
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Case 4. All components of both objects are in σ22; shown in Figure 3-3d.

(a) (b) (c) (d)

Figure 3-3: The four possible cases of configurations between a pair of extended
objects

The recursive algorithm proposed to compute relations between a pair of ex-

tended objects (Algorithm 1) computes all the component relations opportunisti-

cally. The four possible cases mentioned above are handled by the algorithm as

follows:

• In cases 1 and 2, the topological, direction and distance relations are obtained

by default (see Section 3.3.1.1).

• In case 3, some of the component relations are obtained by default, the

remaining relations are obtained recursively. From the recursive call, once

again we have four cases. The recursion terminates when all relations are

either computed by the cases 1, 2 or 4.

• In case 4, none of the component relations are obtained by default. As such,

all computations are obtained using pairwise CORE9.

For example, to compute topological relations, the four cases are handled as

follows: Case 1. Since there are no components in σ22, all components are by

default topologically disjoint. Case 2. Since components of only one object are in

σ22, again all are by default topologically disjoint. Case 3. Since there are some

components of A and some components of B in σ22, relations for all components

not in σ22 are by default disjoint. For all remaining components, new relations

are computed recursively for new extended objects composed of components in

σ22. Case 4. Since all components of A and B are in σ22, no relations can be

inferred by default. As such, all relations are computed using pairwise CORE9

computations.

For components not in σ22 topological, directional and distance relations are

computed by default as discussed in Section 3.3.1.1. For components that are in

σ22 relations are computed recursively as discussed in Section 3.3.1.2.
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3.3.1.1 For components not in σ22

The topological component relations are expressed as RCC5 relations and direc-

tional relations expressed as cardinal directions. Relations are computed using

Algorithm 1, that takes advantage of the fact that when two components are

completely in different cores, the topological relation between them can be im-

mediately inferred to be Disjoint or the DR relation of RCC5. For example, the

topological relation between components a1 and b1 in Figure 3-1a is DR. This is

because the nine cores of the core grid are disjoint by geometry. Consequently,

any two components that are in two disjoint cores are also disjoint.

The directional relation between two components ai and bj that are completely

in different cores can be inferred by analyzing the indices of the respective cores.

This is possible because the indices of cores refer to their geometric positioning.

For example, core11 is at the bottom-left corner and core33 is at top-right corner of

the core grid1. Therefore, from the definition of CDC relations, one can infer that

if ai is in core11 and bj is in core33 then ai is southwest of bj or the SW relation

of CDC. Table 3.1 gives the complete set of inferences required to compute the

default directional relation. In the table, the contents of cell [p, q] is the direction

relation that holds between components ai and bj if the condition in row p and

column q holds. Here, x, y, z, w are the indices of the cores of ai and bj, such that

ai is in corexy and bj is in corezw.

x < z x = z x > z
y > w NW N NE
y = w W B E
y < w SW S SE

Table 3.1: Inference of Cardinal Directional Relation for components ai and bj

The distance relations for components are expressed as approximate estimates

of the qualitative distance relations defined in [72]. We use a subset of the qualita-

tive distance relations: connected (C), strictly close (SCl), strictly near (SN), and

away (A). Using only the extended state information we are able to provide a rough

estimate of the distance relations, with the exception of the connected relation.

We call these rough estimates of distance relations as roughlyClose, roughlyNear,

and roughlyAway. and are defined based whether two components belong to ge-

ometrically adjacent cores, non-adjacent cores or same cores. Table 3.2 gives a

detailed description of the conditions for inferring distance relations.

1assuming that the core grid is always in the first quadrant of the reference frame
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roughlyAway ai and bj are in completely different cores and none of the
cores containing ai is adjacent to any of the cores containing
bj

roughlyNear ai and bj are in completely different cores and at least one of
the cores containing ai is adjacent to one of the cores contain-
ing bj

roughlyClose When ai and bj are in the same core, the algorithm is called
recursively as described in Algorithm 1. When the recursion
terminates, if the topological relation between them is found
to be DR, then the distance relation is roughlyClose.

Connected If the topological relation between ai and bj them is not DR.

Table 3.2: Inference of Distance Relation for components ai and bj

It is worth noting that CORE9 uses relative sizes of cores to measure the

relative closeness of two rectangular objects. Depending on whether the size of

a core is increasing or decreasing CORE9 infers whether the objects are moving

closer or further away [13]. In contrast, we use an approach that takes into account

whether two components are in adjacent cores or not and at which level of the

recursion, to determine a qualitative distance relation.

3.3.1.2 For components in σ22

For components that are not in σ22 all component relations can be computed by

default. However, for components that are in σ22, the relations can be computed

using the recursive algorithm as detailed in Algorithm 1.

The whole relations between extended objects A and B can be inferred by look-

ing at the component relations collectively. The computation of whole relations

from component relation is discussed in the following section.

3.3.2 Whole-Relations

Whole relations between the extended objects are derived from the component

relations computed using the recursive algorithm. Given the set of topological

component relations for extended objects A and B, the topological whole relation

between A and B is obtained as the most general relation from the subsumption

lattice of RCC [70] (see Section 2.4.2 of Chapter 2). Similarly, the directional

whole relation between A and B is the most general directional relation. This is

computed by assuming A and B to be extended objects with single components,

MBR(A) and MBR(B) respectively. Extended CORE9 computation degenerates

to CORE9 computation for single-component objects; the directional whole rela-
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Algorithm 1: boolean Rel(σ(A,B)), Algorithm to find R(ai, bj)∀i ∈
{1...m},∀j ∈ {1..n}

Input: σ(A,B)
Output: boolean
begin

if ∀corexy(A,B), σxy(A,B) ∩ {ai, bj} = φ then
R(ai, bj) = Ψ ; Ψ ∈ <, < is a set of spatial relations

else if ∀corexy(A,B), ∃σxy(A,B)− {ai, bj} = φ then
Compute R(ai, bj) using CORE9 SI

else if ∀corexy(A,B), ∃σxy(A,B)− {ai, bj} = {ai1 , ...aik , bj1 , ...bjk} 6= φ
then
A′ = MBR(ai1 , ai2 , ...aik)
B′ = MBR(bj1 , bj2 , ...bjk)
newr ← Rel(σ(A′, B′)) ; Recursively find relations using ESI

if newr = FALSE then
forall i ∈ {i1, i2, ...ik} & j ∈ {j1, j2, ...jk} do

Compute R(ai, bj) using CORE9 SI

else
return FALSE ; no new relations are computed

return TRUE ; at least one new relation is computed

tion is thus computed using CORE9 for the MBRs of A and B.

On the other hand, the qualitative distance whole relation is the component

relation describing the closest components. Table 3.3 is used to infer the distance

whole relation. In the table, the contents of a cell [p,q] indicate whether the qth

relation is in the set of distance component relations for the pth whole relation to

be inferred. The contents of the cell [p,q] can be either of the three value: true,

false and ×. If the contents of cell [p,q] is true, then it indicates there is at least

one component relations of the type corresponding to the qth column. Similarly,

false and × indicate there are no and there may or may not be a component

relation of the type corresponding to the qth column, respectively.

Component Relation Connected roughlyClose roughlyNear roughlyAway
Connected true × × ×

roughlyClose false true × ×
roughlyNear false false true ×

roughlyAway false false false true

Table 3.3: Computing whole relation for the distance relations

From our discussions thus far, we are in a position to compute component

relations and whole relations for a given pair of extended objects. The set of
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relations computed using Extended CORE9 for a pair of extended objects include

the set of component relations and the whole relation. In the following subsection,

the complete process of extracting spatial relations between a pair of extended

objects using Extended CORE9 is illustrated with the help of an example.

3.3.3 An Illustrative Example

Consider the extended objects A and B (A = a1 ∪ a2 ∪ a3 and B = b1 ∪ b2 ∪ b3) as

shown in Figure 3-4.

Figure 3-4: [Illustrative example: The objects in the first three levels of recursion
and the base case.

In the highest level of recursion, i.e. level 0 in Figure 3-5, ESI of A and B will be:

σ(A,B) =


{a3} {a3} φ

{a1, a2, a3} {a2, a3, b1, b2} {b1, b2}
φ {b2} {b2, b3}


From this ESI, we can infer R(a1, b1), R(a1, b2), R(a1, b3), R(a2, b3), R(a3, b3) are

DC. Rest of the relations are recursively obtained from new objects A′ = a2 ∪ a3
and B′ = b1 ∪ b2 (where a2, a3, b1, b2 ∈ core22(A,B)) as shown in Figure 3-4; this

happens at level 1 in Figure 3-5. The ESI of A′ and B′ will be:

σ(A′, B′) =


{a3} {a3} φ

{a2, a3} {a2, a3, b1} {b1}
φ {b2} {b2}


From this ESI, we further infer that R(a2, b2), R(a3, b2) are DC. For the rest of

the relations we recursively compute A′′ = a2 ∪ a3 and B′′ = b2 (where a2, a3, b2 ∈
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core22(A
′, B′)) as shown in Figure 3-4; this is level 2 in Figure 3-5.

σ(A′′, B′′) =


{a3} {a3} φ

{a2, a3} {a2, a3, b1} {b1}
{a2} {a2} φ


At this stage, no new information is obtained using the ESI; hence CORE9

state information is used to infer R(a3, b1) and R(a2, b1) as PO. This is the base

case and level 3 in Figure 3-5.

Figure 3-5: Illustrative example: The tree of recursive calls by Algorithm 1 on A
and B of Figure 3-4

3.3.4 Theoretical Analysis

Given any video, a spatial representation of the interactions can be obtained us-

ing Extended CORE9 by abstracting all entities as extended objects. This fol-

lows directly from Observation 1 and Lemma 3.2. All entities in a video frame

can be abstracted as extended objects, and thereafter Extended CORE9 can be

used to compute topological, direction, and distance relations between any pair

of extended objects. Extended CORE9 uses geometric reasoning to minimize the

number of computations where possible. For any two extended objects A and B

(with m and n components respectively) those components that are not in σ22 are

inferred by default. If say, only p components of A and q components of B are in

σ22 then component relations of m− p+ n− q are inferred by default. Therefore,

even though the total number of component relations between A and B is mn,
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the number of core grid and extended state information computations required to

obtain the mn relations is much less than that. The following theorem proves that

the average case complexity of Extended CORE9 is O(n log n).

Theorem 3.1. The average case complexity of the recursive algorithm of Extended

CORE9 is O(n log n), where n is the maximum number of components in either

of the extended objects.

Proof. Let the two extended objects be A and B such that A has m components

and B has n components.

Best Case: From Lemma 3.2, the best case for the recursive algorithm when either

there are no components in the central core or components of only object are in

the central core. In such a case, all of the relations can be inferred by default. In

other words, the best case time complexity is O(1).

Worst Case: The worst case is when all the components are in the central core.

In such a case, all of the relations has to be obtained using pairwise CORE9

computations. Therefore in the worst case, the time complexity is Θ(mn), where

m and n are the number of components in each of the two extended objects.

Average Case: In the average case, only some components of each extended object

are in the central core. At each level of the core, m+n components of the extended

objects are split into p+ q and m−p+n− q components, such that p components

of A and q components of B are in the central core.

Recursion is applied on the p components of A and q components of B by

creating new extended objects A′ and B′; this can be done in O(p+ q) time. Since

the number of ways m,n can be split into p, q and m− p, n− q, is (m− 1)(n− 1).

Thus the recurrence equation can be written as,

T (m,n) =
1

(m− 1)(n− 1)

m,n∑
p=1,q=1

T (p, q) +O(m+ n) (3.3)

To solve the above recurrence by substitution, we consider T (m,n) = (m +

n)log(m+ n). Therefore,

m,n∑
p=1,q=1

T (p, q) =

m,n∑
p=1,q=1

(p+ q)log(p+ q)

≤(m+ n)2(m+ n+ 2)

4
log(m+ n)
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Substituting in Equation 3.3 we obtain,

T (m,n) ≈ O(m+ n)log(m+ n)

≈ O(n log n) , where n > m

For extended objects, A and B (m and n components respectively), CORE9

could use either of the two variants CORE9w and CORE9c for representation.

In CORE9c, the number of computations is quadratic in the total number of

components of A and B, i.e. O((m + n)2). Note that CORE9w requires constant

number of computations, this is at the expense of information loss (as detailed in

Section 3.2.1).

3.4 Experimental Evaluation

The effectiveness of the proposed representation schema relies on how effectively

it can describe an activity so that better interaction models can be obtained for

classification. This in turn is reflected in the classification results for the activities.

We describe activities as a bag-of-words, where the words are the qualitative re-

lations obtained using Extended CORE9. Experiments are conducted using four

different classifiers with such a representation. The details of the experimental

setup are discussed in the following section.

3.4.1 Experimental Setup

We extract the qualitative topological, directional and distance relations amongst

the interacting entities for each activity sequence using Extended CORE9. As

discussed previously in Section 3.3, the relations computed by Extended CORE9

between a pair of extended objects, comprises of the set of component relations

as well as the set of whole relations. However, for the purpose of our experiments

we consider the following variants -

• Relations for a pair of extended objects is the set of component relations

and the whole relation; we write this as ExtCORE9cw

• Relations for a pair of extended objects is the component relations without

the whole-relation; we write this as ExtCORE9c
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• Relations for a pair of extended objects is only the whole-relation; we write

this as ExtCORE9w.

The qualitative relations obtained using Extended CORE9 are treated as a

bag of words describing the activity within a video. Each video is treated as a

document and the activity classes as topics or categories that the classifier is to

model. A detailed description of how a video is converted to Extended CORE9

bag of words can be found in Appendix A. The aim of our experiments is to

evaluate the representation schema Extended CORE9. To do so, we believe a

bag-of-words based approach is sufficient. The bag words description is converted

into a word vector before applying the classifier. We have conducted experiments

using four classifiers namely, K-Nearest Neighbour Classifier (KNN), Naive Bayes

Classifier, Support Vector Machines (SVM) and Deep Learning. It is to be noted

that, research towards better classification approaches that best utilizes Extended

CORE9 representation schema is not the aim of the experiments discussed in this

chapter.

Further, for all the variants of Extended CORE9 discussed above, we have

separate bag-of-words description for each video. Similarly we also have different

bag-of-words description for CORE9c and CORE9w (see Sec 3.2.1). Therefore, we

conduct similar experiments and compare the results for all variants of Extended

CORE9 and CORE9.

3.4.2 Experimental Results

We have experimented on short video sequences from the UT-Interaction dataset

[3], the Mind’s Eye dataset and SBU Kinect Interaction dataset [117]. For our

experiments on the UT-Interaction dataset, we use 50 videos for five activities

- handshaking, hugging, kicking, punching and pushing - that are interactions

involving more than one human bodies. For the Mind’s Eye dataset we consider

110 videos for 11 activities from the dataset - approach, carry, catch, collide, drop,

follow, hold, kick, pickup, push and throw. For both UT-Interaction and Mind’s

Eye dataset, we use keyframes of the videos 2 and manually label the humans and

objects involved in each of the keyframes. The SBU Kinect Interaction dataset

consists of eight activities over 282 videos. For this dataset, we use the available

skeleton tracks to obtain the extended object representation.

We evaluate ExtCORE9w, ExtCORE9c, and ExtCORE9cw on the three datasets

using different classifiers. We obtain topological, directional and distance fea-

2We use I-frames obtained using the tool ffmpeg as keyframes, www.ffmpeg.org
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Figure 3-6: Comparison of F1-scores on UT Interaction Dataset

tures using (a) CORE9c (b) CORE9w (c) ExtCORE9c (d) ExtCORE9cw and

(e) ExtCORE9w. The experiments described above are performed on relations

obtained using each of the five representation schemes. The precision, recall and

f1-score for each activity class as well as the overall classification accuracies are

computed. A comparison of f1-scores for all the variants of Extended CORE9

and CORE9 is shown in Figures 3-6, 3-7, and 3-8,. Tables 3.4, 3.5 and 3.6 give a

comparison of the precision, recall, and f1-score of ExtCORE9cw with the four clas-

sifiers mentioned above. A comparison of the classification accuracies for CORE9

and Extended CORE9 is given in Table 3.7. A comparison of the classification

accuracies for our approach with those in literature is given in Table 3.8.

Activity
KNN SVM Naive Bayes Deep Learning

P R F1 P R F1 P R F1 P R F1
Handshaking (10) 0.9 0.9 0.9 1 0.9 0.95 1 1 1 1 1 1
Hugging (10) 1 1 1 1 1 1 1 1 1 1 1 1
Kicking (10) 0.3 0.4 0.36 0.47 0.7 0.6 0.8 0.4 0.53 0.5 0.5 0.5
Punching (10) 0.39 0.5 0.44 0.5 0.2 0.3 0.43 0.6 0.5 0.33 0.5 0.4
Pushing (10) 0.6 0.3 0.4 0.74 0.9 0.82 0.64 0.7 0.67 1 0.5 0.67

Table 3.4: Results for Extended CORE9 on UT Interaction dataset
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Figure 3-7: Comparison of F1-scores on SBU Kinect Interaction Dataset

Figure 3-8: Comparison of F1-scores on Mind’s Eye Dataset
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Activity
KNN SVM Naive Bayes Deep Learning

P R F1 P R F1 P R F1 P R F1
Approach (10) 0.37 0.3 0.33 0.37 0.3 0.33 0.42 0.5 0.45 0.37 0.3 0.33
Carry (10) 0.78 0.7 0.74 0.87 0.7 0.78 0.71 1 0.833 0.78 0.7 0.74
Catch (10) 0.7 0.7 0.7 0.58 0.7 0.64 0.89 0.8 0.84 0.62 0.56 0.52
Collide (10) 0.67 0.6 0.63 0.57 0.8 0.67 0.33 0.4 0.36 0.33 0.4 0.36
Drop (10) 0.36 0.4 0.38 0.25 0.1 0.14 0.43 0.3 0.35 0.67 0.6 0.63
Follow (10) 0.67 0.8 0.73 0.8 0.8 0.8 0.78 0.7 0.74 0.73 0.8 0.76
Hold (10) 0.64 0.7 0.67 0.56 0.5 0.53 0.4 0.2 0.27 0.54 0.6 0.57
Kick (10) 0.57 0.8 0.67 0.67 0.6 0.63 0.71 0.5 0.59 0.42 0.5 0.45
Pickup (10) 0.71 0.5 0.59 0.4 0.6 0.48 0.47 0.7 0.56 0.58 0.7 0.64
Push (10) 0.42 0.5 0.45 0.54 0.6 0.57 0.5 0.6 0.54 0.78 0.7 0.74
Throw (10) 0.57 0.4 0.47 0.4 0.4 0.4 0.5 0.4 0.44 0.5 0.5 0.5

Table 3.5: Results for Extended CORE9 on Mind’s Eye dataset

Activity
KNN SVM Naive Bayes Deep Learning

P R F1 P R F1 P R F1 P R F1
Approaching (42) 0.24 0.36 0.29 0.2 0.14 0.17 0.34 0.14 0.2 0.23 0.12 0.16
Departing (43) 0.48 0.46 0.47 0.4 0.54 0.46 0.42 0.51 0.46 0.52 0.51 0.52
Pushing (40) 0.14 0.1 0.12 0.47 0.2 0.28 0.28 0.12 0.17 0.19 0.15 0.17
Kicking (41) 0.58 0.56 0.57 0.61 0.63 0.62 0.63 0.78 0.7 0.67 0.73 0.7
Punching (18) 0.41 0.39 0.4 0.92 0.61 0.73 0.86 0.67 0.75 0.59 0.56 0.57
Exchanging(21) 0.95 0.9 0.93 0.78 0.86 0.82 0.8 0.76 0.78 0.9 0.86 0.88
Hugging(39) 0.31 0.28 0.3 0.43 0.59 0.49 0.42 0.74 0.54 0.34 0.64 0.46
Handshaking(38) 0.44 0.42 0.43 0.39 0.47 0.43 0.45 0.47 0.46 0.44 0.4 0.42

Table 3.6: Results for Extended CORE9 on SBU Kinect Interaction dataset

Method UT Interaction Mind’s Eye SBU Kinect Interaction
CORE9 + KNN 40% 45.45% 30.14%
CORE9 + SVM 44% 38.18% 36.87%
CORE9 + Naive Bayes 42% 43.63% 41%
CORE9 + Deep Learning 48% 47.27% 40%
Extended CORE9 + KNN 62% 58.18% 40.78%
Extended CORE9 + SVM 74% 55.45% 47.16%
Extended CORE9 + Naive Bayes 74% 55.45% 49.64%
Extended CORE9 + Deep Learning 64% 57.27% 46.45%

Table 3.7: Comparison of classification accuracies on three datasets

Method UT Interaction Mind’s Eye SBU Kinect Interaction
Extended CORE9 74% 58.18% 49.64%
Angled CORE9 + LDA [41]a - 64.4% -
BoW + SVM [118] 77% - -
Skeleton + Deep LSTM [58] - - 86.03%

Table 3.8: Comparison of classification accuracies with other approaches in liter-
ature

a In [41] only 5 activities are considered; in this thesis 11 activities of the dataset are considered.
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3.4.3 Discussion

In our experiments we have considered a total of 24 activities from the UT Inter-

action dataset, the Mind’s Eye dataset and the SBU Kinect Interaction dataset.

For most of these activities, we obtain higher f-scores when using the features sets

provided by ExtCORE9c, ExtCORE9cw, and ExtCORE9w than when using the

feature set of CORE9w. This is not true for only certain activities such as De-

parting, Drop and Push. Thus, we can say that the qualitative features obtained

using the Extended CORE9 variations provide a better feature set in compari-

son to those obtained from CORE9w. This goes on to strengthen the intuition

that the relations amongst body-parts provide better classification information

compared to the relation of the entities as a whole when it comes to recognizing

human-activities in video.

A comparison of the f-scores when using CORE9c, ExtCORE9c and ExtCORE9cw

shows that for activities where several components (body-parts here) of one entity

interact closely with the other entity, both ExtCORE9cw and ExtCORE9c perform

better, compared to CORE9c. Activities such as handshaking, hugging, kicking,

punching, pushing from UT Interaction, carry, catch, collide, drop, follow, hold,

kick, throw from Mind’s Eye dataset, and kicking, punching, exchanging, hugging,

handshaking from SBU Kinect Interaction dataset belong to this category. This is

because ExtCORE9c and ExtCORE9cw captures the more distinctive inter-entity

component relations. On the other hand, CORE9c includes several unimportant

intra-entity component relations, that only adds to the confusion, bringing down

the precision and recall values significantly. All of the above serves to strengthen

our hypothesis that for human activity recognition, treating human bodies as ex-

tended objects and considering the relations amongst these extended objects might

lead to better results.

For activities in which the relational change between the entities and their

components is minimal, CORE9c gives higher f1-scores. Activities such as ap-

proach, pickup, push in Mind’s Eye dataset, and approaching, departing, pushing

in the SBU Kinect Interaction dataset belong to this category. This is because,

in such activities, the intra-entity component relations play an important role, in

distinguishing one activity from another.

We have also performed experiments using relations obtained using ExtCORE9w

and have found that for activities that are human-object interactions the Extended

CORE9 whole relation alone serves as a distinctive feature. Activities such as

carry, catch, collide, drop, pickup, push of the Mind’s Eye dataset belong to this
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category. In the UT-Interaction dataset and SBU Kinect Interaction dataset,

where all activities are human-human interactions, ExtCORE9w provides better

distinctive features when a single body part of one entity interact with a single

body-part of another entity. This is evident from activities handshaking, pushing

in the UT Interaction dataset and kicking, exchanging activities in SBU Kinect

Interaction dataset where ExtCORE9w give better f-scores.

From above analysis we can come to the conclusion that for certain activities

where the body parts of one human-body interact closely with the other human

or object, ExtCORE9c and ExtCORE9cw provides distinctive features. But for

activities where the interaction between the body parts is less, a complete set

of intra-entity and and inter-entity relations, as provided by CORE9c leads to

better f-scores. For certain human-object interactions where the relations between

the entities as a whole is a good feature, ExtCORE9w provides more distinctive

features.

Table. 3.7 shows comparison of the classification accuracies for CORE9 and

Extended CORE9 in combination with different classifiers. It has been observed

that regardless of the classifier used, the classification accuracy obtained using an

Extended CORE9 representation is much higher than compared to a CORE9 rep-

resentation, for all three datasets. Further, the Naive Bayesian Classifier gives the

highest classification accuracy in two out of the three datasets. The classification

using the deep learning approach show that, even using a simple architecture the

results are comparable to the Naive Bayesian Classifier.

3.5 Conclusion

The part-based model of the human body obtained during tracking is easily seen as

an extended object; ExtCORE9cw provides an efficient mechanism for obtaining

relations between such extended objects. By focusing on component-wise rela-

tions and whole relations of these extended objects ExtCORE9cw achieves better

interaction models. A recursive algorithm is used to opportunistically extract the

qualitative relations using as few computations as possible.

In this chapter, we have presented Extended CORE9 for extracting topological,

directional and distance relations between a pair of extended objects, at a given

instant of time. The classification results for ExtCORE9cw may be improved by

incorporating temporal information of how relations between extended objects

evolve over time. In the next chapter we present temporal activity graphs for

representation of human activities that encodes the temporal evolution of the
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spatial relations provided by ExtCORE9cw. Further a temporal activity graph

kernel is presented that allows classification of activities represented as temporal

activity graphs.
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