
Chapter 5

Grammar based Recognition of

Human Activities

5.1 Introduction

In Chapter 4, we presented TAG, a graph-based representation of human activities.

The TAG representation keeps track of how qualitative spatial relations between

extended objects change over time during an activity. The activities are then

classified using an TAG-kernel based SVM classifier. In this chapter, we discuss a

grammar-based generative learning mechanism to model the underlying structure

of a class of activities represented as TAGs.

In literature, there are reports of work by researchers wherein grammars are

used for encoding the recursive and hierarchical nature of human activities [52, 54].

However, another feature of human activities is that they may involve several

concurrently occurring sub-events. For example, raising both hands would involve

the simultaneous sub-events of raising the left hand and raising the right hand. To

handle such complications, most grammar-based recognition of human activities

reported in literature use complex parsing mechanisms [52] or complex grammar

structures [54]. A Temporal Activity Graph Grammar is presented in this chapter

that exploits the temporal sequencing and graph structure of TAGs to deal with

the complexities of modelling human activities. Further, a Temporal Activity

Graph Grammar induction algorithm is proposed; the induction algorithm can be

used to learn the TAG grammar rules for an activity class given a set of positive

examples of the class described as TAGs. The Temporal Activity Graph Grammar

is a probabilistic context free graph grammar for TAGs.

83

CHAPTER 5 SECTION 5.2

5.2 Temporal Activity Graph Grammar

In Chapter 4, TAGs were used for representation of human activities. An activity

involving a pair of entities (humans or objects) is seen as a sequence of relations

between them. The interacting entities are abstracted as extended objects based

on the data available from the underlying tracking system. The TAG captures such

an activity as a sequence of temporal snapshots. Each snapshot is represented as a

subgraph that captures the spatial relational configuration of the extended objects

at a specific time-point. The vertices in the subgraph correspond to components of

the extended objects; vertices may be labeled depending on the availability of the

skeletal information from the underlying tracking mechanism. The edges between

vertices of such a subgraph are the spatial edges; spatial edges are labeled using

the qualitative spatial relations between the corresponding components computed

using Extended CORE9 (see Chapter 3). The sequence of subgraphs linked using

temporal edges constitute a TAG.

The TAGs can be easily seen as a temporal sequence of instantaneous TAG

subgraphs as shown in Figure 5-1. An instantaneous TAG subgraph or insubTAG

is a temporal snapshot of the TAG, such that it is a subgraph containing all

vertices corresponding to a single time-point t (see Definition 4.2 in Chapter 4).

Every TAG can be re-written as a string of insubTAGs assuming that there is

a set of temporal edges connecting the vertices in insubTAG at time t − 1 to

the vertices in insubTAG at time t. Figure 5-1a is an instance of a TAG that

represents an activity. This TAG can be seen as the sequence of insubTAGs as

shown in Figure 5-1b; the dashed edges between the insubTAGs corresponds to the

temporal edges in the corresponding TAG. In Figure 5-1b, insubTAGt correspond

to a subgraph of the TAG in Figure 5-1a. The insubTAGt includes vertices atx, b
t
y

and all spatial edges between these vertices that are also in the TAG, such that

x, y ∈ {h, lh, rh, ll, rl}.

The TAG grammar is a probabilistic context free grammar with elements of

node replacement graph grammar. As discussed in Chapter 2 (see Section 2.8.1) a

context free grammar (CFG) [98] consists of four elements - (a) a set of non-ter-

minals, ∆, (b) a set of terminals, Σ, (c) a set of rules, R, and (d) a start non-ter-

minal, S. A probabilistic context free grammar (CFG) is a CFG in which every

rule, A → α, is associated with a probability of the rule being used to replace A

in a derivation.

A node-replacement graph grammar, is a grammar defined over undirected

graphs [126]. Similar to string grammars, it is a four-tuple of 〈∆,Σ, R, S〉. ∆, Σ,

84

SECTION 5.2 CHAPTER 5

(a)

(b)

Figure 5-1: (a) TAG representing an activity (b) Illustration of the TAG in Fig-
ure 5-1a as sequence of insubTAGs

R and S have the usual interpretations. However, terminals and non-terminals

correspond to labels on graph vertices. Each rule is of the form X → D where

X is a non-terminal and D is graph consisting of vertices labeled with terminals

and non-terminals (see Section 2.8.3 of Chapter 2). Further a connection relation

is associated with every production rule that defines how a daughter graph is

embedded in the mother graph.

TAG grammar takes advantage of both string grammars and graph grammars.

Due to the temporal sequential structure of TAGs, they are much similar to strings.

This allows one to take advantage of the simplicity of string grammars. However,

unlike a string, a TAG is a sequence of subgraphs, or more specifically, a sequence

of insubTAGs. Therefore, a TAG is rewritten as a string of smaller graphs or

insubTAGs. The terminals in the TAG grammar correspond to insubTAGs. The

process of generating a strings using rules of a grammar is called a derivation.

Within the TAG Grammar, the rules generate sequences of insubTAGs which are

subgraphs of the TAG. The question arises of how these insubTAGs are connected

to one another during a derivation. Therefore, it is essential for the TAG grammar

to have connection rules or embeddings, similar to node replacement grammars (see

Section 2.8.3 of Chapter 2).

In regular string grammars, a rule is of the form A → α where α is a string

85

CHAPTER 5 SECTION 5.2

of terminals and non-terminals. In TAG grammars, α is restricted to either a ter-

minal (i.e. a single insubTAG) or a sequence of non-terminals. Such a restriction

ensures that that TAG grammar is always in a semi-Chomsky Normal Form1. It

allows for several simplifications in the algorithm for induction of grammar rules

(see Section 5.3).

In traditional node-replacement graph grammars, terminals and non-terminals

are labels on the nodes or vertices. In such grammars, the right-hand side of rules

define the vertices and edges of the generated graph. Whereas in a TAG, there are

two types of edges: spatial edges and temporal edges. By defining the terminals

to be insubTAGs, it is ensured that vertices and spatial edges of the generated

TAG are defined by terminals. The temporal edges of the generated TAG are

defined by the right-hand side of the rules and the associated connection rules.

Furthermore, every rule has a probability associated with it similar to PCFGs.

The formal definition of a TAG grammar is as follows.

Definition 5.1. A TAG grammar, G, is defined as a five-tuple 〈∆,Σ, R, S, Pr〉,
where

• ∆ is the set of non-terminals

• Σ is the set of terminals. Here, a terminal is an insubTAG.

• R is the set of rules such that each Ri ∈ R can be of two types:

– A terminal rule that is of the form A→ a such that A ∈ ∆ and a ∈ Σ

– A production rule that is of the form A → α such that A ∈ ∆ and

α ∈ ∆∗

Every rule in R is associated with a connection rule. A connection rule

defines the set of temporal edges in the graph generated by some rule Ri ∈ R.

• S is the start variable, S ∈ ∆

• Pr : R → [0, 1] is function that gives the probability of applying rule Ri :

A→ α to replace variable A ∈ ∆ in a derivation,

Pr(A→ α ≥ 0) and
∑
α

Pr(A→ α) = 1

1A rule in a grammar that is in Chomsky Normal Form is either of the form A→ a or A→
BC. Here, A,B,C ∈ ∆ and a ∈ Σ. The TAG grammar is said to be in a semi-Chomsky Normal
Form because all rules are of the form A→ a or A→ A1A2...An, where A,A1, A2...An ∈ ∆ and
a ∈ Σ

86

SECTION 5.2 CHAPTER 5

The terms terminal rule and production rule are used to distinguish between

rules in order to enable specialized procedures. Such distinction of the rules is not

normally seen in literature of context free grammars or graph grammars. In this

work, this distinction is necessary because in the grammar induction algorithm the

two types rules are dealt using separate specialized procedures (see Section 5.3,

Algorithm 2). It is to be noted that if Rt is the set of terminal rules and Rp is the

set of production rules then,

R = Rt ∪Rp

From Definition 4.2, a vertex in a TAG is labelled as aki if it corresponds to

the ith component of the extended objects, A, involved in the activity at time

point k. Say a sequence of insubTAGs, g1g2...gkgk+1..., is generated by some TAG

grammar. In this context, the nomenclature aki can be extended to be understood

as the ith component of the extended object A in the kth insubTAG of the sequence.

Connection Rules: In node replacement grammar, a connection rule defines

how a subgraph is connected to another subgraph in a derivation. In a TAG gram-

mar, the set of connection rules is based on the labels on the vertices obtained

using the skeletal information. For this work, we assume that the skeletal informa-

tion of the extended objects involved in an activity is known and the vertices in the

TAG are labeled accordingly (see illustrative example in Section 4.3.5, Chapter 4).

Further, a connection rule defines the temporal edges between a pair of consecu-

tive insubTAGs in a sequence generated by the grammar. Such a connection rule,

can be generalized using Equation 5.1 under the following assumptions.

1. The TAGs, and thereby the insubTAGs, involve two extended objects A

and B such that all spatial edges are directed from components of A to

components of B.

2. The skeletal information of the extended objects are known. Further, the ith

component of A correspond to the same skeletal part as the ith component

of B. For example: if the ith component of A correspond to the left hand of

A then the ith component of B correspond to the left hand of B.

In this thesis, activities involving humans are dealt with. Further, part-based

tracking of humans are available in literature [31] that recognize individual skeletal

parts. Thus, within the scope of our discussion, the assumptions stated above are

easily met. As such, the connection rule between any pair of insubTAGs gkgk+1 is

87

CHAPTER 5 SECTION 5.3

the following set of temporal edges,

{(aki , ak+1
i), (bki , b

k+1
i)|1 ≤ i < n} (5.1)

Here, n is the maximum of the number of components in any of the involved

extended objects.

Lemma 5.1. The TAG grammar is a probabilistic context free grammar.

Proof. In a probabilistic context free grammar 〈∆,Σ, R, S, Pr〉, all rules in R are

of the form A→ γ where A ∈ ∆, γ ∈ (Σ ∪∆)∗. Further, the function Pr assigns

probability to the rules such that sum of the probabilities of all rules with some

non-terminal A on the LHS is 1.

According to Definition 5.1, a TAG grammar has the same components as a

probabilistic context free grammar, except that the all terminals in Σ are insub-

TAGs. TAG grammar rules can be of two types: A → a and A → α where

A ∈ ∆, a ∈ Σ, α ∈ ∆∗. However, Σ ⊂ (Σ ∪ ∆)∗ and ∆∗ ⊂ (Σ ∪ ∆)∗. That

is, the RHS of the rules have the same structure as a probabilistic context free

grammar. Further, the LHS of every rule is a single non-terminal A ∈ ∆. This

suggests that the TAG grammar has the context-free property, i.e. replacement

of a non-terminal A in a derivation does not depend on the context in which A

appears. Furthermore, the probability function defined for the TAG grammar uses

the same definition as in a probabilistic context free grammar. Therefore, a TAG

grammar is a probabilistic context free grammar.

5.3 TAG Grammar Induction

The intuition behind defining a TAG grammar is to induce a grammar to model an

activity class. Consequently, such a grammar can be used to classify an activity

(represented as a TAG) to the activity class it belongs based on whether the

corresponding grammar recognizes it. However, such an idea is feasible only if

some grammar induction algorithm is available to learn the grammar rules from a

set of examples. A TAG grammar induction algorithm is defined in this section.

While graph grammar induction algorithms have been proposed in literature,

such algorithms are usually aimed at finding common substructures within general

graphs [127]. In order to find common substructures within a set of graphs such

algorithms have to rely on computationally expensive procedures such as graph

isomorphism. The uniform substructures and temporal sequencing of TAGs make

it possible to simplify the grammar induction algorithm.

88

SECTION 5.3 CHAPTER 5

The proposed algorithm does the following: Given a set, Γ, of positive examples

of activities in the form of TAGs for some activity class C, a TAG grammar

GC = 〈∆,Σ, R, S, Pr〉 is induced. To some extent, the algorithm for inducing GC

is inspired by probabilistic context free grammar induction algorithm for regular

strings [128].

To begin with, each activity X ∈ Γ represented as a TAG, is rewritten as a

sequence of insubTAGs. Say X = (g1, g2, ...gn) where n is the number of time

points in X. While generating the sequences, if an insubTAG, gk, is encountered

for the first time, create a new non-terminal T and a new terminal rule for the

form

T → gk

The insubTAG sequence is then transformed to a sequence of non-terminals such

that every insubTAG in the sequence is replaced by the corresponding non-terminal.

After the TAG X is converted to a sequence of non-terminals (T1T2...Tn), create

a new production rule of the form

P → T1T2...Tn

This is repeated for all X ∈ Γ, until all the TAGs are converted to a sequence of

non-terminals and individual production rules are generated for each such sequence

of non-terminals. This provides the base set of terminals (Σ), non-terminals (∆),

terminal rules (Rt) and production rules (Rp). The probability corresponding

to every terminal rule and production rule is initially set to 1. This base TAG

grammar is then made compact by finding repetitive patterns during interleaved

chunking and merging operations. The TAG induction algorithm is presented in

Algorithm 2.

The chunking and merging of terminal and production rules2 is repeated in

an interleaved fashion until the no more rules can be chunked or merged. The

chunking and merging operations are discussed in detail in Sections 5.3.1, 5.3.2,

and 5.3.3 respectively.

From Definition 5.1, terminal rules are of the form A → a where A ∈ ∆

and a ∈ Σ whereas production rules are of the form A → α where A ∈ ∆ and

α ∈ ∆∗. The separation of the rule set into terminal rules and production rules is

because the right hand side of terminal rules in a TAG grammar have a uniform

graph structure. On the other hand the right hand side of production rules are a

2The set R is the combined set of terminal rules and production rules

89

CHAPTER 5 SECTION 5.3

Algorithm 2: InduceTAGGrammar(Γ), Algorithm to induce TAG Gram-
mar G given a set Γ of n TAGs as positive examples

Input: Γ; The set of n positive examples

Output: G = 〈∆,Σ, R, S, Pr〉 ; Induced TAG Grammar

begin
Initialize ∆ = {S}, Σ = φ, R = φ
forall X = (g1g2...gn) ∈ Γ do

Create a new non-terminal P
∆ = ∆ ∪ {P}
forall 1 <= i <= n do

if (T → gi) /∈ Rt then
Σ← Σ ∪ {gi} ; Include the insubTAG gi in Σ
∆← ∆ ∪ {T} ; Create a new non-terminal T
R← R ∪ {T → gi} ; Create a new terminal rule

Pr(T → gi)← 1

Ti ← T

R← R ∪ {P → T1T2...Tn} ; Create a new production rule

Pr(P → T1T2...Tn) = 1 ; Initialize probabilities to 1

R← R ∪ {S → P}
Pr(S → P)← 1/n ; Assuming equal distribution of priors

Merge terminal rules
G← InterleavedChunkMergeProcedure(G) ; Apply Algorithm 3

return G

sequence of non-terminals and have string-like structure. This allows us to define

specialized procedures for handling merging of the graph based structures and

takes advantage of the sequential structure of TAGs.

5.3.1 Merging Terminal Rules

In traditional graph-grammar induction algorithms, repeating patterns are usu-

ally found by checking for graph isomorphisms[129]. Isomorphic sub-graphs are

replaced by variables to form new rules. This is simplified in TAG grammar induc-

tion because graph structures are restricted to the terminals. Further, insubTAGs

that are terminals in a TAG grammar have a uniform structure with differences

in the edge labels. This reduces the problem of finding graph isomorphisms to

finding similarity in edge labels. For the scope of human activity recognition as

discussed within this thesis, it is assumed that TAGs are used to describe an

activity involving two entities; consequently insubTAGs can be seen as bipartite

graphs.

A pair of terminal rules Tp → g and Tq → h can be merged based on cer-

tain conditions on the insubTAGs g and h. It is to be noted that g and h are

90

SECTION 5.3 CHAPTER 5

represented using a reduced adjacency matrix. Since insubTAGs are essentially

bipartite graphs, a reduced adjacency matrix has vertices corresponding to one

extended object along the rows and the other extended object along the columns.

The element g(i, j) corresponds to the label of the edge from ith component of the

first extended object to the jth component of the second extended object. Further,

The NULL edge label appears whenever the edge label between the ith component

of the first extended object and the jth component of the second extended object

is not known or is missing. Edge labels are computed using Extended CORE9.

However, edge labels may not be computed if one of the components is occluded

or is missing from video at a particular instant of time (see illustrative example

in Chapter 4, Section 4.3.5)

The pair of terminal rules Tp → g and Tq → h can be merged if any of the

following two conditions hold.

Case 1: g and h differ by a single edge label i.e., g(i, j) 6= h(i, j) 6= NULL and

g(i, j), h(i, j) v ε and ε 6= > in the subsumption hierarchy (see Section 2.4.2

of Chapter 2). To handle this case, a new terminal insubTAG g′ is created

such that for the non-matching edge labels of g and h, g′(i, j) = ε. For all

the matching edge labels of g and h, g′ also has the same edge labels.

Case 2: g and h differ only by NULL edge labels. That is,

∀i, j, (g(i, j) 6= h(i, j))⇒ (g(i, j) = NULL ∨ h(i, j) = NULL)

To handle this case, a new terminal insubTAG g′ is created such that for

the non-matching edge labels of g and h, g′(i, j) = ε ∨ NULL. Here, ε =

g(i, j) ∨ ε = h(i, j). For all the matching edge labels of g and h, g′ also has

the same edge labels.

If either of the two aforementioned conditions are met, a new non-terminal Ts is

created and Tp and Tq are excluded from the set of non-terminals. Rules Tp → g

and Tq → h are merged to form a new rule Ts → g′ where g′ is an insubTAG that

can be said to cover both g and h. If Tp → g and Tq → h can be merged, then for

some grammar G = 〈∆,Σ, R, S, Pr〉 the following modifications are applied,

∆← ∆ ∪ {Ts} \ {Tp, Tq} (5.2)

Σ← Σ ∪ {g′} \ {g, h} (5.3)

R← R ∪ {(Ts → g′)} \ {(Tp → g), (Tq → h)} (5.4)

Pr(Ts → g′)← 1 (5.5)

91

CHAPTER 5 SECTION 5.3

As a consequence of these changes, the non-terminals Tp and Tq should not

appear anywhere in R. Therefore, all occurrences of Tp and Tq in any production

rule of R are replaced by Ts. The merging of terminal rules is repeated until no

more terminal rules can be merged.

5.3.2 Chunking Production Rules

In order to reduce the number of rules in the grammar, the production rules have to

be merged. The merging process is effective when it is interleaved with a chunking

process. At this stage of the TAG grammar induction, only production rules are

considered. As discussed before, the right hand side of production rules can be

easily treated as a string of non-terminals. This makes it possible to incorporate

elements of string-grammar induction algorithms.

Chunking involves finding recurrent subsequences of non-terminals and abbre-

viating them using a single non-terminal as done for the string-grammar induction

algorithm in [128]. The effect of the chunking process when interleaved with merg-

ing of production rules is two-fold:

1. Finding recurrent patterns within the grammar.

2. Reducing the size of the grammar and effectively expanding the scope of the

grammar, i.e, the resulting grammar generates more than its predecessor.

In order to detect recurrent patterns of non-terminals, a bigram transition

probability is computed for the non-terminals. For a grammar G = 〈∆,Σ, R, S, Pr〉,
the bigram transition probability matrix M is an n×n matrix such that n = |∆|.
The matrix element M [i, j] gives the transition probability of going from the ith

non-terminal, Ri, to the jth non-terminal, Rj. After computing the bigram transi-

tion probability matrix M , find the index [i, j] corresponding to the highest value

in the matrix. If the subsequence RiRj also appears in at least half the total

number of production rules then non-terminals Ri, Rj are chunked into a single

non-terminal Rk. Consequently, all occurrences of RiRj in the set of production

rules are replaced by Rk. A new production rule of the form Rk → RiRj is added

to the set of rules. Further,

Pr(Rk → RiRj) = 1 (5.6)

The chunking process is repeated to find the bigram with the next highest value

in M until no more chunking of non-terminals is possible using M . At this point

92

SECTION 5.3 CHAPTER 5

merging of production rules is done and the bigram-transition probability matrix

is recomputed for the new set of non-terminals. Algorithm 3 gives details of the

interleaved chunking and merging of production rules. The merging of production

rules discussed in Section 5.3.3.

Special Case: Chunking RiRi

Chunking the bigram RiRi suggests a repetitive sequence of Ris. So, instead of

simply abbreviating RiRi using a new non-terminal, we generate a recursive rule.

As previously, a new non-terminal Rk is created and included in ∆. Two new

rules Rk → Ri and Rk → RiRk are included in the rule set R. The probabilities

of these new rules are set as follows:

Pr(Rk → Ri) = 1−M [i, i] (5.7)

Pr(Rk → RiRk) = M [i, i] (5.8)

Consequently, any repeating sequence of Ris in the set of production rules are

replaced by Rk. That is, all rules of the form Rj → αRiRi...Riβ (where α, β ∈ ∆∗)

are transformed to Rj → αRkβ.

Lemma 5.2. Given a TAG grammar, chunking generates rules such that sum of

probabilities of all rules with the same non-terminal on the LHS is 1.

Proof. From Definition 5.1, in a TAG grammar the sum of probabilities of all rules

with the same non-terminal on the LHS is 1. During the chunking of bigrams in

a production rule A → α does not change the number rules with A on the LHS.

Therefore, the Pr(A → α) does not change. Due to chunking of some bigram

RiRj, a new rule Rk → RiRj is created. The new non-terminal Rk appears on the

LHS of only one rule. From Equation 5.6, the sum of probabilities of all rules with

Rk on the LHS is 1. Similarly, if a bigram RiRi is chunked, new rules Rk → Ri

and Rk → RiRk are created. From Equations 5.7 and 5.8, the sum of probabilities

of all rules with Rk on the LHS is 1. Thus, after chunking a TAG grammar the

sum of probabilities of all rules with the same non-terminal on the LHS is 1.

5.3.3 Merging Production Rules

The chunking of non-terminals ensures that repeating patterns are detected and

compressed using new non-terminals. When the recurrent patterns are bigram

93

CHAPTER 5 SECTION 5.3

sequences of the same non-terminal, recursive rules are generated. Sometimes as

a result of several chunking procedures, production rules with exactly similar non-

terminal sequences on the right hand side may be generated. Further, production

rules of the form Ri → Rj, (Ri, Rj ∈ R) may be generated; such rules are called

unit production rules. Such duplicate rules and unit rules are eliminated by the

merging process.

In certain cases, merging necessitates recomputation of the probability values of

rules. Given a grammar G = 〈∆,Σ, R, S, Pr〉 when dealing with unit productions

rules of the form Ri → Rj, the following cases may occur.

Case 1: If at most one of S → Ri or S → Rj is in R (S is the start non-

terminal/variable) then, merging of Ri with Rj requires removing the rule

Ri → Rj from R. This is followed by replacing all occurrences of Ri with

Rj on the right hand side of all production rules.

Case 2: If both S → Ri and S → Rj are in R then the rules Ri → Rj and

S → Ri are removed from R. From Definition 5.1, the sum of probabilities

of all rules with any non-terminal V on the left hand side should always be

1. To ensure the same for the non-terminal S, the probability of the rule

S → Rj changes as follows:

Pr(S → Rj) = Pr(S → Ri) + Pr(S → Rj) (5.9)

This modification of probability is also supported by the interpretation of

probability values used herein. The probability of a rule Ri → Rj is based

on the ratio of the number of TAGs that support the rule and the number

of TAGs that use the non terminal Ri for generation.

It is worth noting that unit production rules of the form S → Ri (where S is

the start non-terminal) are not merged.

As a consequence of chunking and merging of production rules, duplicate rules

of the form Ri → α, Rj → α, such that Ri = Rj, may appear. To handle such a

case, one of the two duplicates is removed. The probability of the remaining rule

Ri → α is modified as sum of the probabilities of the two duplicate rules. That

is,

Pr(Ri → α) = Pr(Ri → α) + Pr(Rj → α) (5.10)

Another type of duplicate that may appear is of the form, Ri → α,Rj → α such

that Ri 6= Rj and @Ri → β ∈ R, @Rj → γ, α 6= β, α 6= γ may appear. To handle

94

SECTION 5.3 CHAPTER 5

such duplicate rules, one of the duplicates is simply removed from R; no further

action is required.

Lemma 5.3. Given a TAG grammar, merging production rules modifies rules

such that sum of probabilities of all rules with the same non-terminal on the LHS

is 1.

Proof. From Definition 5.1, in the initial TAG grammar, the sum of probabilities

of all rules with the same non-terminal on the LHS is 1. If two rules A → α

and A→ β are merged then one of the rules are deleted and, the probabilities of

the rules may change according the Equations 5.9 and 5.10. Thus, ensuring that

the sum of probabilities of all rules with A on the LHS remains 1. If two rules

A → α and B → β are merged then one of the rules are deleted. Say the rule

B → β is deleted then the number of rules with A on the LHS remain unchanged.

Therefore, the sum of probabilities of all rules with A on the LHS remains 1.

Algorithm 3: InterleavedChunkMergeProcedure, Algorithm to chunk and
merge rules of the grammar G

Input: G; Input is the base grammar

Output: G; Output is the compacted, modified grammar

begin
Initialize ch = TRUE
while ch 6= FALSE do

Compute bigram transition probability matrix M
while ∀i, j,M [i, j] = 0 do

Find index (maxi,maxj) with maximum value in M
M [maxi,maxj]← 0
if RiRj appears in more than currsize/2 rules in R then

Chunk RiRj

ch = TRUE
else

ch = FALSE

forall (Ri → α) ∈ R such that α ∈ ∆∗ do
Merge all Unit Rules of the form Ri → Rj, Ri 6= S
Merge all Duplicate Rules

5.3.4 Theoretical Analysis

The TAG grammar induction algorithm detailed in Algorithm 2 has three distinct

phases:

(1) generate a base set of grammar rules,

95

CHAPTER 5 SECTION 5.3

(2) merge terminal rules, and

(3) interleaved chunking and merging of production rules.

Using this division of phases, it is proved in Theorem 5.1 that the TAG gram-

mar induction algorithm detailed in Algorithm 2 generates a probabilistic context

free grammar. Further, it is shown that the TAG grammar induction algorithm

converges in a finite number of steps in Theorem 5.2.

Theorem 5.1. The TAG grammar induction algorithm generates a probabilistic

context free grammar.

Proof. The TAG grammar induction algorithm detailed in Algorithm 2, generates

a grammar 〈∆,Σ, R, S, Pr〉. The algorithm generates terminal rules of the form

A → a and production rules of the form A → α where A ∈ ∆, a ∈ Σ, α ∈ ∆∗.

From Lemma 5.1, grammars with these types of rules are context-free grammars.

Probabilistic context free grammar (PCFG) include a probability function that

assigns probability to the rules. The probabilities are assigned such that sum of

the probabilities of all rules with some non-terminal A on the LHS is 1. We show

that, at every phase of Algorithm 2, the probability assigned to the rules maintain

the same property as the probability function of PCFG.

In phase (1), each non-terminal except for the start variable S, appears on the

LHS of exactly one rule. Assuming an equal distribution of priors and that there

are n positive examples, we assign a probability for every rule with S on the LHS

as follows:

Pr(S → α) =
1

n

Since in this phase there are n such rules,

∑
α

Pr(S → α) = n ∗ 1

n
= 1

In this phase, all other rules where a non-terminal appears on the LHS of exactly

one rule, Pr(A→ α) = 1.

In phase (2), two rules A → a and B → b can be merged to form a single

rule C → c. The new non-terminal C appears in the LHS of only rule. Thus,

Pr(C → c) = 1.

In phase (3), from Lemmas 5.2 and 5.3, chunking and merging of production

rules maintain the probabilistic property of TAG grammar. That is, the sum of

probabilities of all rules with the same non-terminal on the LHS remain 1.

96

SECTION 5.3 CHAPTER 5

Theorem 5.2. The TAG grammar induction algorithm converges in a finite num-

ber of steps.

Proof. For the algorithm to converge, the three individual phases should converge.

In phase (1), a set of base grammar rules is generated from the set of positive

examples. This number of steps in this phase is linear in the number of positive

examples.

In phase (2), the terminal rules are merged. This is done by a pairwise com-

parison of the rules until no more terminal rules can be merged. Let us assume

that there are n terminal rules. In the worst case, at every step only two rules

are merged to form a single rule; after n steps the number of terminal reduces to

one. At this point, the procedure will have to stop because no more rules can be

compared and subsequently merged.

In phase (3), the production rules are chunked and merged in an interleaved

fashion as detailed in Algorithm 3.

• During chunking, bigrams that are repeatedly occurring on the RHS of the

set of production rules are combined to form new non-terminals. Chunking

a bigram creates a new production rule and replaces the bigram by a single

non-terminal. Therefore, after a chunking operation the length of the RHS of

the rule decreases by one and a new rule is generated. The new rule has the

newly created non terminal on the LHS and the bigram consisting of two non

terminals on the RHS. Let us assume that there are at least m non-terminals

on the RHS of any production rule. In the worst case, chunking would reduce

the length of the RHS of all the production rules to one. At this point there

are no bigrams and consequently no more chunking is possible. Within a

single interleaved iteration step, the chunking converges when there are no

more bigrams to be chunked. Further, based on the same argument no more

chunking is possible after a finite number of interleaved iteration steps.

• The merging of production rules eliminates the unit rules and duplicate rules

generated during chunking. Elimination of a finite number of unit rules and

a finite number of duplicate rules will need finite number of steps. Therefore,

the merging process always terminates in a finite number of steps.

• Finally, the convergence of the interleaved chunking and merging depends

on whether any new bigrams are chunked. If no bigrams are chunked, then

no new unit rules or duplicate rules are generated; consequently no merging

is necessary. In every interleaved iteration step, the number of bigrams that

97

CHAPTER 5 SECTION 5.3

can be chunked decreases. This is because when a bigram RiRj is chunked

to form a new non-terminal Rk, then new bigrams are formed using Rk.

However, the number of unique bigrams with Rk will be less then RiRj has

appeared in any rule. Thus, in a finite number of interleaved iteration steps

there will be a step when no chunking is done and thereby no merging is

necessary. In other words, the third phase converges in a finite number of

steps.

From the above arguments, Algorithm 2, converges in a finite number of steps.

5.3.5 Parsing

To parse some activity A using a TAG Grammar G = 〈∆,Σ, R, S, Pr〉, the ac-

tivity A is first converted to a most probable string of terminals belonging to the

grammar. As discussed in Section 5.2, a terminal in a TAG Grammar is an in-

stantaneous TAG subgraph or insubTAG. The most probable string is computed

based on the edge-label similarity (see Equation 4.7 in Chapter 4). To convert an

insubTAG of the activity sequence A to a terminal of G, we match it with all the

available terminal insubTAGs of the G. If gi is the ith insubTAG of A then the

following two cases are possible, that are handled accordingly.

• If gi exactly matches a single terminal of t ∈ Σ, then use t for gi in the most

probable string

• If gi does not exactly match any terminal in Σ then use edge-label similarity

to compute the average similarity between the corresponding edge-labels.

Use the terminal which is the most similar.

After converting A to a most-probable sequence of terminals, a regular string

parser can be used to parse the activity. We use an LR(0) parser for parsing [100].

The probability of the most probable sequence being generated by the grammar

is updated whenever a reduce action (see Section 2.8.1 of Chapter 2) is applied.

The sequence is classified as the activity class which has the highest probability

of generating it.

Further, since the tested activities have never been seen before, in order to

account for errors and variations from the training data we use an error penalty.

During parsing of an activity, if a terminal is encountered that does not match

any of the patterns described by the rules of the grammar the error penalty is

applied to the probability computation and the non-matching terminal is ignored

98

SECTION 5.4 CHAPTER 5

from the activity sequence. The error penalty, ρ, is a value between 0 and 1 that

is multiplied to the probability computation every time a non-matching terminal

is encountered. The effect of the error penalty is two -fold:

(1) To allow unseen patterns to be parsed conditionally without rejecting it

completely.

(2) To reduce the probability of the sequence to reflect that a pattern not covered

by the grammar is encountered.

5.4 Experimental Evaluation

The TAG grammar is defined to model activities represented in the form of TAGs.

The TAG grammar induction algorithm induces such a model grammar from a set

of positive examples. To evaluate the TAG Grammar and the induction algorithm

presented in this chapter we perform experiments on three datasets viz. Mind’s

Eye dataset, UT Interaction dataset [3], and SBU Kinect Interaction dataset [122].

The classification accuracies obtained from the experiments are compared with

existing work reported in literature.

5.4.1 Experimental Setup

To perform a grammar-based recognition of human activities, we first obtain part-

based tracking data of the activities in the video. The entities involved in the ac-

tivity are abstracted as extended objects ; based on the spatial relations computed

using Extended CORE9 all activities are represented using TAGs (as described in

Chapter 4). A detailed description of how a video is converted to TAG represen-

tation can be found in Appendix B

As shown in the block diagram, training and test sets are different. In the

Learning phase the videos in the training set are converted to TAG. The TAG

grammars are induced from these TAG representations using Algorithm 2 (Please

refer to Section 5.3). The algorithm initializes a base set of rules for the gram-

mar from the TAG represented example videos. The base rules go through several

stages of modification because of merging terminal rules and an interleaved chunk-

ing merging procedure on the production rules. The interleaved chunking merging

procedure is detailed in Algorithm 3. The details of the various stages of the

induction algorithm - merging terminal rules, interleaved chunking merging of

production - are detailed in Section 5.3.

99

CHAPTER 5 SECTION 5.4

Figure 5-2: Block Diagram of the steps in Learning and Recognition of videos
using TAG Grammars

The learning algorithm generates a probabilistic context free grammar using

the examples from the training set. The learned grammar rules are then used to

recognize activities in unseen test data. In the testing phase, the videos in the

test set are converted to TAG and parsed using the learned TAG grammars.

For recognition using the learned TAG grammar, a parsing technique is dis-

cussed in Section 5.3.5. For parsing, an unseen video activity represented as a TAG

is used as input. The TAG grammar is a probabilistic grammar and parsing using

such a grammar generates a probability value. This value indicates the probability

that the parsed TAG will be generated using a particular TAG grammar.

Individual TAG grammars are induced for every activity class using the train-

ing set. The TAGs in the test sets, representing activities, are parsed using all

the generated grammars obtained from the training phase to classify the activity.

An activity is classified as the activity class, C, if the corresponding TAG Gram-

mar, GC , recognizes it. The TAG Grammar is a probabilistic grammar and the

parsing result using such a grammar returns the probability of the activity being

generated by the grammar (as discussed in Section 5.3.5). If there are more than

one TAG Grammar that accepts a particular test activity, then it is categorized

as the class corresponding to the grammar which has the highest probability of

generating that activity.

100

SECTION 5.4 CHAPTER 5

5.4.2 Experimental Results

Experiments were performed using 110 videos from the Mind’s Eye3, 50 videos

from the UT-Interaction [3] dataset and 282 videos from the SBU Kinect In-

teraction dataset [122]. For the Mind’s Eye dataset we consider 11 activities -

approach, carry, catch, collide, drop, follow, hold, kick, pickup, push and throw -

and 10 videos for each activity. For the UT Interaction dataset we consider the

five activities that involve at least two humans - handshaking, hugging, kicking,

punching and pushing. The activities are represented as TAGs and TAG grammars

are induced for each activity class.

The classification results using the induced grammars are obtained. Results

of experiments conducted using an error penalty (ρ = 0.5) and without using any

error penalty (ρ = 0) are reported herein. The precision, recall, and f1-score corre-

sponding to each of the three datasets are obtained - the results for the Mind’s Eye

dataset are given in Table 5.1, the results for UT Interaction dataset are given

in Table 5.2 and the results for the SBU Kinect Interaction dataset are given

in Table 5.3. A comparison of the classification accuracies for each of the three

datasets using TAG Grammar based recognition with TAG kernel SVM classifi-

cation is given in Table 5.4. A comparison of the f1-scores for the three datasets

using TAG grammar based recognition with TAG kernel SVM classification is

shown in Figures 5-3, 5-4, and 5-5. Further, a comparison of the TAG grammar

based recognition with existing work in literature is shown in Table 5.5.

Activity
ρ = 0 ρ = 0.5

P R F1 P R F1
Approach (10) 0.58 0.70 0.64 0.78 0.70 0.74
Carry (10) 0.70 0.70 0.70 1.00 0.80 0.89
Catch (10) 0.62 0.80 0.70 0.75 0.90 0.82
Collide (10) 1.00 0.60 0.75 1.00 0.80 0.89
Drop (10) 0.70 0.70 0.70 1.00 0.90 0.95
Follow (10) 1.00 0.70 0.82 1.00 0.60 0.75
Hold (10) 0.42 0.80 0.55 0.50 1.00 0.67
Kick (10) 0.64 0.90 0.75 0.90 0.90 0.90
Pickup (10) 1.00 0.40 0.57 1.00 0.70 0.82
Push (10) 1.00 0.80 0.89 0.64 0.70 0.67
Throw (10) 1.00 0.70 0.82 0.80 0.80 0.80

Table 5.1: Results for TAG Grammar based recognition on Mind’s Eye dataset

3www.visint.org

101

CHAPTER 5 SECTION 5.4

Figure 5-3: Comparison of F1-scores on UT Interaction Dataset

Figure 5-4: Comparison of F1-scores on SBU Kinect Interaction Dataset

102

SECTION 5.4 CHAPTER 5

Activity
ρ = 0 ρ = 0.5

P R F1 P R F1
Handshaking (10) 1.00 0.90 0.95 1.00 0.90 0.95
Hugging (10) 0.82 0.90 0.86 1.00 0.90 0.95
Kicking (10) 0.91 1.00 0.95 1.00 1.00 1.00
Punching (10) 0.75 0.90 0.82 0.75 0.90 0.82
Pushing (10) 1.00 0.70 0.82 0.80 0.80 0.80

Table 5.2: Results for TAG Grammar based Recognition on UT Interaction dataset

Activity
ρ = 0 ρ = 0.5

P R F1 P R F1
Approaching (42) 0.88 0.78 0.82 0.94 0.94 0.94
Departing (43) 1.00 0.89 0.94 1.00 1.00 1.00
Pushing (40) 0.71 0.67 0.69 1.00 0.94 0.97
Kicking (41) 1.00 0.94 0.97 1.00 0.89 0.94
Punching (18) 0.73 0.61 0.67 1.00 0.67 0.80
Exchanging(21) 0.46 0.89 0.60 0.49 1.00 0.65
Hugging(39) 1.00 0.83 0.91 1.00 0.67 0.80
Handshaking(38) 1.00 0.72 0.84 1.00 0.78 0.88

Table 5.3: Results for TAG Grammar based Recognition on SBU Kinect Interac-
tion dataset

Method UTI ME SBUKI
ExtCORE9 BoW + KNN 62% 58.18% 40.78%
ExtCORE9 BoW + SVM 74% 55.45% 47.16%
ExtCORE9 BoW + Naive Bayes 74% 55.45% 49.64%
ExtCORE9 BoW + Deep Learning 64% 57.27% 46.45%
TAG + Skeletal Information + TAG kernel SVM 90% 73.63% 81.91%
TAG + Interestingness + TAG kernel SVM 80% 65.45% 78.01%
TAG + TAG Grammar Recognition with ρ = 0 88% 70.91% 79.17%
TAG + TAG Grammar Recognition with ρ = 0.5 90% 80% 86.11%

Table 5.4: Comparison of classification accuracies on the UT Interaction (UTI)
dataset, Mind’s Eye (ME) dataset and SBU Kinect Interaction (SBUKI) dataset

5.4.3 Discussion

It is clear from the results reported in Tables 5.1, 5.2, and 5.3 that using an error

penalty (ρ = 0.5) during parsing gives a better result then not using any error

penalty (ρ = 0). This suggests that while the induced TAG grammar successfully

covers most of the activity sequences under a particular class based on a limited

training set, there are some test sequences which are not exactly recognized by

the learned grammar rules. This is due to variations in the test sequences for the

training data or errors and occlusions in the test data. This is easily corrected

by introducing the concept of error penalty and allowing unseen sequences to be

conditionally recognized by the grammar. This is found to be true for almost all

103

CHAPTER 5 SECTION 5.4

Figure 5-5: Comparison of F1-scores on Mind’s Eye Dataset

Method UTI ME SBUKI
TAG + TAG Grammar Recognition with ρ = 0.5 90% 80% 86.11%
TAG + TAG Grammar Recognition with ρ = 0 88% 70.91% 79.17%
TAG + Skeletal Information based Kernel 90% 73.63% 81.91%
TAG + Interestingness based Kernel 80% 65.45% 78.01%
ExtCORE9 BoW + Naive Bayes 74% 55.45% 49.64%
ExtCORE9 BoW + Deep Learning 64% 57.27% 46.45%
Angled CORE9 + LDA [41]a - 64.4% -
BoW + SVM [118] 77% - -
BoP + SVM [118] 95% - -
Skeleton + Deep LSTM [58] - - 86.03%

Table 5.5: Comparison of classification accuracies with other approaches in liter-
ature

a In [41] only 5 activities are considered; in this thesis 11 activities of the dataset are considered.

the classes across the three datasets from the consistently higher f1-scores obtained

for classification using ρ = 0.5.

It is further noted from Tables 5.1, 5.2, and 5.3, that when no error penalty is

used, certain activity classes have high precision but comparatively low recall val-

ues. Activities collide, pickup from the Mind’s Eye dataset, pushing from the UT

Interaction dataset, and punching, hugging, handshaking from the SBU Kinect

Interaction dataset belong to this category. These are seen to be the activities

that have TAG grammar rules that are similar to other activity classes in the

same dataset. For example, collide from the Mind’s Eye dataset has a similar

TAG grammar structure to approach or catch. This is further corroborated by the

104

SECTION 5.5 CHAPTER 5

higher recall and lower precision values of approach and catch. Similarly, pickup

has a TAG grammar that is somewhat similar to that of hold. From the UT Inter-

action dataset pushing again has a similar TAG grammar to punching. From the

SBU Kinect Interaction dataset pushing has a similar TAG grammar structure

to punching ; hugging is similar to exchanging ; and handshaking is similar to ap-

proaching. Because of the structural similarities, any unseen sequence belonging

to any of these classes are easily misclassified. By introducing the error-penalty

such misclassifications are reduced.

From Figures 5-3, 5-4, and 5-5, it is seen that for most classes the TAG gram-

mar based recognition has a higher f1-score than the TAG kernel based SVM

classification discussed in Chapter 4. This is particularly true for the Mind’s Eye

dataset and the SBU Kinect Interaction dataset. However, there are exceptions,

such as the punching and exchanging activities of SBU Kinect Interaction dataset

and catch, hold, and pickup activity of the Mind’s Eye dataset. Incidentally, these

are also the same activities that are seen to have similar TAG grammars with

other classes from the above discussion. For the UT-Interaction dataset, the re-

sults using the TAG kernel based SVM classification and the TAG grammar based

recognition are mostly comparable.

A comparison of classification accuracies obtained using TAG grammar and

existing literature is shown in Table 5.5. As discussed earlier in Chapter 4, Sec-

tion 4.4.3, the results reported for Angled CORE9 [41] are for five activities while

we use 11 activities of the Mind’s Eye dataset. Further, an average MCC of 0.37

is reported in [124] for all activity classes in the Mind’s Eye dataset. On the other

hand TAG grammar has an average MCC of 0.79 for 11 activities of the Mind’s

Eye dataset. The TAG grammar also achieves classification accuracies that are

comparable to the state-of-art results for the SBU Kinect Interaction dataset and

UT Interaction dataset. However, BoP + SVM [118] outperforms our system

performance. As discussed in Chapter 4 Section 4.4.3, this could be because the

representation uses ST-phrases combine the spatio-temporal descriptions of re-

lated local features. On the other hand, the TAG representation provides only a

temporal structure to the spatial relations between the extended objects.

It is worthwhile to note that the classification accuracies without using error-

penalty based parsing is lower when compared to the TAG-kernel based SVM

classification for all three datasets. This expected because it is traditionally ac-

cepted that discriminative classifiers such as SVMs provide a better classification

of the data. However, generative learning mechanisms, such as induction of gram-

mar rules, allow modelling the underlying structure of the classes.

105

CHAPTER 5 SECTION 5.5

5.5 Conclusion

In this chapter, we have presented TAG grammar to model activity classes wherein

activities are represented as TAGs. Such a TAG grammar can be used to recognize

and thereby classify activities using a simple parsing mechanism. An algorithm for

automated induction of the rules of such a TAG grammar was presented. Further,

a mechanism for parsing activities using such a grammar is discussed.

The TAG grammar presented in this chapter for modelling activities can be

induced from a set of positive examples. One of the drawbacks of the proposed

induction algorithm is that it is non-incremental. In the next chapter, an extended

discussion of the drawbacks of the work presented in this thesis is given. In

addition to the drawbacks, a detailed discussion of the novelty, possible extensions,

and future work is presented.

106

	12_chapter 5
	Introduction
	Temporal Activity Graph Grammar
	TAG Grammar Induction
	Merging Terminal Rules
	Chunking Production Rules
	Merging Production Rules
	Theoretical Analysis
	Parsing

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Discussion

	Conclusion

