
Chapter 2

Literature Review

2.1 Human Activity Recognition

Human activity recognition (HAR) has gathered much interest in recent times

because of its wide range of applications. Applications of HAR include automated

surveillance systems, human-computer interfaces, patient monitoring systems and

smart homes among others [18]. Surveillance in public areas like airports, railway

stations, parking lots, schools and colleges involve detection of suspicious activities

such as terrorism, vandalism, theft, fighting etc. However, continuous monitoring

of surveillance videos by a human is difficult and tiring. As such, an automated

surveillance systems that learns to identify unusual human activities from video

has garnered much interest [19].

HAR is also an important component of automated patient monitoring systems

and smart homes. A smart home monitors environmental changes and learns to

recognize and predict inhabitant’s activities. By doing so, it is able to take appro-

priate actions and timely decisions to assist inhabitants in performing activities of

daily living (ADL) [20, 21]. Such systems allow real time monitoring of patients,

children and elderly persons, and further enable them to live independently within

their own home environment. Human robot interactions are imminent with an in-

creasing number of mobile robots, particularly domestic robots for cleaning and

maintenance of households. HAR is an important aspect for a well-coordinated

interaction between humans and robots [22]. Perceptual narratives drawn from

HAR in video have also been discussed in the domain of smart-meeting cine-

matography [23]. Using such narratives to understand the environment allows for

intelligent cinematography by automating coordination and control of the cam-

eras.
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CHAPTER 2 SECTION 2.1

2.1.1 Categories of Activities

Human activities are known to have an inherent hierarchical and recursive struc-

ture [18, 24]. Based on such a view, Aggarwal and Ryoo [18] have categorized

human activities as: gestures, actions, interactions, and group activities. In an-

other recent review presented by Zhang et al [24], human activities have been

categorized into three-levels: action primitives, activities and interactions. The

following categorization of human activities is based on the review by Aggarwal

and Ryoo [18].

1. Gestures: These are the atomic elements of the activities that constitute

more complex human activities. Gestures involve a particular limb of the

body such as the hands, arms, or upper body part. This is similar to the

action primitive described in Zhang et al’s review. For example, “stretching

the left arm” and “raising the right leg” are some actions that belong to this

category.

2. Actions: These are the human-activities that may be composed of more

than one gesture but involve only a single human. This category is termed

as activities by Zhang et al. For example, “walking”, “waving”, “pointing”

belong to this category.

3. Interactions: Interactions are complex activities that involve two humans

or a combination of a human and an object. For example, activities like

“handshaking”, “kicking” belong to this category. Aggarwal and Ryoo [18]

further categorize interactions between two humans as human-human inter-

action and interactions between a human and an object as human-object

interaction.

4. Group Activities: Activities that involve groups of more than two humans

and objects are termed group activities. This category is not separately

recognized by Zhang et al; however, they describe interactions as activities

involving more than one person or object. This allows group activities to be

clubbed with interaction in Zhang et al’s categorization. Typical examples

in this category are “group of people having a meeting”, “a group of people

playing football” etc.

Along similar lines, Vrigkas et al [2] recognize further higher level categories

such as events and behaviors. According to their categorization, behaviors refer

to activities that are associated with the emotions, personality, and psychological
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state of the individual. Events are high-level activities that describe social actions

between individuals and indicate the intention or the social role of a person. Else-

where, events have also been defined as any change in the spatio-temporal state of

a physical object during an interval of time [25]. Considering such a varied range

of terminology used in literature, we restrict ourselves to using the terminology

defined by Aggarwal and Ryoo [18]. Further, this thesis is centred around human

interactions.

2.1.2 Levels and Stages of HAR

In a review presented by Ke et al [26], the study of HAR systems is separated

into three levels as shown in Figure 2-1. In the first level, study is focused on

the low-level core technologies of an HAR system. At this core-technology level,

there are three basic stages of HAR - (a) Detection and tracking of objects in the

video, (b) Extraction of features for representation of activities, and (c) Reasoning

mechanisms for classification of activities. The entities involved in the activity

are detected and tracked within the video. Based on the tracking data, interesting

characteristics of the involved entities are extracted. The extracted features from

the video are used for an appropriate representation of the activity. Subsequently,

classification algorithms are applied on the activities for HAR.

In the second level, mid-level human activity recognition systems are discussed.

Based on the classification of human activities in Section 2.1.1, there are four

basic types of HAR systems - (a) gesture recognition, (b) action recognition,

(c) interaction recognition, and (d) group activity recognition. Finally, in the

third level, discussion surrounds high level application of HAR systems.

It is seen that over the years representation approaches have made transition

from global representations to local representations, and most recently to depth-

based representations [24]. Similarly, the learning mechanisms used within HAR

keep evolving. It has been noted that lots of techniques that were not specifically

designed for HAR have received much attention. For example, Dynamic Time

Warping, Hidden Markov Models and more recently deep learning techniques are

popularly used within HAR [24]. Object recognition and tracking techniques are

related to the HAR scope and has seen considerable progress over the years as

well.

A generalized framework for multilevel human activity analysis framework has

been recently proposed in [27]. The framework is a combination various modules

as follows -
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Figure 2-1: Overview of an HAR system[26]

(1) low level feature extraction,

(2) Laban movement analysis parameters1,

(3) human movement estimation,

(4) interpersonal behaviors estimation,

(5) activity estimation, and

(6) social role estimation

It is worth noting that the framework in [27] can be seen as a more fine-grained

view of the pipeline shown in Figure 2-1. The modules (1) and (2) are easily

recognized as the feature extraction and representation phase of low-level core

technologies. Modules (3), (4), (5), and (6) may fall within the reasoning for

activity recognition phase. The framework additionally shows how the various

reasoning modules interact within a mid-level view of HAR systems.

1Laban movement parameters were proposed for describing, annotating and interpreting hu-
man movement in the field of choreography [28]
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In this thesis, the focus will be on the low-level core technologies for feature

extraction, activity representation and reasoning mechanisms for activity recog-

nition. The object detection and tracking data are assumed to be available via

existing technologies discussed in literature [29, 30, 31].

2.1.3 Representation Schema

Researchers have used a multitude of features for describing the events occurring

within a video. Most vision based HAR systems use global features such as silhou-

ettes [32], contours [33], optical flow [34]. Such global descriptors of activities are

known to be extremely sensitive to noise, occlusions and viewpoint variations [7].

Grid based representations that divide the images into fixed spatial and temporal

grids are seen to partially solve the problems in global representations. Descriptors

such as histogram of oriented gradients (HOG) [35], grid-based optical flow [36],

silhouette and flow grids [37] have also been used. Other global representation

schemes involve use of space-time volumes obtained by stacking sequences of sil-

houettes to obtain a 3D volume [38].

It has often been argued that humans do not perceive images in terms of

pixel information [39]. Following this argument, some worked on building a 3D

representation of components from the 2D images [40]. Many researchers have

also focused on representation of events in terms of objects and their qualitative

spatio-temporal relations [5, 11]. Within qualitative frameworks for representation

of activities, various aspects of space, such as topology and direction, have been

considered. CORE9 is a compact and comprehensive representation framework

that encodes topological, directional, size, distance and motion information of a

pair of objects abstracted using axis-aligned rectangles [13].

Within qualitative frameworks, humans are usually abstracted using bounding

boxes [5, 13, 41]. However, for human activities, using a single bounding box for the

whole body abstracts away a lot of interaction details. A part-based model of the

human body [29, 30, 31] is seen to help solve the problem to some extent [15]. This

is comparable to how grid-based representations are better descriptors than global

representations, as discussed earlier. However, simply increasing the granularity

does not take into account part-whole relations. Moreover, increasing granularity

in a qualitative framework may lead to an explosion of relations many of which may

be redundant. To alleviate this to some extent, in this thesis we discuss extended

object based abstraction and a representation that uses qualitative spatial relations

between extended objects.
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Qualitative spatial relations describe the configuration of objects in space at

an instant of time. However, activities are spatio-temporal in nature and to en-

code temporal information of activities various techniques have been adopted. A

sequence of spatial relations have been used to describe an activity [42]. Time

is also expressed using qualitative temporal relations [43] in hierarchical graph

representation [11] as well as first-order logic formulations [5]. Temporal nature

of activities have also been discussed by keeping track of objects trajectories and

the qualitative relations between these trajectories [44]. Graph based representa-

tions have also been often for representation of the spatio-temporal structure of

activities [11, 45, 46].

2.1.4 Reasoning Mechanism

Recognition of events and activities within a video is generally done by generating

models for event classes [5]. There exist works that focus on classification without

considering the temporal structure of the event. Some such works have used

classifiers, like k-Nearest Neighbours, to obtain action class descriptions [32, 33]; a

prototype of the classes is obtained as the mean of all examples within the classes.

Discriminative classifiers such as Support Vector Machines (SVM) [47] have also

been used. Many researchers have also worked on learning models that focus on

the temporal structure of the events. Hidden Markov Models (HMM) have been

used in many of the works such that states correspond to different stages of the

events [48, 49]; Conditional Random Fields have also been used [50, 51]. Based

on various spatio-temporal graph representations for activities different learning

techniques have been used such as - graph based relational learning [11], graph-

kernel based classification [46] among others. Grammar-based approaches have

also been reported in the literature [52, 53, 54, 55]

Of late, much research has focused on data driven algorithms [56, 57, 58]. 3D

Convolutional Neural Networks have been used for learning spatio-temporal fea-

tures [56]; Recurrent Neural Network based HAR has been shown to achieve high

accuracy [57]; Recurrent Neural Networks with Long Short-Term Memory have

also been used to learn feature representations and model long-term temporal de-

pendencies for HAR [58]. Such techniques focus on the pixel-information obtained

from very large datasets to achieve high accuracy; they fail to take into account

high-level contextual information contained in the video [10]. High-level contex-

tual information could give interesting insights for learning interaction models

from relatively small datasets.
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2.1.5 Knowledge Representation & Reasoning for HAR

Knowledge Representation and Reasoning (KR & R) is concerned with how sym-

bolic knowledge, instead of quantitative information, can be used in an automated

system for reasoning. The rising popularity of KR & R methods in the area

of video understanding is because of the recognition that more conceptual and

generic models can be learned [13]. Qualitative abstractions of space-time are

often used in such systems for representation of knowledge pertaining to the ac-

tivities [11, 41, 42, 59].

Several qualitative representation systems revolve around reasoning about mov-

ing objects in space [60, 61]. This allows for a natural transition to using qualita-

tive reasoning for understanding and reasoning about objects moving in space over

time, i.e. events within a video. Reasoning about occlusion relations have been

used to detect and eventually recognize multi-object events within a video [62].

Constraint based logical reasoning for qualitative representations have been used

to improve upon tracking of moving objects within video [63]. Simple events in-

volving inanimate objects, such as vehicles in a traffic surveillance systems, are

often seen within such discussions [62, 64].

The learning mechanism used in the system is usually tied to the underlying

representation of activities. When a knowledge-based representation is used, logic

based reasoning techniques can be utilized for learning complex human activity

models. Relational learning techniques such as Inductive Logic Programming have

been used when video events are represented as first-order logic formulae [59].

Graph based relational learning has been explored where events are represented

using interaction graphs and activity graphs [11]. Grammar based approaches have

also been discussed for recognition of activities wherein activities are described

using first-order logic predicates [18]. Although the grammar rules are not learned

or induced in [18], it has been noted that grammar based approaches are most

suited to capture the hierarchical and recursive structure of human activities.

Declarative reasoning has also been used for a high-level interpretation of on-

going activities within a video [23, 65]. It has also been used for semantic inter-

pretation of sensor data, such as those obtained from object tracking, eye tracking

data, movement trajectories in a video [65]. Constraint Logic Programming is

then used for a high-level explanation of observed events and answering questions

about perceived interactions in the video. Such perceptual narratives of activi-

ties obtained using knowledge-based reasoning have been discussed within a smart

meeting scenario for automated cinematography [23].
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There are also examples in literature where a knowledge-based representation

of activities have been used together with non-logic based learning mechanisms.

Such systems take advantage of the high-level intuitive representation of activities

and the simplicity of non-logical learning algorithms. Popular similarity-based

learning techniques such as those employing Support Vector Machines have been

used together with qualitative spatio-temporal representation of activities [42].

Probabilistic learning algorithms such as Latent Dirichlet Allocation has also been

used for unsupervised learning of activities [41, 44]. The qualitative knowledge

based description of activities are treated as a bag-of-words description in such

approaches. Recent works have also incorporated deep learning techniques with

a qualitative description of activities [66]. Therein, qualitative abstractions of

direction, distance, and trajectory relations between the interacting objects are

used to describe an activity. Such qualitative descriptions are used with Long

Short Term Memory (LSTM) for learning temporal sequencing of events and a

Multi-layer Perceptron for learning event models.

KR & R techniques are gaining popularity in the field of video understand-

ing. On one hand, success with KR & R techniques for simple events involving

moving objects [62, 64] has lead to the use of such techniques for modelling more

complex human activities [23, 41]. On the other hand, efforts are being made for

taking advantage of the rich descriptions for a more intuitive understanding of

complex activity sequences [65]. Furthermore, there is emerging a trend for using

symbolic descriptions within non-symbolic learning techniques [41, 42, 44, 66]. In

this thesis, we present a graph based representation of activities. Herein, sym-

bolic knowledge pertaining to spatial information of the entities are embedded

in the form of qualitative relations. For learning within such a representation,

we discuss non-symbolic classification techniques in Chapters 3 and 4. In Chap-

ter 3, popular off-the-shelf classification techniques are utilized with a qualitative

relational bag-of-words description of activities. In Chapter 4, symbolic knowl-

edge is incorporated as qualitative relations within a graph-based representation

for activities. Consequently a more specialized kernel-based SVM classification is

discussed. A grammar based learning mechanism is presented in Chapter 5 that

utilizes symbolic reasoning techniques for learning complex activity models.

2.2 Qualitative Spatial Representation

Qualitative Reasoning within KR & R is concerned with the qualitative abstrac-

tions of the physical world in order to capture non-metrical common-sense knowl-

16



SECTION 2.2 CHAPTER 2

edge. Given appropriate reasoning techniques, the behaviour of physical systems

can be explained without having to fall back on intractable or unavailable quan-

titative models. Qualitative Spatio Temporal Reasoning (QSTR) provides for-

malisms for capturing common-sense spatial and temporal knowledge [67]. These

formalisms usually rely on a relational description of space-time events rather

than actual quantitative details of object locations and durations of the happen-

ings. Researchers often use such formalisms for a more intuitive description of

video activities [11, 59, 68].

Within QSTR, formalisms have been defined for qualitative representation

and reasoning for various aspects of space [69]. Topology [70], direction [71],

motion [60], order [43], distance and size [72] are few aspects of space that have

often been discussed in literature. Such a formalism, often termed a qualitative

calculus, is built upon a set of jointly exhaustive pairwise disjoint (JEPD) relations

called the base relations [73]. The base relations are a finite set of relations that

partition the entire set of possible pairs of elements for a non-empty universe.

Between any pair of elements from the universe, exactly one of the base relations

is possible.

In this thesis, we discuss binary qualitative relations between 2D rectangle

regions for a relational representation of the spatial configuration of objects during

an activity. Further, this thesis is mostly focused on the computation of qualitative

relations for the aspects of topology, direction, and distance.

2.2.1 Topology

Topology deals with relations unaffected by change of shape or size of objects. A

notable framework for expressing qualitative topological relations between a pair

of regions, having the same dimension, is the Region Connection Calculus [70].

In this approach relations are defined based on a connection primitive, where two

regions are said to be connected if they share at least one common point. Two sub-

sets of jointly exhaustive and pairwise disjoint relations, viz. RCC5 and RCC8,

are widely used by researchers. The Region Connection Calculus (RCC8) rela-

tions are Disconnected (DC), Externally Connected (EC), Partially Overlapping

(PO), Equal (EQ), Tangential Proper Part (TPP) and its inverse (TPPi), and

Non-Tangential Proper Part(nTPP) and its inverse (nTTPi). Figure 2-2 shows

the spatial configuration of two spherical objects with different RCC8 relations.

In RCC5, relations DC and EC are abstracted by single relation Disjoint(DR),

relations TPP and nTPP are abstracted as Proper Part (PP), and relations TPPi
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and nTPPi are abstracted as Proper Part Inverse (PPi).

Figure 2-2: The JEPD relations of RCC8 [70]

2.2.2 Direction

Qualitative directional relations have also been extensively discussed in litera-

ture [71, 74]. Qualitative directional information may either assume a global frame

of reference [71] or a relative frame of reference using a reference object [74]. In

this thesis, we shall focus on cardinal direction relations that are based on a

global frame of reference. Cardinal direction relations are one of the eight cardi-

nal directions: North (N), NorthEast (NE), East (E), SouthEast (SE), South (S),

SouthWest (SW), West (W), NorthWest (NW) [71]. Cardinal direction relation

relations have also been discussed with respect to objects with multiple com-

ponents [75]. For multi-component objects, a combination of cardinal direction

relations are used. Figure 2-3 shows how cardinal direction relations are defined

for simple objects and objects with multiple components.

2.2.3 Distance

Researchers have also discussed distance and size relations in a qualitative frame-

work. Qualitative size relations have been defined within a mereological framework

of part-whole relations, that is extended by primitive relations same-size-as and

roughly-the-same-size-as [72].

The qualitative distance relations are defined using a combination of connection

primitive, sphere primitive and the qualitative size relations. The sphere primitive
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Figure 2-3: (a) Cardinal directions of b (b) a S b (c) a NE:E b
(d) a B:S:SW:W:NW:E:SE b [75]

Figure 2-4: Qualitative distance for a spherical object x [72]

defines a region to be a sphere. Within such a framework, qualitative distance

relations Close (Cl), Strictly Close (SCl), Near (N), Strictly Near (SN), Away (A),

Far Away (FA), Moderately Away (MA) are defined for two disconnected sphere

regions. Figure 2-4 shows the distance ranges corresponding to the base relations

SCl, SN, MA, and FA are shown. As shown in the figure, given a spherical

object x, another object y is said to be SCl if it lies strictly within the innermost

circle and so on. It is to be noted that if two objects are topologically connected

then the distance between them is zero and the qualitative distance is said to be

Connected (C).

2.2.4 Extended Objects

In the frameworks discussed above, objects are assumed to be simple, connected

regions. In literature, extended objects, which can be seen as a set of disconnected

regions, have also been discussed. Extended objects have been referred to as com-
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posite regions [16] and topological relations between composite regions are defined

at two levels - the coarse level and detailed level. At the coarse level, a single

general relation is used to express the topological relation between the composite

regions as a whole. At the detailed level the relations at the component level

are considered within a reduced topological matrix ; here only relations between

a component of one region and a component of the other region are considered.

Elsewhere, topological relations between complex objects, which are seen as a set

of discrete points, disjoint lines, or disjoint regions is discussed [17]. A concept of

predicate clustering is proposed to express component relations as a single general

relation, exclusively resting on the emptiness and non-emptiness of component in-

tersections. Topological relations between regions with holes have been discussed

in [76]; wherein, in addition to the relation between the whole regions, the topolog-

ical relations between the holes of one region and the the holes of the other region

are considered. It is assumed that only the relations between holes of different

regions are necessary, as the relation between holes of the same region can be

implicitly understood to be disjoint. Direction relations between extended objects

have also been discussed [75]. The space around an object is divided into nine tiles

corresponding to the eight cardinal directions surrounding it and one central box

area containing the object. The relation of a union of regions to another region

is expressed as a sequence of cardinal directions corresponding to each of the tiles

of one region that the other region may overlap (see Figure 2-3d). To the best of

our knowledge qualitative distance relations for extended objects have not been

discussed in literature.

2.3 CORE9 and its variants

CORE9 was proposed as a comprehensive rectangle representation that allows an

integrated representation of several interesting spatial information between two

rectangles, viz. topology, direction, size, distance, and motion [13]. Their focus

is on presenting a compact representation for one-piece, rectangular, axis-aligned

regions, which is a common abstraction of objects in video analysis rather than

a more precise shape representation. By extending the boundaries of the pair of

rectangle objects, the region of interest is divided into nine cores as shown in

Figure 2-5. By maintaining the state information for these nine cores it is possible

to infer the topological and directional information of a pair of objects. The state

information of corei,j(A,B) is statei,j(A,B) and can have the following values:
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(a) AB if the core is a part of A ∩ B

(b) A if the core is a part of A−B

(c) B if the core is a part of B − A

(d) � if the core is not a part of A or B

(e) φ if the core is only a line segment or point

Figure 2-5: The RoI and 9 cores of CORE9 [13].

Further, the cores can be ranked based on their coverage area. The distance,

size and motion information, can be inferred from the ranking information of the

nine cores. The relative size and distance information can be obtained straight-

forwardly by comparing which core is larger than which other core. The relative

motion information can be obtained by comparing the size of a core at one time

point to its size at the next time point.

2.3.1 Reasoning within CORE9

Given objects A and B, the state of objects A and B, is the 9-tuple represented

through [state1,1(A,B), state1,2(A,B), state1,3(A,B), state2,1(A,B), state2,2(A,B),

state2,3(A,B), state3,1(A,B), state3,2(A,B), state3,3(A,B)]. The state of objects A

and B in Figure 2-5, written in a matrix form for clarity, is as follows.

state(A,B) =


A A �

A AB B

� B B


From this state information, it is possible to infer that the RCC-8 relation between

A and B is PO, because there is at least one core that is part of both A and B.
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Based on the position of the cores occupied by A and B, the CDC relation can be

inferred to be A : SW : B. Further, the state information is seen to have a one

to one correspondence to the topological-directional relation, given as a Rectangle

Algebra (RA) relation 2. Inferring the topological relation as an RCC-8 relation

from a given RA relation is straightforward for convex, axis-aligned rectangles.

Furthermore, based on the coverage area of the cores, the ranking information

for A and B can be computed as follows.

rank(A,B) =


6 3 9

4 1 7

5 2 8


Given the rank and state information, the total size of the cores occupied by object

A is smaller than the total size of the cores occupied by B. Therefore size of A

is inferred to be smaller than size of B. On the other hand, the distance between

A and B is zero since they are topologically connected. The motion information

can be inferred by comparing rank and state information between A and B in the

next instant of time.

2.3.2 Variants of CORE9

It has been noted that objects within a video are often represented using their min-

imum bounding rectangles (MBR) [13]. Based on such an observation, CORE9

was designed for a pair of axis-aligned rectangular objects, allowing for several

representational efficiencies. However, it has been argued that relations obtained

for a pair of objects, abstracted using a single axis-aligned rectangle, are often

inaccurate [41]. As shown in Figure 2-6, the topological relation between the two

regions is computed to be partially overlapping using CORE9. The figure shows

that using oriented rectangles for abstracting the regions, the regions are accu-

rately found to be topologically disjoint. Angled CORE9 was presented for dealing

with such oriented rectangles [41]. The emphasis in Angled CORE9 was on com-

puting appropriate orientations of the rectangles that could be used for computing

accurate qualitative relations. They have utilized the Maximum Margin technique,

popularly used with Support Vector Machines, for identifying the hyperplane that

separates the regions. They go on to show that this hyperplane also provides the

best angle of orientation for the rectangles that bound the regions.

2A depiction of the states and their correspondence with the RA relations can be found in
www.comp.leeds.ac.uk/qsr/cores
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Figure 2-6: Inaccurate relations are computed if the objects are abstracted using
a single axis-aligned rectangle

Researchers have also discussed an extension of Angled CORE9 for 3D ori-

ented rectangles wherein the entire video is seen as a spatio-temporal volume [44].

Therein, an approach is presented for adapting Angled CORE9 to be used with

spatio-temporal volumes. The video is segmented spatio-temporally to obtain the

spatio-temporal volumes of the interacting objects from the video. The activi-

ties are described based on the spatial and temporal aspects computed for the

spatio-temporal volumes.

Both variants discussed above define techniques that allow CORE9 to be used

for better abstractions of the entities involved in the activities. This is done by

using a single oriented bounding rectangle for abstracting an entity in the video.

This suggests that a proper abstraction of the interacting entities within the HAR

system affects a large number of factors, including efficiency and effectiveness.

For inanimate objects that do not have individual movable parts, an abstraction

using a single bounding box may suffice. However, for human bodies that have

movable parts, such as hands and feet, an extended object based abstraction that

uses multiple rectangles for each individual movable part seems to be more ap-

propriate. In this thesis, we define extended objects as a set of components, such

that each component is approximated by an axis-aligned minimum bounding rect-

angle. Therefore, in Chapter 3 we present Extended CORE9, a mechanism for

obtaining the spatial relations between the interacting entities. To this extent, we

use geometric reasoning to reduce the amount of computation, thereby enhancing

efficiency.
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2.4 Qualitative Reasoning

Within QSTR, majority of the research is focused on the representation of typ-

ically infinite spatial and temporal domains using a finite set of symbols [67].

Nonetheless, constraint-based reasoning techniques have been popularly used for

manipulation of such qualitative representations. The general constraint based

reasoning techniques of QSTR have also empowered other forms of similarity-

based or logic-based reasoning [69]. Constraint-based reasoning usually surround

the idea of compositions of relations of a qualitative calculus [67]. Given three

entities in a spatial/temporal domain, a, b, c, if the relation between a and c is

known to be R1 and the relation between b and c is R2, then compositions al-

low inference of the relation between a and c. Such compositional inferences are

independent of the domain elements and can be seen as constraints on the rela-

tion between a and c. In a recent review by Dylla et al [69] the following forms

of constraint-based reasoning are recognized: (a) Constraint network generation,

(b) Consistency checking, (c) Model generation, and (d) Equivalence transforma-

tion

Other forms of reasoning within QSTR involve conceptual neighbourhood graphs.

Conceptual neighbourhood graphs are particularly useful for reasoning about spa-

tial entities that change over time. Subsumption lattices are logical reasoning

tools that are also used with qualitative representation [77].

2.4.1 Conceptual Neighbourhood Graph

A conceptual neighbourhood graph (CNG) for a qualitative calculus is a directed

graph with nodes corresponding to a single base relation. The edges in a CNG are

defined based on the assumption that change within the spatio-temporal domain

is continuous [67]. An edge between two nodes (say between nodes R1 and R2)

indicate that a direct transition from R1 to R2 is possible. In this context, a direct

transition from R1 to R2 indicates that if the relation R1 holds between two entities

at a given time point, then R2 may hold between the time entities in the immediate

next time point, by continuous transformation of the entities [78]. Continuous

transformation of entities can mean either continuously moving, shortening or

lengthening the entities. CNGs are important tools for reasoning in a qualitative

framework. In Section 4.3.2 of Chapter 4, we use CNG to compute the similarity

between a sequence of relations between a pair of interacting entities.

Figure 2-7 shows the CNGs for RCC5, RCC8, Cardinal Direction relation

and Qualitative Distance relations. For example, in Figure 2-7(a), an edge from
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(a) CNG of RCC5 (b) CNG of RCC8

(c) CNG of CDC (d) CNG of QD

Figure 2-7: Conceptual Neighbourhood Graphs (CNG) of RCC5 and RCC8 [70],
CDC [79], and QD [72]

relation PO to EQ indicates if the relation between two entities a and b at time

t is PO then it is possible that the relation between a and b at time t + 1 is EQ.

Likewise, since there is no edge from DR to EQ, it indicates that it is impossible

for the relation between a and b to continuously change from DR to EQ. In order,

for the relation a and b to change from DR to EQ, it has to change from DR to

PO and then to EQ. In general, if there is an edge in the CNG from R1 to R2,

then there is also an edge from R2 to R1. The relations R1 and R2 are said to be

conceptual neighbours.

2.4.2 Subsumption Lattice

The base relations of a qualitative calculus, together with other more general

relations defined within the calculus can be arranged in a subsumption hierarchy

or subsumption lattice. The subsumption lattice is constructed using the partial

order subsumption relation. A relation R1 is said to subsume another relation R2

if R1 holds whenever R2 holds between a pair of entities. The relation R1 is a more

general relation then R2 and appears higher up in the lattice. The most general

relations are connected together to the top (>) relation. The most specific relations
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in the hierarchy are connected together to the bottom (⊥) relation. Figure 2-8

shows the subsumption lattice of RCC [70]. In addition to the base relations of

RCC8 and RCC5, the subsumption lattice of RCC includes other general relations

such as part (P), part inverse (Pi), overlap (O) and connection (C).

Figure 2-8: Subsumption Hierarchy of RCC [70]

Figure 2-9: Subsumption Hierarchy of Cardinal Direction Relations

Similarly, the subsumption lattice of the Cardinal Direction Relations can be

constructed as shown in Figure 2-9. Here, in addition to the base relations, the
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general north (GN), general south (GS), general east (GE), and general west (GW)

relations are used in the lattice.

2.5 Geometric Reasoning

Geometric Reasoning is defined as “the process of defining and deducing properties

of a geometric entity using intrinsic properties of entity, its relationships with other

geometric entities, and the rules of inference that bind such properties together

in geometric space” [80]. However, this has been discussed in literature from

two different angles. The first approach involves the traditional use of algebraic

expressions for representation of geometric information [81]. This enables generic

solutions to geometric problems such as finding intersection of geometric entities

etc. In another approach, the properties of the geometric entities within such a

system is captured using high-level constructs such as first-order predicates [80].

The reasoning of these properties is supported by the deduction within first order

reasoning. In this thesis, we use the latter interpretation of geometric reasoning. A

geometric reasoning framework is discussed in Chapter 3 for efficient computation

of qualitative spatial relations between entities. Qualitative spatial relations can

be seen as a first-order representation of the properties of the geometric entities

within a video frame.

2.5.1 Qualitative-Geometric Reasoning

For most cases, qualitative and geometric reasoning go together. Analog geometric

representations provide the basis from which the qualitative spatial descriptions

are obtained [82]. Qualitative models of space provide a more intuitive description

of spatial and temporal information. Such systems allow for a common-sense

reasoning about the spatio-temporal domain. However, for a computer, processing

of quantitative geometric information is more straightforward. As such, models

have been proposed for a hybrid mechanism that interleaves qualitative reasoning

with computational geometry methods for reasoning [83]. The system proposed

therein takes as input both qualitative and quantitative descriptions for a richer

and more efficient reasoning about spatial data. Qualitative reasoning has also

been integrated with numerical computation for military planning and alternative

battle plans [84].

Qualitative spatial and temporal relations have also been used together with

quantitative spatial features for recognition of activities of daily living [42]. In this
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work, qualitative spatial features are the topological RCC [70] relations between

objects and qualitative temporal relations are the Allen’s Interval Algebra [43] re-

lations. Quantitative spatial features include Euclidean distances between objects

and relative direction of motion. Feature selection techniques are applied on the

entire set of qualitative and quantitative features before learning activity mod-

els using a Support Vector Machine. Although this technique does not explicitly

combine qualitative reasoning with geometric reasoning, the representations are

combined for a richer description.

2.6 Graph Representation

Graphs are a popular mechanism for representation of relations between pairs of

objects. The set of vertices may be used to represent the objects; the relation

between pairs of objects, are represented as the set of edges between vertices.

Graphs have found a large number of applications within computer science, in-

cluding computer networks, world wide web, social networks, computer vision,

and bioinformatics among others.

A graph consists of a set of vertices or nodes3 (V ) and a set of edges (E ⊆
V × V ). Several variations on graphs have been used and implemented. In an

undirected graph, there are no directions on the edges in the graphs. That is, if

there is an edge (a, b) ∈ E then it implies that (b, a) ∈ E. In a directed graph,

the edges have directions; if there is an edge (a, b) ∈ E then it is not necessarily

true that (b, a) is an edge in the graph. Figures 2-10a and 2-10b show examples

of undirected and directed graphs respectively.

In another variation of graphs, called weighted graphs, numerical weights are

assigned to the edges. It is also possible to assign weights to the nodes of the

graphs. Figure 2-10c is an example of weighted directed graph. A variation of

weighted graphs are attribute graphs, where instead of numerical weights, the

edges are labeled with non-numerical attributes. Attributes are descriptors that

can be in the form of string, a function, etc. Figure 2-10c is an example of attribute

graph where the attributes are the topological (RCC) relations between corre-

sponding objects. Within QSTR, such directed attribute graphs where attributes

are qualitative relations between entities are termed as qualitative constraint net-

works (see Section 2.4). Hypergraphs are a form of graphs where edges maybe

defined between more than a pair of vertices. The hypergraph in Figure 2-10e has

3The terms nodes and vertices are used interchangeably within this thesis.
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(a) (b) (c)

(d) (e)

Figure 2-10: (a) Undirected Graph (b) Directed Graph (c) Weighted Directed
Graphs (d) Attribute Graph (e) Hypergraph

two hyperedges - {x, y} and {x,w, z}.

Figure 2-11: A simple temporal graph [85]

Temporal graphs have been defined as a tool for analyzing rich temporal

datasets that describe events over periods of time [85]. In addition to regular

edges between vertices, temporal graphs can have temporal edges to encode dy-

namically changing interactions. Vertices represent objects at a specific time point.

29



CHAPTER 2 SECTION 2.6

Static edges represent edges between vertices at the same time point. Temporal

edges connect vertices corresponding to the same object at different time points.

Figure 2-11 shows an example of a temporal graph. In the figure, the vertex At1

corresponds to the object A at time point t1. The edge (At1 , Bt1) is a static edge

and (At1 , At2) is a temporal edge. Further, the weights on the temporal edges

correspond to the amount time elapsed between the two time points.

2.6.1 Graphs for HAR

Representation of human activities using graphs have been reported in literature

by various researchers [45, 46, 49, 86, 87]. The temporal nature of activities has

often been modeled using probabilistic graphical models such as HMMs [49, 86].

On the other hand, graphical models like Hidden Conditional Random Fields have

been used to correlate spatial features of the video activities [51]. Researchers have

also used graphical models that encode spatial and temporal features of an activity

simultaneously [46, 87]. Researchers have represented the vision-based features of

particular time-points during an activity using a structured feature graph [46]. A

sequence of such graphs is then used to represent the complete activity. Human

activities have also been represented as hierarchical qualitative spatio-temporal

graphs [87]. Qualitative spatial relations between objects are represented using

vertices of one level in the hierarchy and qualitative temporal relations as vertices

at another level of the hierarchy. Graph representations of an activity based on a

volumetric view of the have also been discussed where vertices represent spatio-

temporal segments of the video [45]. Directed Acyclic Graphs (DAGs) have been

used to describe activities wherein nodes represent motion patterns of a set of

entities [88]. The nodes are linked with edges if the corresponding motion patterns

are temporally related. Spatial and temporal features have also been encoded with

a two-graph model [89]. One graph encodes only spatial features and the other

encodes the temporal relations between the features.

However, none of the representations discussed above explicitly track the evo-

lution of spatial relations between components of interacting objects. It is possible

to achieve a similar effect using the representation discussed in [87]. However, the

number of vertices will increase considerably when extended objects are used for

abstraction. The DAG representation of [88] encode relations between the mo-

tion patterns of individual entities. However, the information about the motion

patterns themselves are not retained. The two-graph model discussed in [89] is dif-

ficult to handle because two different graphs are used to keep spatial and temporal
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information. To deal with such problems, in Chapter 4 of this thesis, a temporal

activity graph representation of human activities is discussed.

2.6.2 Learning within Graphs

Graphs are extensively used for representational purposes in a large number of ap-

plication within and beyond computer science. This calls for methods that can be

used for learning from data represented as graphs. However, traditional learning

algorithms can not be directly applied for graphs because they do not have have

a vector representation. Learning within graphs have been researched extensively

and a variety of different techniques have been developed over the years. Learning

algorithms for graphs fall into two distinct categories [90]. In the first category, a

single graph is seen to represent an entire network of data. That is, a complete

dataset is represented by a single graph. In such a case, learning within graphs is

a matter of finding repeating substructures within the same graph. In the second

category, individual graphs represent individual data points within the dataset.

The entire dataset is a collection of smaller graphs. For both categories, spe-

cialized methods and generic methods coupled with distance and kernel functions

have been discussed in literature. Graph based relational learning, graph grammar

induction etc are examples of specialized methods that have been adapted from

classical learning algorithms. Generic methods for learning from graph usually

involve designing of specialized kernel and distance functions in combination with

generic supervised and unsupervised algorithms. This thesis focuses on the second

category of graph learning algorithms. In the Temporal Activity Graph represen-

tation that is presented in Chapter 4, a single activity is represented by a single

graph structure.

2.7 Graph Classification using Kernels

A generic approach for learning using graphs is using generic similarity-based su-

pervised and unsupervised techniques together with specialized distance functions

or kernel functions. Distance functions compute the dissimilarity between two

graphs, i.e. a higher value indicates more dissimilarity. On the other hand, ker-

nel functions compute similarity between graphs, i.e. a higher value indicates

more similarity. Both are used by a variety of generic clustering and classification

techniques. In this case, the learning problem boils down to finding appropriate

distance or kernel functions for the graphs. Further, for kernel functions to be
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used with generic classification techniques such as SVMs, it is essential for the

kernel function to be positive semi-definite.

Various strategies have been discussed in literature for defining appropriate

kernel function. The problem of computing similarity between two graphs can be

seen as the problem of graph-isomorphism. Graph isomorphism is the problem of

determining that two graphs have the same number of vertices connected in the

same way. However, graph isomorphism is a known NP-complete problem. In

order to deal with this problem, various approximate approaches to computing

kernel function have been discussed. A popular category of such kernel functions

are the label-sequence kernels [91]. In label sequence kernels, the edges and vertices

of the graphs are assumed to labeled. A label-sequence is an alternating sequence

of edge and vertex labels that is generated by some walk within the graph. Random

walk kernels functions matches the label sequences of the two graphs, obtained

by random walks, to determine their similarity. Although ideally it is preferable

to compute all possible label-sequences for the two graphs, the number of label-

sequences would be infinite for cyclic graphs. One simple way to overcome such a

problem is by restricting the length of the label-sequences.

2.7.1 Temporal Graph Kernel

Temporal graphs are often used for modelling dynamic temporal evolution of struc-

tural properties. Consequently, several such temporal graph representations also

fall back on kernel based classification. Early discussions on temporal graph anal-

ysis have focused on a small world network, i.e. a network that models temporal

evolution of a small number of entities [92]. Therein, a parallel implementation of

a sub-graph kernel is discussed for answering centrality and path-related queries.

Temporal graphs have been used for modelling temporally evolving social net-

works [93]. The authors have used a temporal spectral graph kernel, that is a

combination of several popular graph kernel techniques, to predict future growth

of the network. This is an example of kernel used for finding repeating patterns

within a temporal graph where a single graph represents an entire network. Re-

searchers have also designed generic algorithms for tracking changes in similarity

between two separate graphs, i.e. changes in static graph kernel values, when the

graphs are dynamically evolving [94].
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2.7.2 Graph Kernels for HAR

To the best of our knowledge temporal graphs have not been used in literature

for HAR. However, static graphs are often used for modelling activities, as seen

from the discussion in Section 2.6.1. Several of these graph representation for

HAR are used together with a graph kernel based classification [46, 88, 89, 95]. A

generalized random walk kernel for unlabeled directed graph has been presented

for classification of activities represented as DAGs [88]. Context Dependent Graph

Kernels have been presented for static attribute graphs that compute similarity

based on primary walk groups (PWGs) [89]. The two graph are decomposed into

PWGs and their kernel is computed by a context-dependent matching of their

PWGs. A random-walk based kernel that combines subgraph matching and time

sub-sequence matching for computing similarity between temporal sequences of

graphs is discussed in [46]. A path-based graph kernel has also been discussed in

the context of human behavior analysis [95].

Graph kernels discussed within HAR are designed for static graphs, whereas ac-

tivities are represented using temporal graphs in this work. Further, the temporal

graph kernels discussed in Section 2.7.1 are insufficient for handling the spatio-

temporal structure of TAGs. Therefore, a Temporal Activity Graph Kernel (TAG

kernel) is presented in Chapter 4 of this thesis. The TAG kernel computes simi-

larity between two TAGs and is based on the similarity between label sequences.

However, the label sequences discussed herein differs from what has been discussed

in literature. Here, label sequences are determined by the temporal evolution of

spatial relations between components of interacting objects. Furthermore, the

label sequences are sequences of qualitative spatial relations between interacting

entities and their similarity depends on qualitative relational properties.

2.8 Grammar based Recognition

Four types of grammar are recognized in formal language theory based on their

expressiveness [96]-

(a) Type 3 grammars for regular languages,

(b) Type 2 grammars for context free languages,

(c) Type 1 grammars for context sensitive languages, and

(d) Type 0 grammars for recursively enumerable languages.
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Type 0 and Type 1 grammar are more expressive and cover a wider range of

languages. However, known parsing algorithms for Type 0 and Type 1 grammars

have exponential time dependency [97]. On the other hand, Type 2 grammars

or context free grammars have polynomial-time parsing algorithms. Furthermore,

context free grammars are less restrictive than Type 3 or regular grammars. For

this reason, context free grammars are often used for representational purposes.

In literature, there exist reports of researchers who prefer grammar as a tool for

encoding the recursive and hierarchical nature of human activities [6, 52, 53, 54].

Some of these works represent the hierarchical nature of human activities using a

Context Free Grammar(CFG) [6]. The researchers have used lower level gestures

as terminals for the CFG, and activities are seen as a string of gestures with

time-based constraints. They further present a heuristic-based parsing but rely

on grammar rules that are hand-coded by a human expert.

Stochastic Context Free Grammars (SCFG) extended with temporal relations

have been used to encode activities as parallel strings of gestures [52]. For example,

raising both hands simultaneously, could be interpreted as an action consisting of

the parallel sub-events of raising the left hand and raising the right hand. The

grammar rules are learned automatically from training data and a multi-thread

parsing algorithm is proposed to handle concurrently occurring strings of gestures.

AND-OR Grammars have also been discussed in the context of HAR [53, 54].

Researchers have defined AND rules to describe sequences of action primitives for

an activity and OR rules to describe alternate sequences for an activity [53]. Al-

though the AND-OR grammar rules are initially learned using a manually labeled

semantic map of the scenes, a method has been proposed to discard the manual

labels. Stochastic AND-OR grammars have also been learned in an unsupervised

setting and used for activity recognition [54].

It is notable that although grammars have often been used for HAR, the struc-

ture of the grammar depends largely on the representation of activities used in

the respective work. In this work we present a Temporal Activity Graph repre-

sentation of activities in Chapter 4. Based in this representation, in Chapter 5 a

Temporal Activity Graph Grammar is proposed for modelling human activities. A

graph-grammar induction algorithm is presented for learning the grammar rules

from a set of positive examples.

34



SECTION 2.8 CHAPTER 2

2.8.1 Context Free Grammars and Parsing

A context free grammar (CFG) [98] is defined as a four-tuple 〈∆,Σ, R, S〉 where,

• ∆ is the set of variables or non-terminals

• Σ is the set of terminals

• R is the set of rules, such that each rule is of the form A → α, where

α ∈ (Σ ∪∆)∗

• S is the start symbol, and S ∈ ∆

The set of strings that generated by the rules of grammar comprise the language

of the grammar. Conversely, a grammar can be seen as a condensed description

of a set of strings i.e. a language [97]. The problem of deciding whether any

string of terminals, w ∈ Σ∗ belongs to the language of a grammar or not is called

the recognition problem. On the other hand, parsing not only gives a yes or no

answer to the recognition problem, it further reconstructs the sequence of steps to

produce the string from the given grammar if it is a member.

For parsing strings given a Context Free Grammar, several parsing algorithms

have been developed over the years. LL(k) parser [99], LR(k) parser [100], CYK

parser [101], Earley parser [102] are some of the notable parsing algorithms for

Context Free Grammars. LL(k) parsers are top-down parsers that scans the input

string from left-to-right, uses only left-most derivations, and uses k lookahead

tokens in the string [99]. However, LL(k) parsers are not able to parse all context-

free languages.

LR(k) parsers are bottom-up parsers that scan the string from left-to-right,

uses only right-most derivations, and uses k lookahead tokens [100]. LR parsers

scans the string and deterministically applies two types of basic operations called

shift and reduce. The shift operation simply instructs the parser to move on to

the next symbol on the input string. The reduce operation instructs the parser

to apply some grammar rule. A rule of the form A → α is applied when the

rightmost subsequence in the string is same as the string α. Such a reduce oper-

ation essentially replaces the subsequence α with A. Implementing LR(k) parser

involves constructing a LR parse table. The entries of the table determine whether

a shift or a reduce operation is to be applied at any given point of time during

the parsing. The entire parsing process involves a table look-up and accordingly

performing a shift or a reduce operation. There exist automated methods for

constructing the PR tables called parser-generators. Compared to LL(k) parsers,
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LR(k) parsers can be used for a larger number of context-free languages. How-

ever, LR(k) parser can be used only for a subset of context-free languages called

deterministic context-free languages.

The CYK and Earley parsing algorithms are more generic than LL(k) and

LR(k) parsing algorithms because they can be used for any context free language.

CYK parsing can be applied only for grammars that are in Chomsky Normal Form

but all context free grammar can be easily converted to CNF. On the other hand

Earley parsing algorithm is known to be the most efficient parsing algorithm that

also does not require grammars to be in any particular form.

2.8.2 Probabilistic Context Free Grammar

A Probabilistic Context Free Grammar (PCFG) or Stochastic Context Free Gram-

mar is a context free-grammar that has probabilities associated with each rule in

R. It was first defined for recognizing RNA sequences in bioinformatics [103].

The probabilities are assigned to the rules such that the sum of probabilities of

all rules, with some Vi ∈ ∆ on the left hand side, is 1. A PCFG consists of the

same components as context free grammar but contains an additional probability

function.

A PCFG is quintuple 〈∆,Σ, R, S, Pr〉 where, ∆, Σ, R and S are the set of non-

terminals, set of terminals, set of rules and the start non-terminal respectively. Pr

is the probability function that assigns a probability value to each rule A→ α ∈ R
such that,

Pr(A→ α ≥ 0) and
∑
α

Pr(A→ α) = 1

Pr(A → α) is interpreted as the probability of choosing rule A → α to replace

the variable A in a derivation.

2.8.3 Graph Grammar

Similar to regular string grammars, a graph grammar defines a set of production

rules that allow one to construct a specific set of graphs. A production rule in a

graph grammar is of the form X → D where X is a non-terminal and D is an

undirected graph with terminals or non-terminals. D is often called the daughter

graph. The graph in which X appears so that the rule X → D can be applied is

called the mother graph. Depending on whether the terminals represent a node or

an edge in the mother graph, a graph grammar can be either a node-replacement

grammar or an hyperedge-replacement grammar.
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A node replacement grammar with a neighbourhood controlled embedding is a

system G = (Σ,∆, P, S). Here Σ and ∆ are the set of terminal and non-terminal

node labels respectively. P is the set of productions and S is the start non-

terminal. Every production of the form X → D is associated with a connection

relation that defines which node of D is connected to which nodes in the mother

graph. A simple connection relation can be seen as a pair (x, y) where x is a node

in the daughter graph D and y is a node in the mother graph. The semantics of

such a connection rule is that an undirected edge exists between x and y when

X is replaced by D in the mother node. The process of replacing X by D and

making new edge connections is called embedding.

In hyperedge replacement grammar, we deal with hypergraphs that consist of

sets of nodes and sets of hyperedges. Hyperedges of type-k are a structure with k

tentacles that are able to connect k nodes (see Figure 2-10e). The terminals and

non-terminals represent hyperedges. Non-terminals representing a hyperedge can

be attached to any structure with a set of nodes by attaching each of its tentacles

to a node. Here too, every rule is of the form X → D where D is a subgraph with

hyperedges that has a designated set of external nodes. When replacing X during

a derivation the external nodes of D are glued to nodes that were connected by

the hyperedge X in the mother graph.

2.8.4 Graph Grammar Induction

Grammar induction is the process of constructing a set of grammar rules that gen-

erate a given set of positive examples. Grammar induction has been extensively

studied for string grammars and a large number of grammar induction algorithm

have been proposed [104, 105]. Relatively fewer work has been done in the context

of graph grammars. Nonetheless, there are several reports of work on graph gram-

mar induction and its applications. One of the earliest examples for graph gram-

mar induction algorithms induces a special category of context-sensitive graph

grammars [106]. Since then several generic and application specific graph gram-

mar induction algorithms have been proposed. SubdueGL is a popular generic

graph grammar induction algorithm that discovers frequent substructures based

on the concept of minimum description length[107]. SubdueGL learns a context

free graph grammar in which variables appear as node/vertex labels. A minimum

description length based algorithm has also been used for learning Stochastic Con-

text Free Graph Grammars [108]. Generic algorithms have also been presented for

inducing non-confluent graph grammars, i.e. grammars where structure of the re-
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sultant graph depends on the order in which the rules are applied [109]. Grammar

induction algorithms that look for frequent subgraphs using constraint program-

ming local consistency techniques have also been presented [110]. An alternative

Plane Graph Grammar was introduced in [111]. The researchers further discuss

an appropriate graph grammar induction algorithm for learning rules of a Plane

Graph Grammar.

On the other hand, specialized graph grammars have often been designed for

modelling in various applications. A graph grammar induction algorithm based on

overlapping subgraphs has been presented that was intended for modelling Visual

Programming Languages [112]. Recent reports have also often discussed genetic

programming techniques for learning graph grammar rules [113, 114]. Genetic

programming has been used for inducing the rules of a Context Sensitive Graph

Grammar [113]. Evolutionary Computing techniques are also used for inducing

rules of an Augmented Graph Grammar [114]. Augmented Graph Grammars

are analogous to string grammars but also allows for graph structure and have

been discussed in the context of argument analysis [115]. Context Free Geometric

Graph Grammars have been introduced for modelling and synthesis of urban road

networks [116]. The work further presents a grammar induction algorithm that

determines frequently repeating subgraphs by detecting isogroups.

It is clear from the discussion above that, while there exist generic graph

grammar induction algorithms [107, 108, 109, 111], these may not be applicable

for many specialized graph grammars introduced for the specific application ar-

eas. Most applications that use graph grammars incorporate features specifically

designed to serve a purpose [112, 115, 116]. The generic algorithms are unable to

take advantage or avoid the disadvantages of such features. Therefore, induction

algorithms that are specially designed for a particular category of graph grammars

are often used. In Chapter 5 of this thesis, a Temporal Activity Graph Grammar is

presented for modelling human activities along with an induction algorithm. The

induction algorithm takes advantage of the unique structure of Temporal Activity

Graphs. The Temporal Activity Graph Grammar presented herein is a probabilis-

tic context free grammar with elements of node-replacement graph grammar.

2.9 Conclusion

In this chapter a discussion on the domain of Human Activity Recognition and

related work that has been done in the field has been presented. Further, basic

background knowledge on which the remaining chapters of this thesis are built are
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also discussed. In the next chapter, the first component of the thesis is presented

which is a geometric framework for extracting qualitative relations for a pair of

extended objects.
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