
"Symmetry is what we see at a glance; based on the fact that there

is no reason for any di�erence . . ."

Blaise Pascal

3
Non-zero θ13 and dark matter in an S4

�avour symmetric model with inverse

seesaw

In this chapter we study an inverse seesaw model of neutrino mass within the

framework of S4 �avour symmetry from the requirement of generating non-zero

reactor mixing angle θ13 along with correct dark matter relic abundance. The

leading order S4 model gives rise to tri-bimaximal type leptonic mixing resulting

in θ13 = 0. Non-zero θ13 is generated at one loop level by extending the model

with additional scalar and fermion �elds which take part in the loop correction.

The particles going inside the loop are odd under an in-built ZDark
2 symmetry

such that the lightest ZDark
2 odd particle can be a dark matter candidate. Cor-

rect neutrino and dark matter phenomenology can be achieved for such one loop

corrections either to the light neutrino mass matrix or to the charged lepton

mass matrix although the latter case is found to be more predictive. The predic-

tions for neutrinoless double beta decay is also discussed and inverted hierarchy
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in the charged lepton correction case is found to be disfavoured by the latest

KamLAND-Zen data.

3.1 Introduction

The Standard Model (SM) of particle physics surmises on the minimal choice

that a single Higgs doublet provides masses to all particles. Some questions how-

ever remain unanswered, including the origins of neutrino mass and dark mat-

ter (DM), keeping other avenues open for physics beyond the Standard Model

(BSM). There have been several conclusive evidences in the last two decades

which validate the existence of non-zero neutrino masses and large leptonic mix-

ing [1�9]. The SM can not address this observed phenomena simply because the

neutrinos remain massless in the model, because the SM does not accomodate

any RH neutrino. If the right handed neutrinos are included by hand, one needs

the Yukawa couplings to be heavily �ne tuned to around 10−12 for the production

of sub-eV neutrino masses from the same Higgs �eld of the SM. One can generate

a tiny Majorana mass for the neutrinos from the same Higgs �eld of the SM at

non-renormalisable level through the dimension �ve Weinberg operator [10]. The

realisation of this dimension �ve operator within renormalisable theories are also

available in the literature, popularly known as the seesaw mechanism [11�13].

Even if the tiny neutrino masses are produced dynamically within such seesaw

frameworks, understanding the origin of the large leptonic mixing is another puz-

zle. Since the quark sector mixing is observed to be small, it also indicates that

there may be some new dynamics operating in the leptonic sector that generates

the large mixing. As we see from the global �t data, among the three mixing an-

gles, the solar and atmospheric angles are reasonably large but the reactor angle

is comparatively small. In fact, before the discovery of non-zero reactor mixing

angle θ13 in 2012, the neutrino data were consistent with a class of neutrino mass

matrices respecting µ − τ symmetry (For a recent review, we refer [14]). This

class of models predicts θ13 = 0, θ23 = π
4
whereas the value of θ12 depends upon

the particular model. Out of di�erent µ − τ symmetric neutrino mass models,
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the Tri-Bimaximal (TBM) mixing [15�17] received lots of attention within several

neutrino mass models. The TBM mixing predicts θ12 = 35.3o. Such a mixing can

be easily accommodated within popular discrete �avour symmetry models [18�

20]. Since the measured value of θ13 is small, such µ− τ symmetric models can

still be considered to be valid at leading order, while the small but non-zero θ13

can be generated by perturbations to either the charged lepton or the neutrino

sector, as studied in several works in the literature including [21�29].

On the other hand, the SM also fails to provide a particle DM candidate that

can satisfy all the criteria of a good DM candidate [30]. Although there have

been su�cient evidences [31�33] from astrophysics and cosmology o�ering the

existence of DM the particle nature of DM is not yet known. This has driven

the particle physics community to explore di�erent possible BSM frameworks

which can give rise to the correct DM phenomenology and can also be tested at

several di�erent experiments. Amidst them, the most popular BSM scenario is

the weakly interacting massive particle (WIMP) paradigm, as the correct DM

relic abundance can be achieved for such a particle if it has interaction strength

similar to weak interactions. This coincidence is also referred to as the WIMP

Miracle. The estimation on present dark matter abundance as a function of

density parameter and h = (Hubble Parameter)/100, is reported as [34]

ΩDMh
2 = 0.1187± 0.0017 (3.1.1)

Using the measured value of Hubble parameter, this yields approximately 26%

of the total energy density of the present Universe being composed of DM. The

same Planck experiment also puts a bound on the sum of absolute neutrino

masses
∑

i|mi| < 0.17 eV [34]. Although the fundamental origin of DM may not

be related to the origin of neutrino mass as well as leptonic mixing, it is pretty

exciting to look for a common platform that can explain both the phenomena.

In spite of keeping the BSM physics minimal, this also permits for its probe in a

much larger range of experiments. We �nd two such frameworks very appealing:

one where neutrino masses originate at one loop level with DM particles going in

the loop [35] and the other where the same discrete �avour symmetry responsible

for generating large leptonic mixing also guarantees a stable DM candidate [36].
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More detailed phenomenology of similar models can be found in several works

including [37�42]. Another recent proposal to connect dark mater with non-zero

θ13 can be found in [43].

Motivated by this, here also we consider an inverse seesaw model [44�46] based

on S4 discrete �avour symmetry that gives rise to TBM type neutrino mixing

at leading order. Unlike canonical seesaw models, the inverse seesaw can be a

low scale framework where the singlet heavy neutrinos can be at or below the

TeV scale without any �ne tuning of Yukawa couplings. This is possible due to

softly broken global lepton number symmetry by the singlet mass term as we

discuss later. The existence of sterile neutrinos around TeV scale with sizeable

Yukawa couplings in these models makes these models testable at planned future

particle colliders [47]. Another motivation to study this particular model is the

neutrino mass sum rules it predicts, which relates the three light neutrino masses

[48]. This predicts the lightest neutrino mass, once the experimental data of

two mass squared di�erences are given as input and hence can be examined at

experiments perceptive to the lightest neutrino mass say, neutrinoless double

beta decay (NDBD)1. Since the model gives rise to TBM mixing, disallowed by

latest neutrino data, we extend the model in order to reproduce non-zero θ13 in

such a way that automatically takes DM into account. For this we make use

of the scotogenic mechanism [35] mentioned above where DM particles going in

loop can generate tiny neutrino mass. We implement this idea in two di�erent

ways. First we add a one loop correction to the leading order light neutrino

mass matrix from inverse seesaw and secondly we give a similar correction to the

charged lepton mass matrix. In both the cases, the correct neutrino and DM

phenomenology can be reproduced. However, the charged lepton correction is

found to have advantage over the former due the fact that it does not disturb

the mass sum rule prediction of the leading order model. Also, one requires less

�ne-tuning to generate correction to charged lepton masses due to which the

lepton portal limit of inert scalar DM can be achieved, which can give di�erent

DM phenomenology compared to the well studied Higgs portal DM scenario, as

1For a review, please see [49]
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we discuss later.

This work is organised in the following manner. In section 3.2 we summarize

the S4 based inverse seesaw model at leading order along with its predictions.

In section 3.3 we explain the origin of non-zero reactor mixing angle and Dark

Matter by extending the leading order model. In section 3.4 we brie�y discuss

DM phenomenology of the model and then brie�y comment upon neutrinoless

double beta decay prediction in the context of the present model in section 3.5.

We discuss our results in section 3.6 and then write the conclusion in section 3.7.

3.2 Inverse Seesaw Model with S4 Symmetry

In this section we shortly review the inverse seesaw (ISS) model and its S4 reali-

sation. The ISS model is an extension of the SM by two di�erent types of singlet

neutral fermions NR, SL three copies each. The Lagrangian reads

− L = Y L̄HNR +MS̄LNR +
1

2
µSLSL + h.c. (3.2.1)

Here H represents the SM Higgs doublet and L is the lepton doublet. The

presence of some additional symmetries is assumed which prevents the Majorana

mass term of NR. This Lagrangian gives rise to the following 9× 9 mass matrix

in the (νL, NR, SL) basis

Mν =


0 mT

D 0

mD 0 MT

0 M µ

 (3.2.2)

where mD = Y 〈h0〉 is the Dirac neutrino mass generated by the VEV of the

neutral component of the SM Higgs. Block diagonalisation of the above mass

matrix results in the e�ective light neutrino mass matrix as ,

mν = mT
D(MT )−1µM−1mD (3.2.3)

Unlike canonical seesaw where the light neutrino mass is inversely proportional

to the lepton number violating Majorana mass term of singlet neutrinos, here

the light neutrino mass is directly proportional to the singlet mass term µ. The
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heavy neutrino masses are proportional to M . Here, even if M ∼ 1 TeV, correct

neutrino masses can be generated for mD ∼ 10 GeV, say if µ ∼ 1 keV. Such

small µ term is natural as µ → 0 helps in recovering the global lepton number

symmetry U(1)L of the model. Thus, inverse seesaw is a natural TeV scale seesaw

model where the heavy neutrinos can remain as light as a TeV and Dirac mass

can be as large as the charged lepton masses and can still be consistent with

sub-eV light neutrino masses.

In general, the inverse seesaw formula for light neutrino mass can generate a

very general structure of neutrino mass matrix. Since the leptonic mixing is

found to have some speci�c structure with large mixing angles, one can look

for possible �avour symmetry origin of it. In this context, non Abelian discrete

�avour symmetries have gained lots of attention in the last few decades. For

reviews and related references, please see [50, 51]. For the purpose of the present

work, we are particularly interested in the inverse seesaw model proposed by

[48] where the non Abelian discrete �avour symmetry is S4 (For detail please

see Section 1.8 of Chapter 1. The �eld content of the S4 based inverse seesaw

model is shown in Table 3.1. The additional discrete symmetry Z2 × Z3 as well

as the global U(1)L symmetry is chosen in order to generate the desired inverse

seesaw mass matrix along with TBM type leptonic mixing. The lepton doublet

and charged lepton singlet of the SM, the singlet neutrinos NR, S of the inverse

seesaw model transform as triplet 31 of S4. The SM Higgs doublet h transform

as singlet under S4. The di�erent �avon �elds Φ's are chosen in order to get

the desired mass matrices and mixing. The Yukawa Lagrangian for the particle

content shown in Table 3.1 reads

− LI = yL̄HNR + yMNRSΦR + y′MNRSΦ′R + ysSSΦs (3.2.4)

The following �avon alignments are required to get a desired neutrino mass

matrix and leptonic mixing.

〈ΦR〉 = vR(1, 0, 0), 〈Φ′R〉 = v′R, 〈Φs〉 = vs, 〈H0〉 = vh

In order to implement this �avon alignment in the inverse seesaw mechanism we

note that mD is connected to vh and M is determined by the VEV vR and v′R.
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L̄ NR lR H S ΦR Φ′R Φs Φl Φl
′ Φl

′′

SU(2)L 2 1 1 2 1 1 1 1 1 1 1

S4 31 31 31 11 31 31 11 11 31 32 11

Z2 + + + + - - - + + + +

Z3 ω2 ω 1 1 1 ω2 ω2 1 ω ω ω

U(1)L -1 1 1 0 -1 0 0 2 0 0 0

Table 3.1: Fields and their transformation properties under SU(2)L gauge sym-

metry as well as the S4 × Z2 × Z3 × U(1)L symmetry

In this way, the order of magnitude estimate of light neutrino mass from the

Eq. (3.2.3) is mν ∝ v2
h

(vR+v′R)2µ. Here vh is of the order of electroweak symmetry

breaking (EWSB) scale, vR and v′R can be taken of the order of TeV scale or

more. Therefore, to get mν in sub-eV, µ which is coming from the VEV of ΦS

should be of the order of keV. Such a small vev can be naturally achieved from

the soft U(1)L symmetry breaking terms in the scalar potential. For example, a

term µ1ΦsH
†H will generate an induced VEV of Φs given by vs =

µ1v2
h

M2
Φs

. This can

be adjusted to be keV by choosing a small enough µ1. By the same naturalness

argument as before, such a small µ1 is natural. Also, since the U(1)L symmetry is

explicitly broken (softly) by the scalar potential, there is no danger of generating

massless Goldstone boson that can result after spontaneous breaking of global

U(1)L symmetry.

Decomposition of the various terms present in the Eq. (3.2.4) into singlets can

be achieved using the S4 tensor product rules given in the Section 1.8 of Chapter

1.

yL̄iNjRH = y(L1N1R + L2N2R + L3N3R)vh (3.2.5)

yMNiRSjΦR = yM [(N2RS3 +N3RS2)Φ1R + (N1RS3 +N3RS1)Φ2R + (N1RS2 +N2RS1)Φ3R]

= yM [(N2RS3 +N3RS2)]vR (3.2.6)

y′MNiRSjΦ
′
R = y′M(S1N1R + S2N2R + S3N3R)v′R (3.2.7)

ysSSΦs = ys(S1S1 + S2S2 + S3S3)vs (3.2.8)

81



The chosen �avon alignments allow us to have di�erent matrices involved in

inverse seesaw formula as follows

mD = y


1 0 0

0 1 0

0 0 1

 vh, µ = ys


1 0 0

0 1 0

0 0 1

 vs, M =


y′Mv

′
R 0 0

0 y′Mv
′
R yMvR

0 yMvR y′Mv
′
R


(3.2.9)

The above three matrices lead to the following light neutrino mass matrix under

ISS framework

mν = Uνm
o(diag)
ν UT

ν . (3.2.10)

Using Eq. (3.2.9) in Eq. (3.2.3) the light neutrino mass matrix is found to be

mo
ν =


1
a2 0 0

0 a2+b2

(b2−a2)2 − 2ab
(b2−a2)2

0 − 2ab
(b2−a2)2

a2+b2

(b2−a2)2

 (3.2.11)

where, a = y′Mv
′
R/(
√
ysvsyvh) and b = yMvR/(

√
ysvsyvh). The eigenvalues of this

light neutrino mass matrix are

m1 =
1

(a+ b)2
, m2 =

1

(a− b)2
, m3 =

1

a2

which satisfy the neutrino mass sum rule

1√
m1

=
2√
m3

− 1√
m2

(3.2.12)

Now the Lagrangian for the charged leptons can be written in terms of dimension

�ve operators as [48]

− Ll =
yl
Λ
L̄lRHΦl +

yl
′

Λ
L̄lRHΦl

′ +
yl
′′

Λ
L̄lRHΦl

′′ (3.2.13)

The authors of [48] considered additional messenger �elds χ, χc such that this

e�ective Lagrangian for charged leptons can be obtained after integrating out

these heavy messenger �elds. The following �avon alignments allow us to have

the desired mass matrix corresponding to the charged lepton sector

〈Φl〉 = vl(1, 1, 1), 〈Φl
′〉 = vl

′(1, 1, 1), 〈Φl
′′〉 = v′′l
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The charged lepton mass matrix is then given by

m0
l =


yl
′′vl
′′ ylvl − yl′vl′ ylvl + yl

′vl
′

ylvl + yl
′vl
′ yl

′′vl
′′ ylvl − yl′vl′

ylvl − yl′vl′ ylvl + yl
′vl
′ yl

′′vl
′′

 vh
Λ

(3.2.14)

As mentioned in [52] the charge lepton mass matrix ml is diagonalised on the

left by the magic matrix Uω given by

Uω = 1/
√

3


1 1 1

1 ω ω2

1 ω2 ω

 , (3.2.15)

(with ω = exp 2iπ/3). Now we know that the leptonic mixing matrix is given by

U = UTBM = U †l Uν

where Ul corresponds to the identity matrix if the charged lepton mass matrix is

diagonal. Since in our work, the charged lepton mass matrix is non-diagonal and

is nothing but the magic matrix Uω given by Eq. (3.2.15), the leptonic mixing

matrix is

UTBM = U †ωUν

The desired structures of the mass and mixing matrices written above have been

made possible due to chosen �avour symmetries of the theory. For example, as

required by the structure of the inverse seesaw mass matrix given in Eq. (3.2.2),

there should not be any mass term involving νL and S. However, the coupling

between νL and S is not forbidden by the SM gauge symmetry as well as S4

�avour symmetry. In this regard, the additional Z2×Z3 symmetry and the chosen

charges of νL, S under it keep the unwanted coupling of νL and S through the

Higgs doublet H away. Similarly, the (22) term of the inverse seesaw mass matrix

(3.2.2) or the mass term involving NR, NR should also be forbidden. However,

the SM gauge symmetry as well as the S4 �avour symmetry and U(1)L global

symmetry can not prevent a term like ΦsNRNR which will introduce a non-zero

(22) entry into the inverse seesaw mass matrix. Therefore, the additional Z2×Z3

symmetry and non-trivial charges of NR under this has to be chosen to keep such
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a term away from the Lagrangian. As mentioned above, the approximate U(1)L

global symmetry helps in generating small (33) entry of the inverse seesaw mass

matrix naturally, without any �ne tuning of parameters. Thus, all the additional

symmetries Z2×Z3×U(1)L play a crucial role in generating the desired structure

of the inverse seesaw mass matrix along with the desired leptonic mixing.

3.3 Origin of non-zero θ13 and dark matter

Since θ13 = 0 has already been ruled out by several neutrino experiments, one

has to go beyond the TBM framework discussed in the previous work. This can

simply be done in two di�erent ways: giving corrections to the neutrino mass

matrix or the charged lepton mass matrix. Both of these corrections will change

the leptonic mixing matrix in a way to generate non-zero θ13.

3.3.1 Correction to neutrino mass matrix

The model discussed above can be extended by the particle content shown in

Table 3.2 charged under an additional ZDark
2 symmetry guaranteeing the stability

of the dark matter candidate. This additional �eld content will introduce a few

SU(2)L S4 Z2 Z3 U(1)L ZDark
2

η 2 1 1 1 0 -1

ψR 1 3 1 ω 1 -1

Φ′s 1 1 1 ω -2 1

Φψ 1 3 1 ω -2 1

Table 3.2: Fields responsible for generating non-zero θ13 as well as dark matter

with their respective transformations under the symmetry group of the model.

more terms in the Yukawa Lagrangian given as

LI ⊃ hL̄ψRη + yψψRψRΦ′s + y′ψRψRΦψ (3.3.1)

The extra scalar doublet η odd under the ZDark
2 symmetry introduces several

other terms in the scalar potential. The most relevant terms are the interactions
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νi νjψR ψR

η η

〈H0〉〈H0〉

〈Φ′
s,Φψ〉

Figure 3.1: Radiative generation of non-zero θ13 from the light neutrino sector

with the standard model Higgs h which are relevant for neutrino mass and dark

matter analysis. These relevant terms of the scalar potential can be written as

V (H, η) ⊃µ2
1|H|2 + µ2

2|η|2 +
λ1

2
|H|4 +

λ2

2
|η|4 + λ3|H|2|η|2 + λ4|H†η|2 + {λ5

2
(H†η)2

+ h.c.} (3.3.2)

Using the expression from [35] of one-loop neutrino mass

(mν)ij =
hikhjkMk

16π2

(
m2
R

m2
R −M2

k

ln
m2
R

M2
k

− m2
I

m2
I −M2

k

ln
m2
I

M2
k

)
(3.3.3)

Here m2
R,I are the masses of scalar and pseudoscalar part of η0 and Mk the mass

of singlet fermion ψR in the internal line. The index i, j = 1, 2, 3 runs over the

three fermion generations as well as three copies of ψ. For m2
R + m2

I ≈ M2
k , the

above expression can be simply written as

(mν)ij ≈
λ5v

2
h

32π2

hikhjk
Mk

=
m2
I −m2

R

32π2

hikhjk
Mk

(3.3.4)

where m2
I − m2

R = λ5v
2
h is assumed ignoring the quartic terms of η with other

�avon �elds. This formula for light neutrino mass is written in a basis where the

mass matrix of the intermediate fermion ψ is diagonal which is true if only Φ′s

contributes to its mass Mk = yψ〈Φ′s〉 due to the structure of S4 tensor product

ψRψRΦ′s = (ψR1ψR1 + ψR2ψR2 + ψR3ψR3)Φ′s. However, due to the S4 triplet

assignment to the other scalar Φψ, the mass matrix of ψR becomes non-diagonal
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of the form

Mψ =


yψv

′
s y′ψvψ3 y′ψvψ2

y′ψvψ3 yψv
′
s y′ψvψ1

y′ψvψ2 y′ψvψ1 yψv
′
s

 , (3.3.5)

where 〈Φψ〉 = (vψ1, vψ2, vψ3) is the vacuum alignment of the �avon �eld Φψ. Also

the S4 product rules dictate the Yukawa matrix hij to be diagonal in �avour

space. Therefore, the new contribution to the light neutrino mass matrix will

assume a structure similar toMψ. We can parameterise this correction, in general

as

δmν =


xν yν zν

yν xν wν

zν wν xν

 (3.3.6)

In this particular setup, the fermion ψR carries lepton number, and since lepton

number is only softly broken within an inverse seesaw framework, one expects

the VEV's of Φ′s,Φψ to be small say, of the order of keV in a TeV scale inverse

seesaw model discussed above. Therefore, the dark matter in this model is a keV

singlet fermion ψR. On the other hand, if ψR does not carry a lepton number,

then the scalar doublet η carries a lepton number and the one-loop contribution

can be generated with the particle content shown in Table 3.3. The Yukawa

SU(2)L S4 Z2 Z3 U(1)L ZDark
2

η 2 1 1 1 1 -1

ψR 1 3 1 ω 0 -1

Φ′s 1 1 1 ω 0 1

Φψ 1 3 1 ω 0 1

∆L 3 1 1 1 0 1

Table 3.3: Fields responsible for generating non-zero θ13 as well as dark matter

with their respective transformations under the symmetry group of the model.

Lagrangian corresponding to this new �eld content is

LI ⊃ hL̄ψRη + yψψRψRΦ′s + y′ψRψRΦψ (3.3.7)
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These relevant terms of the scalar potential can be written as

V (H, η,∆L) ⊃ µ2
1|H|2 + µ2

2|η|2 +
λ1

2
|H|4 +

λ2

2
|η|4 + λ3|H|2|η|2 + λ4|H†η|2

(3.3.8)

+ {λ5

2
η2∆LΦs + h.c.}, (3.3.9)

In this case, the fermion ψR can acquire a diagonal mass term due to the coupling

with Φ′s �avon and also acquire non diagonal mass terms from the �avon �eld Φψ.

The combined mass matrix for ψR therefore, has a similar structure to the one

shown in Eq. (3.3.5). Since neither ψR nor Φψ carries any lepton number, their

mass and VEV respectively are not constrained to be small from naturalness

argument. Also, the triplet scalar ∆L does not couple to the leptons at tree

level as it does not carry any lepton number. The corresponding neutrino mass

diagram at one loop is shown in �gure 3.2. This is equivalent to a radiative type

II seesaw mechanism. In this case, the scalar doublet η can be naturally lighter

than ψR and hence can be a dark matter candidate. We discuss this dark matter

candidate in details later, specially with reference to its interactions with the

light neutrinos, responsible for generating non-zero θ13. In both these cases, the

correction to the light neutrino mass matrix can be parameterised as Eq. (3.3.6).

One can then write down the complete light neutrino mass matrix as

mν = m0
ν + δmν = UPMNSm

diag
ν UT

PMNS (3.3.10)

where the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) leptonic mixing matrix

can be parametrized as

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

UMaj

(3.3.11)

where cij = cos θij, sij = sin θij and δ is the leptonic Dirac CP phase. The

diagonal matrix UMaj = diag(1, eiα, ei(β+δ)) contains the Majorana CP phases α, β

which remained unknown. For NH, we can write mdiag
ν = diag(m1,

√
m2

1 + ∆m2
21,√

m2
1 + ∆m2

31) and mdiag
ν = diag(

√
m2

3 + ∆m2
23 −∆m2

21,
√
m2

3 + ∆m2
23,m3) for
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νi νjψR ψR

η η

〈∆0
L〉〈Φs〉

〈Φ′
s,Φψ〉

lL ER EL lR

η χ

〈ΦE〉

〈H0〉〈Φ′
R〉

Figure 3.2: Radiative generation of non-zero θ13 from the light neutrino sector

(left panel) and charged lepton sector (right panel)

IH. Using the 3σ values of neutrino parameters, we can �nd the model parameters

in m0
ν + δmν which can give rise to the correct neutrino phenomenology.

3.3.2 Correction to charged lepton mass matrix

Similar to the above, one can also give a radiative correction to the charged

lepton mass matrix, by considering the presence of vector like charged fermions

instead of neutral ones. The relevant particle content is shown in Table 3.4. The

Yukawa Lagrangian corresponding to this new �eld content is

LI ⊃ hL̄ERη
† + h′l̄RELχ+MEĒLER + yEΦEĒLER (3.3.12)

These relevant terms of the scalar potential can be written as

V ⊃ µ2
1|H|2 + µ2

2|η|2 +
λ1

2
|H|4 +

λ2

2
|η|4 + λ3|H|2|η|2 + λ4|H†η|2

+ {λ5

2
(H†η)2 + h.c.}+ λ6H

†ηχ†Φ′R

(3.3.13)

The corresponding Feynman diagram for one-loop charged lepton mass is shown

in �gure 3.2 (right panel). One can write down the one-loop expression similar

to the one written for one-loop neutrino masses. Here also, the mass matrix

of vector like charged leptons acquire a similar structure as shown for neutral

fermion ψR in Eq. (3.3.5). Also the Yukawa matrix related to the coupling of

l̄LERη or l̄RELχ is restricted to be diagonal due to S4 product rules. Therefore,
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one can parameterise the correction to the charged lepton mass matrix as

δml =


al bl cl

bsl al dl

csl dsl al

 (3.3.14)

Adding this correction to the leading order charged lepton mass matrix given

SU(2)L S4 Z2 Z3 U(1)L ZDark
2

η 2 1 1 1 0 -1

χ 1 1 1 ω2 0 -1

EL,R 1 3 1 ω 1 -1

ΦE 1 3 1 1 0 1

Table 3.4: Fields responsible for generating non-zero θ13 as well as dark matter

with their respective transformations under the symmetry group of the model.

in Eq. (3.2.14) should give rise to a di�erent diagonalising matrix Ul of charged

leptons. The structure of this matrix will depend upon the parameters al, bl, cl, dl

which can be constrained from the requirement of producing the correct leptonic

mixing matrix after multiplying with Uν , the diagonalising matrix of light neu-

trino mass matrix. From the tree level model one can �nd Uν = UωUTBM. Now,

the total charged lepton mass matrix is

ml = m0
l + δml = ULm

diag
l U †R (3.3.15)

where UL,R are unitary matrices that can diagonalise the complex charged lepton

mass matrix. Here mdiag
l is the known diagonal charged lepton mass matrix. The

unitary matrix UL goes into the observed leptonic mixing matrix and hence can

be calculated as UL = UνU
†
PMNS which can be written in terms of known Uν from

the leading order model and the known PMNS mixing matrix. We parameterise

the another unitary matrix UR in terms of three mixing angles and one phase

and vary them randomly in 0 − π/4 for angles and 0 − 2π for phase. Thus, we

can calculate the charged lepton mass matrix in terms of known parameters as

well as randomly generated values of UR. For each possible such charged lepton

mass matrix, we can then solve the above Eq. (3.3.15) and calculate the model
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parameters such that correct leptonic mixing can be achieved. In this model, the

dark matter candidate can either be a scalar doublet η or a scalar singlet χ. We

discuss their dark matter phenomenology below specially with reference to their

interactions with the charged leptons.

3.4 Dark matter

In the very early epochs of the Universe, the abundance of a typical WIMP DM

relic particle (η) is usually taken to be the equilibrium abundance. When the

temperature of the radiation dominated Universe cools down below T ∼ mη, η

becomes non-relativistic and quickly after that it also decouples from the thermal

bath and its abundance freezes out. The �nal relic abundance of such a particle

η which was in thermal equilibrium at earlier epochs can be calculated by solving

the Boltzmann equation

dnη
dt

+ 3Hnη = −〈σv〉(n2
η − (neqbη )2) (3.4.1)

where nη is the number density of the DM particle η and neqbη is the equilibrium

number density. Also, H is the Hubble expansion rate of the Universe and 〈σv〉
is the thermally averaged annihilation cross-section of the DM particle η. It is

clear from this equation that when η was in thermal equilibrium, the right hand

side of it vanishes and the number density of DM decreases with time only due to

the expansion of the Universe, as expected. The approximate analytical solution

of the above Boltzmann equation gives [53, 54]

Ωχh
2 ≈ 1.04× 109xF

MPl
√
g∗(a+ 3b/xF )

(3.4.2)

where xF = mχ/TF , TF is the freeze-out temperature, g∗ is the number of rela-

tivistic degrees of freedom at the time of freeze-out and MPl ≈ 1019 GeV is the

Planck mass. Here, xF can be calculated from the iterative relation

xF = ln
0.038gMPlmχ < σv >

g
1/2
∗ x

1/2
F

(3.4.3)

Typically, DM particles with electroweak scale mass and couplings freeze out at

temperatures in the range xF ≈ 20 − 30. The expression for relic density also
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has a more simpli�ed form given as [55]

Ωχh
2 ≈ 3× 10−27cm3s−1

〈σv〉 (3.4.4)

In the model discussed in the previous section, there can be two di�erent types

of DM candidates, the lightest neutral particle under the ZDark
2 symmetry. In the

model with corrections to neutrino sector, either the neutral fermion ψR or the

neutral component of the scalar doublet η can be DM depending on their masses

whereas in the latter model with corrections to the charged lepton sector, only

the scalar DM is possible. To keep the discussion same for both these models,

we brie�y discuss scalar DM phenomenology in this work. The scalar DM relic

abundance calculation has already been done in several works [56�60]. Typically,

correct relic abundance can be satis�ed for two regions of DM mass in such a

model: one below the W boson mass threshold and another around 550 GeV

or more. Here we focus mainly on the low mass regime where the dominant

annihilation channel of DM is the one through Higgs portal interactions. Also,

depending on the mass di�erence between di�erent components of the scalar

doublet η, coannihilations can also play a non-trivial role. In the limit where

Higgs portal and coannihilation e�ects are sub-dominant, the DM can annihilate

through the lepton portal interactions which are also relevant for correct neutrino

phenomenology discussed above. Here we brie�y comment on the lepton portal

interaction and its role in generating DM relic abundance using the approximate

analytical formula mentioned above.

It is straightforward to see from the Lagrangian that the scalar DM can annihilate

into leptons through a process mediated by heavy fermions ψ or EL,R. The

corresponding annihilation cross-section is given by [61]

σv =
v2h4m2

η

48π(m2
η +m2

ψ)2
(3.4.5)

With v ∼ 0.3c is the typical relative velocity of the two DM particles at the freeze

out temperature, η is the relic particle (DM), h is the Yukawa coupling, mη the

relic mass, mψ is the mass of the gauge singlet mediating the annihilation. We

then vary the DM mass and the Yukawa coupling for di�erent benchmark values

of mediator masses and constrain the parameter space from the requirement
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of generating the correct DM relic abundance. It should be noted that, there

are also constraints from DM direct detection experiments like LUX [62] which

currently rules out DM-nucleon spin independent cross section above around

2.2 × 10−46 cm2 for DM mass of around 50 GeV. However, the lepton portal

interactions can not mediate DM-nucleon interactions and hence such bounds

are weak in these cases. In fact, such null results at direct detection experiments

will push lepton portal interactions of DM into a more favourable regime.

3.5 Neutrinoless double beta decay

Figure 3.3: Feynman diagram contributing to neutrinoless double beta decay due

to light Majorana neutrino exchanges [14].

The neutrinoless double beta decay (NDBD) is a lepton number violating process

where a heavier nucleus decays into a lighter one and two electrons (A,Z) →
(A,Z+2)+2e− without any antineutrinos in the �nal state. If the light neutrinos

of SM are Majorana fermions, then they can contribute to NDBD through the

interactions shown in the Feynman diagram of �gure 3.3. The amplitude of this

light neutrino contribution is

AνLL ∝ G2
F

∑
i

miU
2
ei

p2
(3.5.1)

with p being the average momentum exchange for the process. In the above

expression, mi are the masses of light neutrinos for i = 1, 2, 3 and U is the

PMNS leptonic mixing matrix mentioned earlier. The corresponding half-life of
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neutrinoless double beta decay can be written as

1

T 0ν
1/2

= G0ν
01

(
|M0ν

ν (ηLν )|2
)

(3.5.2)

where ηLν =
∑

i
miU

2
ei

me
with me being the mass of electron. Also, M0ν

ν is the

nuclear matrix element. The recent bound from the KamLAND-Zen experiment

constrains 0νββ half-life [63]

T 0ν
1/2(Xe136) > 1.1× 1026 yr

which is equivalent to |M ee
ν | < (0.06 − 0.16) eV at 90% C.L. where M ee

ν is the

e�ective neutrino mass given by

M ee
ν = U2

eimi (3.5.3)

Here Uei are the elements of the �rst row of the PMNS mixing matrix. More

explicitly, it is given by

M ee
ν = m1c

2
12c

2
13 +m2s

2
12c

2
13e

2iα +m3s
2
13e

2iβ (3.5.4)

Thus, the NDBD half-life is sensitive to the Majorana phases and the lightest

neutrino mass as well, which remain undetermined at neutrino oscillation experi-

ments. In the present model, the light neutrino contribution is the only dominant

contribution. We check the predictions of our model for NDBD e�ective mass

for both the cases and compare with the experimental bounds.

Parameters Normal Hierarchy (NH) Inverted Hierarchy (IH)
∆m2

21

10−5eV2 7.03− 8.09 7.02− 8.09

|∆m2
3l|

10−3eV2 2.407− 2.643 2.399− 2.635

sin2 θ12 0.271− 0.345 0.271− 0.345

sin2 θ23 0.385− 0.635 0.393− 0.640

sin2 θ13 0.01934− 0.02392 0.01953− 0.02408

δ 0◦ − 360◦ 145◦ − 390◦

Table 3.5: Global �t 3σ values of neutrino oscillation parameters [64]. Here

∆m2
3l ≡ ∆m2

31 for NH and ∆m2
3l ≡ ∆m2

32 for IH.
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3.6 Results and discussions

We �rst parametrize the light neutrino mass matrix in terms of the 3σ global

�t data available [64] which are summarised in Table 3.5. For the correction to

the neutrino sector case, we then use Eq. (3.3.10) to relate the light neutrino

mass matrix predicted by the model with the one parametrized by the global �t

data. The leading order neutrino mass matrix given by Eq. (3.2.11) contains two

complex parameters a, b whereas the correction to light neutrino mass is made

up of four complex parameters x, y, z, w as seen from Eq. (3.3.6). The paramet-

ric form of light neutrino mass matrix is complex symmetric and hence contains

six complex elements. Therefore, one can exactly solve the system of equations

arising from Eq. (3.3.10) in order to evaluate the model parameters in terms

of the known neutrino parameters. To be more precise, there are in fact �ve

complex equations and one constraints arising from Eq. (3.3.10). This is due to

the fact that in the total neutrino mass matrix predicted by the model, we have

the 22 and 33 entries equal. This in fact restricts the light neutrino parameters,

as it gives rise to two real equations involving the light neutrino parameters. We

�rst solve these system of equations and generate the light neutrino parameters

which satisfy them. For the resulting light neutrino parameters, we solve the

other �ve complex equations to evaluate the model parameters. Since we have

six model parameters and only �ve equations now, we vary the parameter x in

the correction term (3.3.6) randomly in a range 10−6 − 10−1 eV. Since there are

nine neutrino parameters namely, three masses, three angles and three phases,

one can in general, show the variation of model parameters in terms of all of

these nine parameters which are being varied randomly in their allowed ranges.

Here we show only a few of them for illustrative purposes. For example, we

show the variation of some of the model parameters in terms of the light neu-

trino parameters in �gure 3.4, 3.5, 3.6, 3.7 and 3.8. This shows that the model

parameters in the leading order and the correction mass matrices can not be

arbitrary, but have to be within some speci�c ranges in order to be consistent

with correct light neutrino data. From the �gures 3.4 and 3.5 it is seen that

the parameters of the leading order light neutrino mass matrix are in the range
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a, b ≈ 1 − 10 eV−1/2. We recall the expressions for a, b in terms of the model

parameters a = y′Mv
′
R/(
√
ysvsyvh) and b = yMvR/(

√
ysvsyvh) mentioned earlier.

Taking the lepton number violating term µ = ysvs ≈ 1 keV, the VEV of Higgs

doublet at electroweak scale vh ≈ 100 GeV and the VEV of the other scalars

ΦR,Φ
′
R around a TeV that is, vR, v′R ≈ 1 TeV, our numerical results suggest that

yM
y

=
y′M
y
≈ 10− 1000 (3.6.1)

in order to satisfy the correct neutrino data. This can be achieved by suitable

tuning of the Dirac Yukawa y relative to yM = y′M . On the other hand, from

the �gures 3.6, 3.7 and 3.8, it can be seen that the correction terms to the

light neutrino mass matrix lie in the sub-eV regime. The one loop correction

term shown in Eq. (3.3.3) can be approximated for m2
R + m2

I ≈ M2
k , the above

expression can be simply written as

(mν)ij ≈
λ5v

2
h

32π2

hikhjk
Mk

=
m2
I −m2

R

32π2

hikhjk
Mk

(3.6.2)

If the heavy neutrino mass Mk is around a TeV, then for m2
I − m2

R ≈ 1 GeV,

one can generate sub eV scale corrections ∼ 0.01 eV if the corresponding Yukawa

couplings are �ne tuned to h ≈ 10−3. In the model with corrections to the

leading order charged lepton mass matrix, we �rst �nd out the diagonalising

matrix of light neutrino mass matrix as Uν = UωUTBM using the leading order

results mentioned before. Since the light neutrino mass matrix remains the same

after the charged lepton correction, Uν also remains same. However the addition

of correction will change the left diagonalising matrix of charged lepton mass

matrix from the magic matrix Uω to something else, denoted by UL = UνU
†
PMNS.

Now, using Eq. (3.3.15), one can relate the complete charged lepton mass matrix

predicted by the model, with the parametrized one given by the right hand side

of Eq. (3.3.15). The total charged lepton mass matrix can be written as

ml = m0
l + δml =


x+ al y − z + bl y + z + cl

y + z + bsl x+ al y − z + dl

y − z + csl y + z + dsl x+ al

 (3.6.3)

which contains ten complex parameters. Here x, y, z correspond to yl′′vl′′, ylvl, yl′vl′

respectively in the leading order charged lepton mass matrix (3.2.14). Also there
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Figure 3.4: Model parameter as a function of the lightest neutrino mass and

Majorana phase α.

Figure 3.5: Model parameters as a function of the lightest neutrino mass and the

atmospheric mixing angle θ23.
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Figure 3.6: Corrections parameter(correction to neutrino mass matrix) as a func-

tion of lightest neutrino mass and Majorana phase α.

Figure 3.7: Corrections parameter(correction to neutrino mass matrix) as a func-

tion of lightest neutrino mass and Majorana phase ζ.
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Figure 3.8: Corrections parameter(correction to neutrino mass matrix) as a func-

tion of lightest neutrino mass and Majorana phase α.

are two constraints in the parametrized charged lepton mass matrix due to fact

that the 11, 22 and 33 elements are equal. This severely constraints the mixing

angles and phases. Since the angles contained in UL are related to the PMNS

mixing angles, they can not be tuned arbitrarily. This forces some of the angles

in UR to take very small values in order to satisfy these two constraints. The

tiny values are required in order to compensate for the large hierarchy in charged

lepton masses which enters the 11, 22 and 33 elements of the mass matrix. We

�rst solve these constraints numerically and then �nd the model parameters for

those allowed values of mixing angles. We vary x, y, z randomly in 10−6−1.0 GeV

and evaluate other model parameters al, bl, cl, dl, bsl , c
s
l , d

s
l from the requirement

of producing the correct leptonic mixing data. Unlike the earlier model with

corrections to the neutrino mass matrix, here we get very few number of allowed

points. For illustrative purposes we show the variation of al, bl, cl, dl with some

light neutrino parameters in �gure 3.9 and 3.10. Since these one loop correction

terms lie in the sub GeV regime, one can generate them without much �ne tuning

in the corresponding Yukawa couplings. For the same set of allowed parame-
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Figure 3.9: Correction parameters as a function of Majorana and Dirac phases

while giving correction to the charged lepton mass matrix.

Figure 3.10: Correction parameters as a function of Majorana and Dirac phases

while giving correction to the charged lepton mass matrix.
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Figure 3.11: Variation of e�ective neutrino mass with the lightest neutrino

mass in the model with neutrino mass correction. The purple line indicates

the PLANCK bound on the sum of absolute neutrino masses. The green band

shows the KamLAND-ZEN upper bound [63] on the e�ective neutrino mass.

Figure 3.12: Variation of e�ective neutrino mass with the lightest neutrino mass

in the model with charged lepton correction. The purple line indicates the

PLANCK bound on the sum of absolute neutrino masses. The green band shows

the KamLAND-ZEN upper bound [63] on the e�ective neutrino mass.
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Figure 3.13: Variation of e�ective neutrino mass with the lightest neutrino mass

in the model with charged lepton correction.

ters, numerically evaluated for both the models, we also calculate the respective

predictions for neutrinoless double beta decay and plot it as a function of the

lightest neutrino mass. Figure 3.11 shows the predictions for e�ective neutrino

mass for both the hierarchies in the model where θ13 6= 0 is generated from neu-

trino sector itself. As expected, the inverted hierarchy predictions lie very close

to the upper bound on Mee from KamLAND-Zen experiment [63]. Similarly, �g

3.12 shows the predictions for e�ective neutrino mass Mee for the second model

where the charged lepton mass matrix is given a correction to generate non-zero

θ13. Due to very few number of allowed points in this case, the predicted values

of Mee are seen as a dot for both the hierarchies. This is also due to the fact

the neutrino mass sum rule Eq. (3.2.12) is valid in this case which restricts the

lightest neutrino mass to a small range of values. As can be seen from �gure 3.12,

the latest KamLAND-Zen data already disfavour this case for inverted hierarchy.

If we zoom the points near the two dots in �gure 3.12, they look like the points

shown in �gure 3.13. It is interesting to note that in both the models, the Planck

bound on the sum of absolute neutrino mass
∑

i|mi| < 0.17 eV [34] results in an

upper bound on the lightest neutrino mass as mlightest ≤ 0.04939 eV for normal

hierarchy, mlightest ≤ 0.0414 eV for inverted hierarchy, if we use the best �t values

of mass squared di�erences. Interestingly this bound almost coincides with the

bound from the KamLAND-Zen experiment as seen from �gure 3.11. Finally we

show the allowed range of dark matter mass and its couplings to leptons from the

requirement of satisfying correct dark matter relic abundance criteria in �gure

3.14. As expected, higher the values of mediator mass, the larger Yukawa cou-
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Figure 3.14: Dark matter mass as a function of Yukawa coupling keeping the

mediator mass �xed for each plots, such that the constraints on the DM relic

abundance is satis�ed.

plings are needed to give rise to the correct relic abundance. Such large Yukawa

couplings and smaller mediator masses favourable from lepton portal limit of

DM will make the charged lepton correction case more favourable. This is be-

cause, one needs suppressed Yukawa couplings or large mediator mass in order

to generate sub-eV corrections to light neutrino mass, than generating sub-GeV

corrections to the charged lepton mass matrix.

3.7 Conclusion

We have studied a TeV scale inverse seesaw model based on S4 �avour symmetry

which can naturally generate correct light neutrino masses with Tri-Bimaximal

type mixing at leading order. The model also predicts a neutrino mass sum

rule that can further predict the value of the lightest neutrino mass, that can be

tested at experiments like neutrinoless double beta decay. Since TBM mixing has

already been ruled out by the latest neutrino oscillation data, we consider two

possible ways of generating non-zero θ13 which automatically take dark matter

into account. The idea is based on the scotogenic mechanism of neutrino mass

generation, where neutrino mass arises at one loop level with DM particles going
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inside the loop. We �rst give such a one loop correction to the leading order light

neutrino mass matrix and numerically evaluate the model parameters from the

requirement of satisfying the correct neutrino data. This however, disturbs the

mass sum rule prediction of the original model. The dark matter candidate in

such a case could either be a singlet neutral fermion or the neutral component

of a scalar doublet, depending whichever is lighter. We also study the possibility

of generating θ13 6= 0 by giving a correction to the charged lepton sector. Such

a case is found to be more constrained from the requirement of satisfying the

correct neutrino data. We �nd much narrower ranges of points in terms of light

neutrino parameters which can bring the model predictions closer to the observed

data. Consistency with light neutrino data also requires the right diagonalising

matrix of charged lepton to have very small mixing angles. The DM candidate

in this case is the neutral component of a scalar doublet.

We also study the predictions for neutrinoless double beta decay and found that

the charged lepton correction case with inverted hierarchy is disfavoured by the

latest KamLAND-Zen data. The predictions for e�ective neutrino mass in this

model is very speci�c and con�ned to a tiny region around a particular value

of lightest neutrino mass. This is due to the neutrino mass sum rule which

forces the lightest neutrino mass to remain within a very narrow range. We also

�nd the allowed parameter space for scalar dark matter from the requirement

of producing the correct neutrino data, ignoring the Higgs portal and gauge

mediated annihilations. Such lepton portal annihilations are e�cient for large

Yukawa couplings or smaller mediator masses. Since the same Yukawa couplings

and mediator mass go into the one loop correction for both neutrino and charged

lepton mass matrix, the charged lepton correction is more favourable from lepton

portal scalar DM point of view. As mentioned before, this is due to the fact that

large Yukawa or small mediator mass will be able to generate sub-GeV corrections

to charged lepton mass matrix more naturally than generating sub-eV corrections

to light neutrino mass matrix. Also, the charged lepton correction case is much

more predictive, as obvious from a much narrower region of allowed parameter

space compared to the model with neutrino mass correction.
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