LIST OF TABLES

Table	Title	Page
No.		
2.1	Recommended daily requirement of infants	15
2.2	Estimated amino acid requirements for infants	15
2.3	Correlation between sensory methods and viscosity range of weaning	17
	formula	
3.1	Machines used in the study with make and model	30
3.2	List of ingredients with their range and responses for experimental design	44
3.3	Experimental combinations used in the study	44
3.4	Classification of powder properties	47
3.5	% solution of H ₂ SO ₄ used for maintaining the %ERH	52
4.1	Malting potential of LAR and IAR paddy germinated at 30 and 35°C for	63
	120h	
4.2	Boltzmann function (BF) model parameters	78
4.3	Michaelis-Menten Equation parameters with their statistical parameters	78
4.4	Order of reaction for time course change for enzyme and substrate	81
4.5	Parameters of proposed model with their statistical parameters	82
4.6	Weight and bias value of best ANN network for LAR and IAR	84
4.7	Biochemical composition of low amylose (LAR) and intermediate amylose	88
	(IAR) malted paddy during germination	
4.8	Band Assignment of FTIR and Raman spectrum listed from literature	89
4.9	Pasting properties of malted LAR and IAR rice at different germination conditions	105
4.10	Thermal properties of malted LAR and IAR varieties at different germination conditions	112
4.11	Model parameters related to pasting properties	113
4.12	Model parameters related to pasting and thermal properties	113
4.13	Lower-half correlation matrix among pasting and thermal properties	115
4.14	Moisture content (%), calorific value and crude protein on dry basis	119
4.14	Pasting properties of the native and roasted ingredients	120
4.15	Responses for different weaning combinations	120
4.17	ANOVA for different responses	123
7.1/		127

4.18	Statistical performance parameters for the responses	124
4.19	Optimization conditions	129
4.20	Optimization Solutions	129
4.21	Validation of the standardize combination	129
4.22	Amino Acid composition analysis	133
4.23	Viscosity of weaning formulations with different dilution at different	133
	feeding temperature	
4.24	Model parameters for two rheological models	140
4.25	Isotherm model parameters with their statistical performance parameters	146
4.26	Peroxide value and free fatty acid of developed weaning formula	152

Figure No.	Title	Page
3.1	Work plan flowchart of objective # 1	31
3.2	Artificial Neuron	40
3.3	Work plan flowchart of objective # 2	42
3.4	Work plan flowchart of objective # 3	51
4.1	Malting yield (MY) and Malting loss (ML) of LAR (top) and IAR (bottom) native and malted rice	64
4.2	Thousand kernel weight of LAR and IAR native and malted rice	66
4.3	Total amylolytic activity of LAR and IAR native and malted rice	67
4.4	Alpha amylase activity of LAR and IAR native and malted rice	69
4.5	Total starch content of LAR and IAR malted rice	71
4.6	Bulk and tapped density of LAR and IAR native and malted rice	73
4.7	Scanning Electron Micrograph of rice : a. Native LAR rice; b. Native IAR rice c. 30°C LAR (120h); d. 35°C LAR (120h); e. 30°C IAR (120h) and f. 35°C IAR (120h)	74
4.8	X-ray diffractograms of LAR and IAR rice: A. Native rice; B. 30°C (24h); C. 30°C (120h); D. 35°C (24h) and E. 35°C (120h)	76
4.9	Time courses for a change in starch content and reaction rate for LAR and IAR rice during malting	79
4.10	Observed vs Predicted values for Michaelis-Menten equation	80
4.11	Selection of ANN architecture for LAR and NAR	83
4.12	Best ANN architecture for both LAR and NAR	84
4.13	Graph between experimental and ANN predicted values of LAR rice; Starch and Reducing sugar (Top); Amylase and α-amylase (Bottom)	85
4.14	Graph between experimental and ANN predicted values of IAR rice; Starch and Reducing sugar (Top); Amylase and α-amylase (Bottom)	86
4.15	Raman spectra of malted paddy varieties at different germination times: (a) LAR 30°C (b) LAR 35°C	90
4.16	Raman spectra of malted paddy varieties at different germination times: (a) IAR 30°C (b) IAR 35°C	91
4.17	FTIR spectra of malted paddy varieties: (a) LAR 30°C (b) LAR 35°C	95
4.18	FTIR spectra of malted paddy varieties: (a) IAR 30°C (b) IAR 35°C	96
4.19	PCA biplots of malted paddy varieties: (a) LAR 30°C (b) LAR 35°C	101

4.20	PCA biplots of malted paddy varieties: (a) IAR 30°C (b) IAR 35°C	102
4.21	Actual value versus Raman predictions of different parameters of LAR and IAR malted paddy	103
4.22	Pasting properties of LAR and IAR malted rice at different germination conditions: (a) Native rice, (b) 24 h germination, (c) 48 h germination, (d) 72 h germination, (e) 96 h germination, and (f) 120 h of germination	106
4.23	Thermal properties of LAR and IAR malted rice at different germination conditions	111
4.24	PCA biplots of pasting and thermal properties of malted LAR variety germinated at 30°C (top) and 35°C (bottom)	117
4.25	PCA biplots of pasting and thermal properties of IAR malted paddy germinated at 30°C (top) and 35°C (bottom)	118
4.26	Pasting properties of unroasted and roasted wheat flour and rice flour	121
4.27	Pasting properties of unroasted and roasted pulse and malted rice flour	122
4.28	Contour plot showing effect of composition on crude protein	126
4.29	Contour plot showing effect of composition on energy value	126
4.30	Contour plot showing effect of composition on water absorption index	127
4.31	Contour plot showing effect of composition on water solubility index	127
4.32	Graphical representation of standardized results	130
4.33	In vitro Starch digestibility of weaning formulation	135
4.34	Viscosity of weaning formula in simulated human digestive system	137
4.35	Curves showing the change in viscosity of weaning formula (75 μ m) during digestion process w.r.t shear rate	139
4.36	Curves showing the change in viscosity of weaning formula (105 μ m) during digestion process w.r.t shear rate	139
4.37	Rheological changes in the weaning food (75 μ m) during digestion process	141
4.38	Rheological changes in the weaning food (105 $\mu m)$ during digestion process	141
4.39	XTT assay of weaning formula	142
4.40	Morphology of cells under the light microscope	143
4.41	Trypan blue exclusion assay of weaning formula	143
4.42	Moisture sorption isotherms of weaning formulation at different temperature showing the fitted curve of Peleg model	144
4.43	Effect of equilibrium moisture content on net isosteric heat of sorption and sorption entropy of weaning formulation estimated using Peleg and GAB models output	148

- 4.44 A plot of the net isosteric heat of sorption against the sorption entropy 150
- 4.45 Gibb's free energy change during sorption of moisture in weaning 150 formulation at different temperature estimated using Peleg and GAB models output
- 4.46 Web plot for sensory evaluation of developed weaning formulations 152