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1.1 Introduction 

Electromagnetic emissions are usually generated and transmitted during 

operation of wireless and electronic devices. Beyond a certain level, these 

emissions cause operational interferences and are classified as Electro-Magnetic 

Interferences (EMI). Growth in modern high speed electronic devices packaged 

alongside the electromagnetic wave emitting sources in devices such as cellular 

telephony, wi-fi, bluetooth, etc. are posing newer challenges for the designer. In 

addition, these multitude of applications have created an even more congested 

electromagnetic environment leading to operational challenges of systems in close 

proximity [1].  

The electromagnetic vulnerability and radiation hazard have to be controlled 

for obtaining an electromagnetically compatible (EMC) environment by reducing 

EMI. Electromagnetic shields are generally used for sufficiently reducing EMI. 

Shielding can be done either by placing the device inside a metal enclosure which 

protects the device by reflecting the external electromagnetic waves (reflection 

type shields) or using  absorbing materials on the device/surface which will 

absorb the electromagnetic wave (em) incident on it (absorption type shields) [2]. 

The reflection of electromagnetic waves from reflective shields may interfere with 

other devices in its vicinity, thus affecting devices both within the system 

enclosure and without. Due to the limitations of the reflection type of absorbers, 

the current work focusses on absorption type of shields and will be referred to as 

absorbers. 

Research on electromagnetic wave absorbers dates back to the 1930’s with 

the first patent appearing in 1936 in the Netherlands [3] which was a quarter-wave 

resonant type structure. Absorbers were first used during the World 

War II (1939-1945) where, Germany used the “Wesch” material [4, 5] for 

camouflaging of submarines and periscopes at 3 GHz. During 1941-1945, 

materials known as “HARP” (Halpern-anti-radar-paint) were used by the United 

States in airborne and shipborne environments in the X-band. Reflection loss of 

the absorbers used were in the range of 15-20 dB at resonance. During this period, 

another absorber commonly known as Salisbury screen absorber [6] was also 

developed in the Radiation Laboratory, MIT. It was a quarter-wavelength 

resonant absorber at 3 GHz with about 25% bandwidth. Since then, development 

in the field of microwave absorbers have progressed concentrating broadly on 
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improving the absorption by restructuring, reducing weight and thickness, 

increasing absorption bandwidth to cater to specific applications [7-9].  

A schematic representation of the various wave components involved in 

absorption is shown in figure 1.1. Design of microwave absorbers with enhanced 

absorption performance requires two important conditions to be satisfied: 

impedance matching characteristic and attenuation characteristic. When 

electromagnetic wave is incident on an absorber, reflection takes place at the free 

space-absorber interface due to mismatch in impedance. Reflections can be 

minimized if impedance of the absorber is matched to the free space impedance, 

resulting in penetration of the wave into the absorber, which is the first condition. 

Within the absorber, dissipation of radio frequency (RF) energy is maximized 

resulting in rapid attenuation of the amplitude as it propagates in the absorber 

structure. This is the second condition [10].    

Figure 1.1: Schematic representation of absorbing type EMI shielding mechanism [11] 

As seen from the schematic (figure 1.1) at the air-absorber interface two reflected 

waves reaches – one from the front surface of the absorber while the other from 

absorber-metal surface. For effective absorption there should be minimum 

reflection from the absorber’s surface. When the two reflected waves are out of 

phase they cancel each other thus reducing reflection. This is possible if the two 

waves destructively interfere, i.e., having a path difference of  ∕ 2. Since, the 

wave travelling twice the thickness of the absorber (t) is equal to odd multiple of 

λg/4, where, λg = λ0 ∕ (|εr||μr|)1∕2 where, |εr| and |μr| are the moduli of 

complex permittivity (εr) and complex permeability (μr) respectively. 
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1.2 Absorption mechanism in microwave absorbers 

When an electromagnetic wave penetrates any object, it interacts with 

different microscopic boundary conditions of the inclusions in the structure. The 

extent of absorption is generally dependent on the interaction. The mathematical 

formulation of this loss mechanism can be obtained using Maxwell’s wave 

equations [12]. The general form of time varying Maxwell’s equations in phasor 

form are;  

∇̅ × �̅� = 𝐽 ̅ + 𝑗𝜔�̅�      (1.1) 

∇̅ × �̅� = −𝑗𝜔�̅�      (1.2) 

where,  �̅� = 𝜀�̅�,  �̅� = 𝜇�̅�, 𝐽 ̅ = 𝜎𝑠�̅�   

�̅� is the electric flux density (V/m), 𝜀 = 𝜀0𝜀𝑟 is the permittivity, �̅� is the magnetic 

flux density (Wb/m2) and 𝜇 = 𝜇0𝜇𝑟 is the permeability. 𝐽 ̅ is the electric current 

density (A/m2), due to an external field and 𝜎𝑠 is the conductivity. A large 

majority of absorbers are based on non-conducting materials (insulators) where 

𝜎𝑠~0 and hence, the conductivity term can be ignored in equation 1.1. Thus 

equations 1.1 and 1.2 becomes, 

∇̅ × �̅� = 𝑗𝜔𝜀0𝜀𝑟�̅�      (1.3) 

∇̅ × �̅� = −𝑗𝜔𝜇0𝜇𝑟�̅�      (1.4) 

The relative permittivity, 𝜀𝑟 and permeability, 𝜇𝑟 of the medium are complex in 

general and expressed as 𝜀𝑟 = 𝜀𝑟
′ − 𝑗𝜀𝑟

′′ and 𝜇𝑟 = 𝜇𝑟
′ − 𝑗𝜇𝑟

′′ , respectively. 𝜀𝑟
′  and 

𝜇𝑟
′  being the real parts while 𝜀𝑟

′′ and 𝜇𝑟
′′  are the imaginary parts. 

When an oscillating electric field interacts with a dipole, the dipole rotates 

to align itself according to the polarity [13] resulting in energy loss through the 

generation of heat (friction). The degree to which the dipole is out of phase with 

the incident electric field, is a characteristic of the material and depends on the 

frequency of the oscillating electric field. This determines the magnitude of the 

imaginary part of the permittivity. The larger the imaginary part, the more is the 

energy dissipated. Thus, the imaginary part of the relative permittivity relates to 

loss in the system. Similarly, in case of magnetic materials, the field interacts with 

the magnetic dipoles. There are three main loss mechanisms for magnetic 

materials, viz. hysteresis, eddy current and residual loss. Residual losses include 

the resonance losses which dominate at high frequencies. 
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The equation 1.3 and 1.4 can be rewritten as 

∇̅ × �̅� = 𝑗𝜔𝜀 ′ (1 − 𝑗
𝜀′′

𝜀′
) �̅�       (1.5) 

∇̅ × �̅� = −𝑗𝜔 (1 − 𝑗
𝜇′′

𝜇′
) �̅�      (1.6) 

The terms 𝑡𝑎𝑛𝛿𝑒 = 𝜀 ′′ ∕ 𝜀 ′ and 𝑡𝑎𝑛𝛿𝑚 = 𝜇′′ ∕ 𝜇′describe the amount of energy 

supplied by an external electric field that gets dissipated during dipole alignment. 

The phasor form (frequency domain) of wave equations are;  

 𝛻2�̅� =    (𝑗)2�̅�       (1.7) 

𝛻2�̅�  =    (𝑗)2�̅�   = − 2 𝜇�̅�                                                      (1.8) 

Let       − 2 𝜇 =  2                                                               (1.9)                                 

The equations (1.7) and (1.8) reduce to 

 𝛻2�̅� −  2�̅� = 0     (1.10) 

 𝛻2�̅� −  2�̅� = 0     (1.11) 

where,  = √− 2 𝜇 =  𝑗√𝜀0𝜇0√𝑟𝜇𝑟 = 𝑗
2𝜋𝑓

𝑐
√𝑟𝜇𝑟 = 𝛼 + 𝑗𝛽                 (1.12) 

𝛼, is the attenuation constant which defines the rate at which the fields of the 

electromagnetic wave attenuates and 𝛽 is the phase constant representing the 

phase change as the wave propagates.  

For a plane em wave propagating through the absorber in the 

x-direction, (figure 1.2) the electric field will be in the y-direction while the 

magnetic field will be in the z-direction. The electric and magnetic fields are given 

by; 

E̅ = �̅�𝑦. �̂�𝑦 = 𝐸0𝑒− x�̂�𝑦        (1.13) 

�̅� = −
1

𝑗𝜔𝜇
∇̅ × �̅�  =

𝛾

𝑗𝜔𝜇
𝐸0𝑒− x�̂�𝑧 = �̅�𝑧 . �̂�𝑧                 (1.14) 

The intrinsic impedance, 𝜂, of the wave is given as  

 𝜂 =
E̅𝑦

H̅𝑧
=

E0e− x

γ

jωμ
E0e− x =  

𝑗𝜔𝜇

𝛾
=

𝑗𝜔𝜇0𝜇𝑟

𝑗√𝜀0𝜇0√𝑟𝜇𝑟
= √

𝜇0

𝜀0
√

𝜇𝑟

𝜀𝑟
= 𝑍0√

𝜇𝑟

𝜀𝑟
       (1.15) 

where, 𝑍0 is the characteristic impedance of free space. 

The extent of reflection as well as penetration of the em wave at the 

air-absorber interface is determined by the intrinsic impedance of the absorbing 

medium. Once the incident wave penetrates the absorbing material, the wave 

exponentially decays with distance, x, by the factor, 𝑒−𝛼x as shown in figure 1.2. 

This decay or absorption loss occurs because the currents induced in the medium 
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produce ohmic losses; which manifest as heat in the material. The attenuation 

constant 𝛼 can be expressed [14] as 

𝛼 =
√2𝜋𝑓

𝑐
× √(𝜇𝑟

" 𝜀𝑟
" − 𝜇𝑟

′ 𝜀𝑟
′ ) + √(𝜇𝑟

" 𝜀𝑟
" − 𝜇𝑟

′ 𝜀𝑟
′ )2 + (𝜀𝑟

′ 𝜇𝑟
" + 𝜀𝑟

"𝜇𝑟
′ )2  (1.16) 

It is seen from the above equation that larger the values of complex 

permittivity and permeability, larger will be the attenuation of the field amplitude. 

However, larger values of complex permittivity and permeability result in higher 

reflection due to impedance mismatch at the absorber interface thus impeding 

penetration of the wave into the material [16]. Choice of an absorbing material is 

therefore, a trade-off between these two conflicting conditions.  

Figure 1.2: Attenuation of wave while travelling through a medium [15] 

Since both electric and magnetic fields are involved in em wave propagation, 

permeability (µ) together with permittivity (ɛ) plays an important role in absorber 

performance. The magnetic component of absorber improves matching at the air-

absorber interface (Z′ = √μ ε⁄ ). Magnetic losses along with dielectric losses 

enhance attenuation of the incident wave resulting in reduced thickness of the 

absorber as the guide wavelength reduces by a factor of 1 √με⁄ . Thus, the present 

work is focused on magnetic absorbers. A review of relevant literature is 

presented in the following section.  

1.3 Literature survey on magnetic microwave absorbers 

The work on customization of microwave properties of ferrites began 

proliferating towards the latter part of the 1960s with many patents on ferrite 

compositions for absorbers at different frequency ranges [7, 17-21]. In the year 

1969, Suetake [22] patented thin microwave absorbing wall in the frequency range 
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of 0-2 GHz using ferrites. The following year, Naito along with Suetake [23], 

showed performance superiority of ferrite or rubber ferrite absorber to that of 

lossy dielectric material absorber below the frequency range of 7.5 GHz with 

reduced thickness. Rado and his group from Naval Research Laboratory, 

USA [24] in the project “Newboy,” initiated in 1976 developed thin radar 

absorbing materials using ferrites which was extensively used as stealth treatments 

for missile-like drones, aircraft and ships. In the year 1977, Wright [25] patented a 

ferrite pyramidal structure which was tapered ½ to 1 inch showing broadband 

absorption from 1 to 3 GHz. Till the end of the 1990s, absorbing structures were 

made using spinel ferrites [26-31], which limited their use to megahertz range as 

complex permeability drops at higher frequencies, given by Snoek’s limit [32].  

M-type hexagonal ferrites have high crystalline anisotropy, high saturation 

magnetization, high natural resonance, low density and high chemical stability. 

The anisotropy property of barium ferrite was exploited over the years to develop 

absorbers in gigahertz range [17-19, 33]. It was in the year 1998, when 

Sugimoto et al. [34] suggested that natural resonance of M-type barium ferrite can 

be used for absorption of microwaves. They reported that “this is the first study to 

show that it is possible to use natural resonance of M-type ferrite to absorb 

microwave radiation and minimum reflection loss occurred when the frequency 

matches with the natural resonance frequency”. A reflection loss of better than 

-20 dB over the range of 1-20 GHz for matching thickness of 0.5 to 3.8 mm was 

reported, following which, absorption properties of M-type barium ferrite have 

been extensively studied with varying particle sizes and using various doping 

elements [33, 35-47]. 

Another hexagonal ferrite, M-type strontium ferrite (SrFe12O19) is reported 

to have high anisotropy (anisotropy constant of 3.5 x 106 erg cm-3), high 

saturation magnetization (74.3 - 92.6 emu/g) and high chemical stability [48, 49] 

which makes it a suitable candidate for magnetic absorbers. In the early 2000’s, 

Song [49] reported an electromagnetic absorber with strontium ferrite and carbon 

fused in silicon rubber which showed -29 dB reflection loss at 8.4 GHz and 

-23 dB at 5.5 GHz for a thicknesses of less than 3 mm in the frequency range 

from 5 to 10 GHz. A single layer microwave absorbers based on 

SrCoxTixFe12−2xO19-epoxy composites in X-band was studied by Verma et 

al. [50]. Composites of 3 mm thickness showed a reflection loss of -36.5 dB for a 
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composite with x = 0.3. In 2013, single layer microwave absorbers based on 

strontium ferrite–carbon black–nitrile rubber composites were fabricated for S 

and X-band by Vinaysree et al. [51]. They studied the influence of filler volume 

fraction, frequency, absorber thickness on the reflection loss characteristics. There 

were some reported work on use of substituted strontium ferrite as absorbers. In a 

few compositions, iron was replaced by Mn, Ti, Co or Zr [52] and in some other 

work strontium was replaced by Nd and rare earth elements [53, 54], using 

different synthesis method. The microstructure and microwave properties of 

Sr0.9Nd0.1Fe12O19 particles were investigated by Ebrahimi et al. in 2015 [54] 

where particle size reduced from 38.9 to 8.32 μm. Reflection loss of -39 dB & 

bandwidth 2.4 GHz was reported. 

Nanoparticle based composites are reported to have relatively low density 

and high surface to volume ratio. Nano inclusions increase the interacting surface 

for em wave within the material and hence a small weight fraction, when fused 

into polymer matrix, gives the desired absorption characteristics thus reducing the 

overall weight of the absorber [55-58]. Carbon nanotubes (CNT) and expanded 

graphite nano flakes have been used by different groups [59-61] as nano 

inclusions for developing light weight em shields. Nanosized barium ferrites have 

been used as filler for developing light weight, thin and broadband 

absorbers [62-65].  However, there are relatively fewer reported works on use of 

nanosized strontium ferrites as fillers and in most of those works, the reflection 

loss was calculated. Ghasemi and his group experimentally studied nanosized 

substituted strontium ferrite [52] for microwave absorbers applications. They 

could reduce the thickness of the absorber down to 1.6 mm by controlling the 

substitution of Mn, Co and Zr elements in strontium ferrite. Recent computed 

reflection loss studies on using nanosized strontium ferrite based absorbers were 

carried out by Baniasadi et al. in 2014 [67] and Sadiq et al. in 2016 [53]. 

Baniasadi and his group reduced the size of synthesized SrFe12xTix/2Znx/2O19 

(x = 0-2.5) powders using high energy ball mill and obtained nanoparticle sizes of 

15–40 nm. For x=2.5, the computed reflection loss of -36.13 dB was obtained. 

Sadiq and his group studied the effect of rare earth element substitution in 

Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal 

ferrites prepared by using sol gel autocombustion method. The Gd-substituted 
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sample with particle size 54-100 nm showed a calculated reflection loss of 

-25.2 dB at 11.878 GHz.  

Structural modifications using multiple layers were investigated to attain 

sufficiently good absorption over a broad range of frequencies so as to enhance 

the absorption bandwidth. Absorption bandwidth was enhanced by 

Hatakeyama [68] in 1984, by using a two layer absorber design with a ferrite 

layer at the air/absorber interface and a layer containing ferrite with short metal 

fibres as the absorber/metal interface. In 2003, Meshram and his group [69], 

developed double layer microwave absorber using barium ferrite in epoxy resin. 

Absorption in excess of -9 dB in the frequency range from 8.7 to 10.2 GHz for a 

thickness of 1.6 mm was reported. Few other computed studies on multilayering 

were reported in [70-73], where thickness of the layers were optimized to obtain 

maximum reflection loss and improvement in bandwidth. 

In order to make the absorber light, polymeric composites are generally used 

to customize the electromagnetic properties of an aggregate of filler particles 

embedded in a polymer matrix. The matrix chosen should be easy to mould, of 

low cost, sufficiently inert to environmental conditions and be able to hold the 

filler particles. EPDM rubber, epoxy resin, natural rubber, NPR are some of the 

polymer matrix which are being used in recent years. Generally, long side 

branched polymers such as polyvinylidene fluoride, polystyrene, novalac phenolic 

resin, etc. can take less quantity of filler when used as matrix [74, 75]. Long linear 

chain and short side chain branched polymers, such as, linear low density 

polyethylene (LLDPE), disrupts the uniformity of the polymer thereby allowing 

higher filler concentration without sinkage [76-79], rendering such polymers 

suitable to be used as matrix. 

1.4 Problem formulation and importance of the work 

The following aspects are considered in development of microwave 

absorbers in this work: 

 Absorption ( 90%) 

 Thin and light weight 

 Corrosion resistance 

 Wide absorption bandwidth 
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 Ease of processing 

 Cost 

Due to the leakages from widely used sources in the X- band such as 

precision approach radar (PAR), military communication satellites, terrestrial 

communication and networking, motion detectors, traffic light crossing detectors, 

weather radars [80-85] and many other local area networking or wireless devices, 

there is a need for effective absorbers for the X-band. The thesis problem focuses 

on developing absorbers which can effectively reduce EMI in the 

X-band (8.2-12.4 GHz). 

The influence of type and size of the ferromagnetic particles on em 

absorption are investigated in this work with an objective to develop absorbers 

with desirable absorption performance. The work is structured along the following 

lines: 

 Synthesis and development of the nanosized ferrite and composite materials. 

 Investigation of additional relevant characteristics of the developed 

composites such as homogeneity of filler in the base matrix, density, 

electrical and magnetic characteristics as well as environmental inertness.  

 Investigating and analyzing the desirable microwave properties such as 

permittivity, permeability, dielectric and magnetic loss, to check the 

feasibility of using the material as an effective em shield. 

 Design, thickness optimization and fabrication of single layer microwave 

absorber using developed magnetic composites. 

 Enhancement of absorption performance using doping elements. 

 Design, optimization and development of multilayer microwave structure for 

enhancement of absorption bandwidth. 

1.5 Thesis outline  

The thesis consists of five chapters and one appendix. Chapter I includes the 

mechanism of electromagnetic shielding against interferences. The process of 

absorption, reflection, and multiple reflections are presented along with survey of 

literature on magnetic absorbers. The theoretical background based on the 

Maxwell equations is presented. 
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Chapter II gives a theoretical background of the criterion for selection of the 

size and type of material to be used. The synthesis of strontium ferrite (SrFe12O19) 

nanoparticles as fillers and fabrication of nano-composites with LLDPE in 

different volume fraction is presented. The chapter includes microstructural 

investigation of nano-composites, (XRD, SEM, TEM) conducted for structure, 

size and homogeneity of fillers. This chapter also discusses em wave propagation 

through an absorber and the equivalent transmission line model. The chapter 

includes study of complex permittivity and complex permeability at microwave 

frequencies. Single layer conductor backed absorber using SrFe12O19-LLDPE 

composite is designed and fabricated and the thickness is optimized to achieve 

maximum reflection loss. The experimental results are compared with calculated 

values. 

Chapter III illustrates enhancement of bandwidth by using nanosized 

strontium ferrite doped firstly with aluminium and then with cobalt. Nanosized 

SrAlxFe12-xO19 for (x = 1.0-3.0) and SrCoxFe12-xO19 are synthesized for different 

values of x (0.2-1.2). Composite samples are fabricated by blending LLDPE 

powder with ferrite powder. Microscopic details of the structure and homogeneity 

of the fabricated composites in the form of pellets are studied. Microwave 

characterizations are carried out and absorption performance is evaluated both 

theoretically and experimentally.  

Chapter IV describes the multilayering technique for further enhancement of 

absorption bandwidth. A double layer structure using SrFe12O19-LLDPE and 

SrCoxFe12-xO19-LLDPE composites as the constituent layers is studied where the 

thicknesses of the layers are optimized to achieve enhanced absorption bandwidth. 

A sandwiched absorber structure is designed with an expanded graphite 

(EG)-LLDPE layer sandwiched between two ferrite composite layers for 

bandwidth enhancement. 

A summary of all the chapters, the results and the potential application of the 

developed composite as broadband X-band absorber are presented in Chapter V. 

Limitations and suggestions for future investigations are also included. 

Appendix A contains the mathematical formulation for theoretical 

estimation on thickness restriction for broadband microwave absorption. 

MATLAB codes for optimizing parameters of single and multilayer microwave 

absorber are given in Appendix B. 
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