
Chapter 4

Graph-based Representation and

Classification of Activities

4.1 Introduction

In Chapter 3, we have presented Extended CORE9, a framework for efficiently

computing topological, direction and distance relationships between a pair of ex-

tended objects. Extended CORE9 enables one to arrive at the qualitative spatial

relations between the entities involved in an activity, abstracted as extended ob-

jects. These qualitative spatial relations describe the spatial configuration of the

entities at a specific instant of time during the activity. However, activities are

spatio-temporal in nature. An activity is characterized by the evolution of spatial

relations between entities over time. In this chapter, we present Temporal Activ-

ity Graphs that can keep track of how relations between entities, abstracted as

extended objects, change over time.

In literature, temporal graphs have been defined as tools that are used to de-

scribe events over periods of time [85]. Further, temporal graphs have the analyti-

cal advantage of being static graphs while retaining all temporal information that

may be available to us. In this chapter, a Temporal Activity Graph representation

is presented that allows keeping track of how spatial relations between body parts

evolve during a human activity. We propose a kernel function for activities rep-

resented as Temporal Activity Graphs, so that a support vector machine (SVM)

can be used for classification of the activities. The proposed Temporal Activity

Graph Kernel computes similarity of two activities based on label sequence similar-

ity, edge label similarity, neighbourhood-based similarity and interestingness factor

introduced herein.
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4.1.1 Desiderata for Temporal Activity Graphs

Representation of human activities using graphs have been reported in literature

by various researchers [45, 46, 49, 86, 87]. The temporal nature of activities has

often been modeled using probabilistic graphical models such as HMMs [49, 86].

However, such models do not explicitly record or exploit the spatial relations or

features of objects that change over time during an activity. On the other hand,

graphical models like Hidden Conditional Random Fields have also been used to

correlate spatial features of the video activities [51]. These models do not encode

the temporal structure of activities.

Researchers have also used graphical models that encode spatial and temporal

features of an activity simultaneously [46, 87]. To address the problems of using

only spatial or only temporal features, researchers have represented activities as

temporal sequences of structured feature graphs [46]. The correlation between

spatial features in a single frame of the video have been modeled using Conditional

Random Fields. Such structured feature graphs are computed for every frame of

the video and temporally sequenced to encode the spatio-temporal nature of an

activity. However, temporal sequencing of disjoint graphs do not allow keeping

track of how individual spatial features evolve over time.

Activities represented as hierarchical qualitative spatio-temporal graphs have

also been reported in literature [87]. The researchers have encoded qualitative

spatial relations between objects as vertices at one level and qualitative temporal

relations as vertices at a higher level. However, in their work the researchers

abstract individual interacting entities using a single bounding box. Using such a

representation for an extended object based abstraction will lead to an explosion in

the number of vertices in the graph. Spatio-temporal graph representations have

also been designed based on a volumetric video representation wherein vertices

are spatio-temporal segments of the video [45]. Such approaches rely on spatial

as well as temporal segmentation of the video.

Temporal activity graphs presented in the following section was developed with

the aim of addressing the limitations of existing graph representations for human

activities.

4.2 Temporal Activity Graphs

An activity represented as a Temporal Activity Graph captures the sequence of

relations between the interacting entities. In a video depicting an activity, we
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abstract each object as an extended object. Each video frame corresponds to a

specific time point during the activity. Thus, an activity can be seen as the

evolution of spatial relations between the pair of extended objects over a set of

time points. Based on the intuition that change of relations between extended

objects over the sequence of time points is fairly distinctive for every activity, we

define an activity as follows.

Definition 4.1. An activity is defined as a set of sequences of component re-

lations and whole relations between a pair of extended objects over a set of time

points.

In literature, temporal graphs have been used to describe events that take place

over time [85]. Vertices correspond to objects at a specific instant of time. Edges

can be of two types: (a) Edges corresponding to relations between the entities

at the same instant of time (b) Edges corresponding to temporal evolution of an

entity over time. In our work, we abstract entities (humans or objects involved in

the activity) as extended objects. Therefore, we define Temporal Activity Graphs

wherein vertices correspond to components of the extended objects at discrete

time points over the duration of the activity. Edges in a Temporal Activity Graph

are of two types:

(a) Edges between vertices at the same time point are used to describe spatial

relation of the activity at that instant of time; such edges are termed spatial

edges. Spatial edges appear only between components of different extended

objects.

(b) Edges between vertices at different time points are used to describe temporal

evolution of a component; such edges are termed temporal edges. A sequence

of frames, where each frame is a snapshot taken at a specific time point. In

this thesis, the terms frames and time points are used interchangeably.

In Figure 4-1, an activity involving two extended objects, A and B, is depicted

as a Temporal Activity Graph; here, A and B have components a1, a2, a3 and

b1, b2, b3 respectively. We use the notation ati to denote a vertex in the Temporal

Activity Graph, that correspond to component ai at a given time point / frame,

t. Similarly, btj refers to the vertex corresponding to component bj at time t.

The solid edges correspond to spatial edges which are labeled with the qualitative

spatial relations between the respective components at the specific time point.

The dashed links correspond to temporal edges and appear between ati and aui ,

such that component ai appears in the video at time point t and reappears at

67



CHAPTER 4 SECTION 4.2

Figure 4-1: A Temporal Activity Graph representing an video activity consisting
of f frames

some subsequent time point u (t < u). If t and u are not consecutive then ai does

not appear in the video at any time point between t and u. Thus, by traversing

along the temporal edges, it is possible to give a description of how the spatial

relation (obtained from spatial edge labels) between components ai and bj changes

over the duration of the activity. Such a description can be given as a sequence of

edge labels and we term it a label sequence.

Given Definition 4.1, a temporal graph representation of activities termed Tem-

poral Activity Graph (TAG), is defined in Definition 4.2. The terms edge labels

and label sequences with respect to TAGs are also defined below.

Definition 4.2. A Temporal Activity Graph G is formally denoted by a 5-

tuple (X, T , V, Es, Et), where,

• X = A ∪ B ∪ ..., where A,B, ... are any number of extended objects

involved in the activity such that

A = {ai|i = 1...n and n is the number of components in A},
B = {bj|j = 1...m and m is the number of components in B} and so on.

• T : X×N→ {0, 1} is the time function. Here, T (ai, t) = 1 iff component

ai appears in the video activity at time point t. Here, ai is a component of

the extended object A.

• V = {ati|ai ∈ X and T (ai, t) = 1} is the set of vertices.

• Es = {(ai, bj, t) | ai, bj ∈ X and T (ai, t) = T (bj, t) = 1} is the set of

directed spatial edges. Further, an edge label is associated with each

spatial edge that is denoted by ε(ai, bj, t).
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• Et = {(ai, t, t+ k) | ai ∈ X, T (ai, t) = T (ai, t+ k) = 1, T (ai, t+ 1) = ... =

T (ai, t+ k − 1) = 0} is the set of directed temporal edges

Definition 4.3. The edge label between ai and bj at time point t, denoted by

ε(ai, bj, t), is a three tuple 〈top − dir − dis〉 where top is the topological relation,

dir is the directional relation and dis is the distance relation between ai and bj at

time t.

Definition 4.4. In a TAG, G, a label sequence lsu:ti,j (u < t) between components

ai and bj is the sequence of edge labels 〈ε(ai, bj, u), ε(ai, bj, u+ 1), ...ε(ai, bj, t)〉.

The label sequence between a pair of components, from two different extended

objects, describe how the spatial relations between them change over time. If at

any time point v (u ≤ v ≤ t), either of the components ai and bj do not appear

in the video, then the corresponding edge label, ε(ai, bj, v) is replaced by a NULL

value in the label sequence lsu:ti,j .

Every activity can be described using a Temporal Activity Graph (TAG). It

follows from Definition 4.1 that, a TAG is characterized by a set of vertices corre-

sponding to components of extended objects at discrete time points, and by the

set of spatial and temporal edges between the vertices. The spatial edges between

a pair of components are labeled and the sequence of edge labels between a pair of

components over time is a label sequence. Thus, every activity is characterized by

the set of label sequences of the corresponding TAG. similarity of two activities

can be established by comparing the respective sets of label sequences.

4.3 Temporal Activity Graph Kernel

In this section a TAG kernel is defined, that computes a real number signifying

the similarity of a pair of TAGs. To compute similarity of two Temporal Activity

Graphs X and Y , we consider the set of label sequences for each graph. The simi-

larity of the two TAGs is computed as the similarity of the sets of label sequences

that characterize the TAGs. The set of label sequences of X is compared to the

set of label sequences of Y . However, if every label sequence of X is compared to

every label sequence of Y , then the number of label sequence comparison will be

O(n2) where n is the number of label sequences in X or Y . Such an exhaustive

comparison is computationally expensive. Instead, if a label sequence of a TAG

is compared to exactly one label sequence of the second TAG (a one-to-one com-

parison), then a fewer computations will be required. Furthermore, an exhaustive
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comparison is ineffective because it disregards the fact that a label sequence be-

tween a pair of distinct components is not likely to be the same as a label sequence

between a different pair of components.

In order to perform a one-to-one comparison of the sets of label sequences, it

is necessary to identify which label sequence of one set will be compared to which

label sequence of the other set. Therefore, we assign an intrinsic order to the

components of an entity in the TAG; a more detailed discussion of intrinsic order

is given in Section 4.3.3. Let us consider two TAGs X and Y , corresponding to

extended objects A, B and C, D respectively. X is defined over u time points and

Y is defined over t time points. The label sequence between a pair of components

ai and bj in X is written as x1:uij ; similarly, y1:tpq is the label sequence between

components cp and dq in Y . In Equation 4.1, to perform one-to-one comparison,

we compute the similarity of label sequences x1:uij and y1:tpq only if the intrinsic order

of ai in X is the same as intrinsic order of cp in Y and the intrinsic order of bj in

X is the same as the intrinsic order of dq in Y .

We have experimented with two different intrinsic order of the components

(see Section 4.3.3):

• Based on Skeletal Information: Certain part-based tracking systems allow

identification of the skeletal structures of human bodies being tracked [119,

120]. In such cases the components can have a fixed order based on which

part of the skeletal structure they correspond to.

• Based on Interestingness : Components of an entity can be ordered based

on an interestingness factor or i-factor. The i-factor captures how involved

a component is in the activity. For example, a component corresponding

to the hand will be more involved in a handshake activity but will be less

involved in a kick activity.

Definition 4.5. The Temporal Activity Graph Kernel is defined as κ : G ×
G → R, where G is the set of Temporal Activity Graphs and R is the set of real

numbers, such that,

κ(X, Y ) =
c

1 +
∑
i,j,p,q

κls(x1:ui,j , y
1:t
p,q)

(4.1)

Here, c is a constant computed from the maximum number of components for

an extended object in the system, u is the number of time points in X, t is the

number of time points in Y , and the function κls computes similarity of a pair of

label sequences.
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4.3.1 Label Sequence Similarity

The similarity of a pair of label sequences is defined as a modified edit distance.

The Wagner-Fischer algorithm to compute edit distance finds the minimum num-

ber of editing operations (viz. insert, delete, or substitute) required to transform

one string to another [121]. Given two strings a and b, an alignment of the strings

involves finding a way of lining up the characters of a and b including mismatches

and gaps. If there is mismatch then the edit operation required to match the

strings is substitution; if there is a gap in a then the edit operation required is

deletion; if there is a gap in b then the edit operation required is insertion. Usually,

insertion and deletion operations have cost 1 and substitution operation has cost

2. The strings are aligned such that the total cost of the edit operations is the

smallest.

To compute similarity of a pair of label sequences, we use the Wagner-Fischer

algorithms using modified costs. The cost of edit operations depends on the sim-

ilarity of edge labels, as described in Equation 4.4. The algorithm uses dynamic

programming to compute du,t for a pair of label sequences a1:u = 〈e1a, e2a, ...eua〉 and

b1:t = 〈e1b , e2b , ...etb〉. Here, u and t are the lengths of the label sequences a and b,

that may or may not be equal. We use the following recurrence with modified

costs.

di,0 = i (4.2)

d0,j = j (4.3)

di,j =



di−1,j−1 if eia = ejb

min


di−1,j + 1− κedge(ei−1a , ejb)

di,j−1 + 1− κedge(eia, e
j−1
b )

di−1,j−1 + 1− κedge(eia, e
j
b)

 otherwise
(4.4)

The similarity of the label sequences is then defined as:

κls(a
1:u, b1:t) = du,t (4.5)

Here, the function κedge(ex, ey) computes the similarity of the edge labels ex

and ey. The similarity function κedge is discussed in the following section.
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4.3.2 Edge Label Similarity

The edge labels in a TAG specify the spatial relation between a pair of components.

From Definition 4.3, an edge label is a three-tuple of topological, direction and

distance relation and are computed using Extended CORE9. Topological relations

are expressed as RCC5 relations [70], directional relations are expressed as Cardi-

nal Direction Calculus relations [75], and distance relations are an approximation

of Qualitative Distance relations [72].

The similarity of a pair of edge labels can be computed as the weighted average

of the similarities of topological, direction and distance relations. To compute sim-

ilarity of a pair of qualitative relations, we define a neighbourhood-based similarity

based on the respective conceptual neighbourhood graphs (CNGs). A conceptual

neighbourhood graph (CNG) for a qualitative calculus is a directed graph with ver-

tices corresponding to the base relations. An edge between two nodes (say between

vertices R1 and R2) indicate that a direct transition from R1 to R2 is possible. An

edge in the CNG between a pair of relations indicate that a direct transition from

one relation to the other is possible (see Section 2.4.1 in Chapter 2). We express

the similarity of a pair of relations R1 and R2 as a function of the number of direct

transitions required to go from R1 to R2. The neighbourhood-based similarity and

similarity of edge labels are defined as follows.

Definition 4.6. Neighbourhood based similarity (N CQs ) between a pair of

relations R1 and R2 using the conceptual neighbourhood graph CQ, for some qual-

itative relational calculus Q, is defined as,

N CQs (R1, R2) = 1− pC
Q

(R1, R2)

pCQmax
(4.6)

Here, pC
Q

(R1, R2) is the length of the shortest path between R1 and R2 in CQ and

pC
Q

max is the maximum length of a shortest path between any pair of relations in CQ.

Definition 4.7. The similarity of a pair of edge labels e1 = 〈top1, dir1, dis1〉
and e2 = 〈top2, dir2, dis2〉 is defined as the weighted average of the neighbourhood

based similarities of the topological, directional and distance relations.

κedge(e1, e2) =w1 ∗ N C
RCC5

s (top1, top2)

+ w2 ∗ N C
CDC

s (dir1, dir2)

+ w3 ∗ N C
QD

s (dis1, dis2) (4.7)

where w1+w2+w3 = 1 and CRCC5, CCDC, and CCDC are the CNG for Region Con-
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nection Calculus, Cardinal Direction Calculus, and Qualitative Distance Relations

respectively (see Figure2-7).

Lemma 4.1. The values computed by the neighbourhood based similarity function

lie in the range [0, 1].

Proof. In Equation 4.6, pCmax ≥ pC(R1, R2). Therefore, N Cs (R1, R2) is a value that

lies between 0 and 1.

Lemma 4.2. The values computed by edge label similarity function, κedge, lie in

the range [0, 1], where 1 denotes exactly similar edge labels.

Proof. The value of κedge as computed by Equation 4.7, is the weighted average

of N CRCC5

s , N CCDC

s and N CQD

s such that the sum of the weights is 1. Further, from

Lemma 4.1, neighbourhood based similarity values lie in the range [0, 1]. Hence,

values computed by edge label similarity function, κedge, are also in the range

[0, 1].

4.3.3 Intrinsic Order of Components

In Equation 4.1, the kernel value for two activities represented as TAGs X and Y is

computed as the sum of similarity of label sequences computed using Equation 4.5.

The similarity of the label sequences is computed on a one-to-one basis, i.e. every

label sequence of X is matched with exactly one label sequence of Y and vice

versa. In order to determine which pair of label sequences from X and Y are

compared, the components are assigned an intrinsic order based on: 1. skeletal

structure and 2. interestingness.

4.3.3.1 Skeletal Information

It is possible to track the pose of the human body in video [119, 120]. In such part-

based tracking, the various human body parts are tracked individually to give a

more accurate estimation of the human pose at any given point of time. Tracking

a single human body gives a sequence of locations of each individual body-part.

In fact, such tracking systems allow the human body to be viewed as an extended

object. Further, it is possible to label each component based on which body part

it corresponds to.

In our first approach, we order the components based on the labels of such a

part based tracking system. For example, say the tracking system tracks the body

parts: head(h), right hand (rh), left hand (lh), right leg (rl), and left leg (ll).
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The components for a tracked human body can be ordered as 〈h, rh, lh, rl, ll〉. For

two activities represented as X and Y , such that X is defined over u time points

and Y is defined over t time points. A skeletal information based intrinsic order

for X and Y ensures that the similarity of label sequence between heads of the

interacting human of X, i.e., x1:uh,h and the label sequence between the heads of the

interacting humans in Y , i.e., y1:th,h is computed. Similarly x1:uh,ll is compared with

y1:th,ll; x
1:u
rh,rh is compared with y1:trh,rh and so on. The sum of the all the similarity

values computed for such one-to-one pairs of label sequences is the kernel value of

the corresponding Temporal Activity Graphs.

4.3.3.2 Interestingness

In our second approach, we consider the case when explicit labels for the compo-

nents are not available. In this case, the components of the extended objects are

ordered based on an interestingness factor or i-factor in short. The i-factor is

computed based on a component’s involvement within an activity. To determine

how involved a component is in a particular activity we use the intuitive notion

that - a component of an entity that is more involved in the activity will have more

spatial relational changes with components of the other entity. The i-factor of a

component is defined as the sum of the i-factors of the label sequences with which

the particular component is associated with. Given that, ai and bp are compo-

nents of entities A and B respectively, involved in an activity, the i-factor of a

label sequence and i-factor of a component are defined as follows.

Definition 4.8. Given a TAG, X, defined over t time points involving extended

objects A = {a1, a2, ...am} and B = {b1, b2, ...bn}, the i-factor of a label se-

quence, denoted by Il(x1:ti,p)) where ls1:ti,p is a label sequence between components ai

and bp, is computed as follows,

Il(ls1:ti,p) =
t−1∑
u=1

κedge(ε(ai, bp, u), ε(ai, bp, u+ 1)) (4.8)

Here, x1:ti,p is a label sequence between ai and bp in the TAG X.

Definition 4.9. Given a TAG, X, defined over t time points involving extended

objects A = {a1, a2, ...am} and B = {b1, b2, ...bn}, the i-factor of a component

ai, denoted by Ic(ai), is defined as,

Ic(ai) =
n∑
p=1

Il(x1:ti,p) (4.9)
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Here, x1:ti,p is a label sequence between ai and bp in the TAG X.

In Equation 4.8, it is to be noted that the label sequence lsu:vi,p is 〈ε(ai, bp, u),

ε(ai, bp, u+1), ...ε(ai, bp, v)〉 (u < v) for the activity graph X. Since we are working

on human interactions, in Equation 4.9, we assume involvement of two entities (A

and B with m and n components respectively).

Using Equation 4.9, we compute the i-factor for all components of all entities.

For each entity the components are ordered in decreasing order of their i-factors.

We apply this order to compute the kernel value of two activity graphs, X and

Y , using Equation 4.1. Thus the label sequence between components with highest

i-factor of both entities in X is matched with label sequence between components

with highest i-factor of both entities in Y and so on.

4.3.4 Theoretical Analysis

For a function to be used as a kernel function for a SVM, it has to exhibit prop-

erties similar to inner product in some implicit feature space. In other words the

kernel function should be symmetric and positive semi-definite. In Theorem 4.1, it

is proved that the TAG kernel presented in this chapter satisfies these properties.

Theorem 4.1. The Temporal Activity Graph Kernel, κ, (in Equation 4.1) is

symmetric and positive semi-definite.

Proof. Temporal activity graph kernel κ (Equation 4.1) depends on the label se-

quence similarity function, κls (Equation 4.5) and the edge label similarity function

κedge (Equation 4.7).

By definition the neighbourhood based similarity (Definition 4.6) of spatial re-

lations is a symmetric function. This ensures κedge, the weighted average of three

neighbourhood based similarity values, is symmetric. The value computed by

the label sequence similarity function κls, is a modified edit distance of the label

sequences. Traditionally, edit distance is a symmetric measure because the cost

of complementary insert and delete operations are the same. In our case, the

modified edit distance computed is symmetric because the cost of the complemen-

tary insert and delete operations is symmetric and the minimum value amongst

the three edit costs does not change. The label sequence similarity is symmetric

therefore the sum of label sequence similarity values is symmetric. The Temporal

Activity Graph Kernel is symmetric.

From Lemma 4.2, κedge for exactly similar pair of edge labels is 1; for all other

possible pairs the value is in the range [0, 1]. This is reversed in Equation 4.5 - for

75



CHAPTER 4 SECTION 4.3

exactly similar label sequences the modified edit distance is 0; for all other possible

pairs, the value is greater than 0. Using this Equation 4.5 in Equation 4.1 ensures

that for a pair of activities that are exactly similar the kernel value computed is the

largest. If K is the kernel matrix such that Kij = κ(Gi, Gj) then Kii > Kij∀i 6= j.

Thus, K is a diagonally dominant matrix. It is a property of diagonally dominant

matrices that they are positive definite. Therefore, the Temporal Activity Graph

Kernel is positive semi definite.

4.3.5 Illustrative Example

Let us consider the sequence of video frames obtained from a sample Handshaking

activity in the UT Interaction dataset [3], as shown in Figure 1-1 of Chapter 2.

The activity sample involves two human bodies A and B; each human body is

an extended object of at most five components. The TAG, X (defined over four

time points), for the activity is shown in Figure 4-2. In the figure, components

of A are labeled atp, where p refers to the component identifier and t refers to

the corresponding time point; similarly components of B are labeled btp. Here,

p ∈ {h, rh, lh, rl, ll}; h refers to head, rh refers to right hand, lh refers to left hand,

rl refers to right leg and ll refers to left leg.

Figure 4-2: TAG for the sequence of four frames in Figure 1-1 that corresponds
to Handshaking activity from the UT-Interaction Dataset

In the TAG shown in Figure 4-2, the spatial edge labels are three-tuples of

topological, directional and distance relations computed using Extended CORE9

as discussed in Chapter 3. In the frames where a particular component does

not appear due to occlusion, the edges corresponding to that component are not

drawn. For every pair of component of A and B, we obtain the label sequence, i.e.
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x1:4
h,h = 〈DR−W −Away〉

x1:4
h,lh = 〈DR−W −Away〉

x1:4
h,rh = 〈DR−W −Away〉

x1:4
h,ll = 〈DR−NW −Away〉

x1:4
h,rl = 〈DR−NW −Away〉

x1:4
rh,h = 〈DR−W −Away〉

x1:4
rh,lh = 〈DR−W −Away〉

x1:4
rh,rh = 〈DR−W −Away〉, 〈DR−W −Near〉, 〈PO −W − Conn〉, 〈DR−W −Away〉

x1:4
rh,ll = 〈DR−W −Away〉

x1:4
rh,rl = 〈DR−W −Away〉

x1:4
ll,h = 〈DR− SW −Away〉

x1:4
ll,lh = 〈DR−W −Away〉

x1:4
ll,rh = 〈DR−W −Away〉

x1:4
ll,ll = 〈DR−NW −Away〉

x1:4
ll,rl = 〈DR−NW −Away〉

x1:4
rl,h = 〈DR− SW −Away〉

x1:4
rl,lh = 〈DR−W −Away〉

x1:4
rl,rh = 〈DR−W −Away〉

x1:4
rl,ll = 〈DR−NW −Away〉

x1:4
rl,rl = 〈DR−NW −Away〉

Figure 4-3: Set of label sequences describing the TAG shown in Figure 4-2

the sequence of edge labels for t = 1, 2, 3, 4. Figure 4-3 shows the label sequences

corresponding to the TAG in Figure 4-2. In this example, the label sequence for

the components arh and brh, denoted as x1:4rh,rh, has more relational changes over

the duration of the activity. However, the edge labels between the rest of the

components do not change over time; the corresponding label-sequences consist of

only a single edge label. The component alh does not appear in any of the time

points, therefore all label sequences between components alh and bp is NULL.

From Definition 4.8, the label sequences with higher relational change will

have higher i-factor. Using Equation 4.8, Il(x1:4rh,rh) > Il(x1:4h,rh). Consequently

from Equation 4.9, Ic(arh) > Ic(ah). Therefore, the intrinsic order of arh is higher

than ah.

4.4 Experimental Evaluation

The effectiveness of representing activities using TAGs is reflected in the classifi-

cation results. In order to classify activities represented using TAG, we use the

proposed TAG kernel within a SVM classifier. We evaluate the effectiveness of

TAG together with TAG kernel against the Extended CORE9 bag-of-words rep-
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resentation. Further the classification accuracies are compared with existing work

reported in literature.

4.4.1 Experimental Setup

To perform classification of human activities, we first obtain part-based track-

ing data of the activities in the video. The entities involved in the activity are

abstracted as extended objects ; for every frame of the video, qualitative spatial

relations between extended objects are computed using Extended CORE9. The

spatio-temporal knowledge thus obtained about the activity are represented within

a Temporal Activity Graph. The spatial relations computed using the Extended

CORE9 framework are used as edge labels for the spatial edges in the graph. A

detailed description of how a video is converted to Temporal Activity Graph rep-

resentation can be found in Appendix B. The activities represented as Temporal

Activity Graphs are then classified using a Support Vector Machine (SVM) based

on the kernel function defined in Equation 4.1.

In Equation 4.1, the kernel value for two activities represented as graphs X

and Y is computed as the sum of similarity of label sequence computed using

Equation 4.5. The similarity of the label sequences is computed on a one-to-one

basis, i.e. every label sequence of X is matched with exactly one label sequence

of Y and vice versa. In order to determine which pair of label sequences from X

and Y are compared, the components are assigned an intrinsic order based on: 1.

skeletal structure and 2. interestingness.

4.4.2 Experimental Results

Experiments were performed using 110 videos from the Mind’s Eye 1, 50 videos

from the UT-Interaction [3] dataset and 282 videos from the SBU Kinect In-

teraction dataset [122]. For the Mind’s Eye dataset we consider 11 activities -

approach, carry, catch, collide, drop, follow, hold, kick, pickup, push and throw

- and 10 videos for each activity. For the UT Interaction dataset we consider

five activities that involve at least two humans- handshaking, hugging, kicking,

punching and pushing. For the UT-Interaction and Mind’s Eye dataset, we use

keyframes of the videos 2. Since tracks for these datasets are not available, we

manually label the humans and objects involved in each of the keyframes. For the

1www.visint.org
2We use I-frames obtained using the tool ffmpeg as keyframes, www.ffmpeg.org
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SBU Kinect Interaction dataset, that consists of eight activities over 282 videos,

we use the available skeleton tracks to obtain the extended object representation.

For every video activity, we obtain the TAG as described in the previous sec-

tions. The edge labels are obtained using the Extended CORE9 framework. The

TAG-kernel based SVM is used for classification. Results for both skeletal in-

formation based TAG kernel and interestingness based TAG kernel are reported.

The precision, recall and f1-score are computed for each dataset; the results for

the Minds’s Eye dataset are given in Table 4.1, results for the UT Interaction

dataset are given in Table 4.2 and results for the SBU Kinect Interaction dataset

in Table 4.3.

Activity
Skeletal Information I-factor
P R F1 P R F1

Approach (10) 0.50 0.60 0.55 0.57 0.40 0.47
Carry (10) 1.00 0.70 0.82 1.00 0.60 0.75
Catch (10) 0.91 1.00 0.95 0.89 0.80 0.84
Collide (10) 0.47 0.80 0.59 0.67 0.20 0.31
Drop (10) 0.64 0.70 0.67 0.63 0.50 0.56
Follow (10) 0.88 0.70 0.78 0.78 0.70 0.74
Hold (10) 0.73 0.80 0.76 0.48 1.00 0.65
Kick (10) 0.86 0.60 0.71 0.57 0.80 0.67
Pickup (10) 1.00 1.00 1.00 0.91 1.00 0.95
Push (10) 0.86 0.60 0.71 0.46 0.60 0.52
Throw (10) 0.67 0.60 0.63 0.67 0.60 0.63

Table 4.1: Results for TAG Kernel based SVM Classification on Mind’s Eye
dataset

Activity
Skeletal Information Interestingness
P R F1 P R F1

Handshaking (10) 1 1 1 0.82 0.9 0.86
Hugging (10) 0.91 1 0.95 0.77 1 0.87
Kicking (10) 1 0.8 0.89 1 0.9 0.95
Punching (10) 0.75 0.9 0.82 0.60 0.6 0.60
Pushing (10) 0.89 0.8 0.84 0.86 0.6 0.71

Table 4.2: Results for TAG Kernel based SVM Classification on UT Interaction
dataset

4.4.3 Discussion

Table 4.4 shows that good classification accuracy is obtained for all the considered

datasets, when the skeletal structure is used as the intrinsic order. We have also

experimented by considering only topological relation, only directional relation,
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Activity
Skeletal Information Interestingness
P R F1 P R F1

Approaching (42) 0.97 0.83 0.90 0.86 0.74 0.79
Departing (43) 0.76 0.86 0.80 0.73 0.81 0.77
Pushing (40) 0.86 0.78 0.82 0.86 0.75 0.80
Kicking (41) 0.74 0.78 0.76 0.76 0.76 0.76
Punching (18) 0.88 0.83 0.86 0.76 0.72 0.74
Exchanging(21) 0.95 0.90 0.93 0.86 0.86 0.86
Hugging(39) 0.67 0.85 0.75 0.67 0.82 0.74
Handshaking(38) 0.94 0.78 0.85 0.83 0.79 0.81

Table 4.3: Results for TAG Kernel based SVM Classification on SBU Kinect
Interaction dataset

Method UTI ME SBUKI
ExtCORE9 BoW + KNN [123] 62% 58.18% 40.78%
ExtCORE9 BoW + SVM [123] 74% 55.45% 47.16%
ExtCORE9 BoW + Naive Bayes [123] 74% 55.45% 49.64%
ExtCORE9 BoW + Deep Learning [123] 64% 57.27% 46.45%
TAG (only Topological) + Skeletal Information 90% 73.63% 81.91%
TAG (only Directional) + Skeletal Information 72% 50.00% 59.92%
TAG (only Distance) + Skeletal Information 82% 63.63% 67.73%
TAG (Topological + Directional + Distance) +
Skeletal Information

78% 64.54% 72.69%

TAG (only Topological) + Interestingness 80% 65.45% 78.01%
TAG (only Directional) + Interestingness 62% 44.54% 51.41%
TAG (only Distance) + Interestingness 72% 61.81% 65.24%
TAG (Topological + Directional + Distance) +
Interestingness

68% 60.91% 71.27%

Table 4.4: Comparison of classification accuracies on the UT Interaction (UTI)
dataset, Mind’s Eye (ME) dataset and SBU Kinect Interaction (SBUKI) dataset

Method UTI ME SBUKI
TAG + Skeletal Information based Kernel 90% 73.63% 81.91%
TAG + Interestingness based Kernel 80% 65.45% 78.01%
ExtCORE9 BoW + Naive Bayes [123] 74% 55.45% 49.64%
ExtCORE9 BoW + Deep Learning [123] 64% 57.27% 46.45%
Angled CORE9 + LDA [41]a - 64.4% -
BoW + SVM [118] 77% - -
BoP + SVM [118] 95% - -
Skeleton + Deep LSTM [58] - - 86.03%

Table 4.5: Comparison of classification accuracies with other approaches in liter-
ature

a In [41] only 5 activities are considered; in this thesis 11 activities of the dataset are considered.

only distance relation and a combination of the three as the edge labels on the

TAG. It has been noted that if only the topological relation is used, then the

classification accuracy is higher than any other combination for all the datasets.
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Further, the lowest classification accuracy is obtained when only the directional

relation is used. This is because, for most activities, the cardinal direction be-

tween the interacting entities may change based on the angle of viewing. The

classification accuracies obtained when using a combination of the three relations

is also brought down because of this reason.

In the absence of the skeletal structure information, using the proposed in-

terestingness factor for matching pair of label sequences also works reasonably

well. Table 4.4 shows that the classification accuracies in this case are lower than

the skeletal information based TAG kernel. This is expected because in skeletal

information based kernel, additional information is available. Whereas in case of

interestingness based kernel the absence of skeletal information is dealt with by

using a heuristic to match the label-sequences i.e. i-factor. Other than that, the

results are similar. In the interestingess based TAG kernel too, the highest accu-

racy is obtained when using only topological relations and the lowest accuracy is

obtained when using only directional relations.

A comparison of classification accuracies obtained using our work and existing

literature is shown in Table 4.5. In case of Mind’s Eye dataset, our work outper-

forms Angled CORE9 with a bag-of-words representation [41]. It is to be noted

here, that in this work 11 activity classes are considered whereas [41] experiments

on only five activities. We have computed the average MCC for the skeletal infor-

mation based kernel in Mind’s Eye dataset is 0.7 which is again higher than what

is reported for [124] (0.37). However, we use only 11 activity classes, whereas [124]

uses all activity classes in the Mind’s Eye dataset.

In Table 4.5, BoP + SVM [118] outperforms our system performance for the

UT Interaction dataset. In this work, videos are represented as a bag of spatio-

temporal phrases (ST phrases). A spatio-temporal word captures the appearance

and movement patterns of a local region. An ST-phrase is a combination of spatio-

temporal words in a certain spatial and temporal structure. Whereas using TAG,

only a temporal structure is provided to the representation of the video. An ST-

phrase includes the order and relative positions of the local regions corresponding

to the words. In addition to giving a structured temporal description of the

video, the use of ST phrases combines the spatio-temporal descriptions of related

local features. This could be one of the reasons why the work reported in [118]

outperforms the work reported in the thesis.

We have also achieved reasonably good accuracy for the SBU Kinect Inter-

action dataset and UT Interaction dataset even though it does not surpass the

state-of-the-art results. This is so because the TAG kernel takes into consideration
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the component-wise relational changes between the extended objects during the

label-sequence comparison. It is worthwhile to note that most complex activities

involve high component-wise relational changes. However, most activity datasets

have a mixture of activities with high and low relational change between the com-

ponents, which serves as a reason why the TAG kernel does not outperform results

in literature.

In Table 4.5, Skeleton + Deep LSTM [58] outperforms the TAG Kernel based

work reported in this chapter. It is worthwhile to note that most state-of-the-

art work in the field of human activity recognition has been achieved using data

driven algorithms and deep learning. Even though such approaches give high

classification accuracy, they often require large training sets and high computation

power devices. In our work we focus on the high level knowledge obtained from

the tracking data, that allows one to learn richer models from smaller datasets.

4.5 Conclusion

In this chapter, we have presented TAG to represent activities recorded in video.

Such a representation is capable of keeping track of the changing spatial relations

between entities abstracted as extended objects over the duration of the activity.

In order to enable classification of activities using such a graph structure, a TAG

kernel is defined. The TAG kernel allows classification of activities represented as

TAGs using a SVM.

It is widely accepted that discriminative classifiers such as SVMs provide a

good classification of the data. However, they offer little in terms of modelling

the underlying structure of the classes [125]. In the next chapter we present a

generative learning mechanism, that models the underlying structure of activities

represented as TAGs using a Temporal Activity Graph Grammar.
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