
"Real museums are places where Time is transformed into spaces"

Orhan Pamuk in "The Museum of Innocence"

5
Neutrino phenomenology with S4 �avor

symmetry in inverse and type II seesaw

In this chapter we have exercised an inverse seesaw model based on the S4 �avor

symmetry with an adaptation of type II seesaw mechanism. The leading order

neutrino mass is explained under the scheme of ISS, which is later on accom-

panied by the type II seesaw mechanism in order to reproduce non-zero reactor

mixing angle. The type II seesaw perturbation at the same time yields the other

oscillation parameters undeviated from their correct 3σ range. A detailed analy-

sis has been performed by varying the Dirac Yukawa coupling and type II seesaw

strength which together play a crucial role in obtaining the oscillation parame-

ters in agreement with the recent experiments. We calculate the contribution to

the e�ective mass governing 0νββ decay assuming it to take place through the

exchange of light neutrinos.
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5.1 Introduction

On 4th of July 2012, there was a milestone discovery by the ATLAS and CMS

collaborations at the CERN Large Hadron Collider (LHC), of the last missing

entity of the standard model of particle physics i.e., the Higgs Boson which is

electrically neutral and said to have a mass around 125 GeV. Till date this discov-

ery seems to complete the menagerie of the particles of the SM and can address

many observable phenomena of the SM. In addition this discovery also gave a

concrete explanation of the elementary particles getting masses by interacting

with the Higgs Boson. However the SM in spite of this new discovery is unable

to address many issues. Existence of tiny neutrino mass and its large mixing

angles is one such observation which the SM is unable to account for.

There has been several theoretical models proposed so far, in order to investigate

the neutrino oscillation parameters in detail. After the announcement made by

T2K [1] and RENO [2] and Daya Bay [3] the reactor mixing angle also gained very

much interest in recent years. In this context a class of particle physics models

have been suggested explaining the origin of non-zero reactor angle at the same

time keeping other neutrino oscillation parameters consistent with experiments.

In the neutrino sector also there are several issues which are yet to be addressed

like which hierarchy pattern the neutrino mass follows, then the octant of the

atmospheric mixing angle and �nally, whether neutrino is a Dirac or Majorana

particle. Neutrino less double beta decay is considered as the most profound

evidence in support of the Majorana nature of the neutrino. All of these puzzles

motivate us to extend the SM particle sector which we generally call as a SM

extension.

As reported by many observations and experiments which are dedicated to neu-

trino oscillation phenomena, it is a well established fact that neutrinos are mas-

sive, however small there mass is. This fact demands a justi�cation from the

point of theoretical model building. We know that for the explanation of non

zero neutrino mass one needs to go BSM. This journey starts with inclusion of

SM scalar and fermion sector. The fermion sector is extended with a number of

right handed gauge singlets which after coupling with left handed lepton doublets
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and SM Higgs, seem to generate neutrino mass. This whole scenario is math-

ematically realized via the implementation of Weinberg's Dimension 5 operator

[4, 5], which beautifully explains the nonzero neutrino mass without a �ne tuning

of the Yukawa coupling. Inclusion of RH gauge singlets or RH neutrinos (RHN)

in the standard model helps to explain the tiny neutrino mass with the help of

Weinberg's operator in the frame work of type I seesaw mechanism. Generally

type I seesaw indicates the RHN mass scale to be around 1015 to 1016 GeV, which

is quite high in comparison to the present accessible energy status of the LHC

and other particle accelerators. In this situation inverse seesaw (ISS) mechanism

gives a road map connecting light neutrino mass to such a RHN mass scale which

may be accessible at the colliders in near future. In this work we have studied

an ISS scheme described by the authors in [6]. The ISS presents the explanation

for sub-eV neutrino mass by means of keeping the RHN mass around few TeV.

We also adopt type II seesaw mechanism in order to reproduce non-vanishing

reactor angle. With this motivation of studying the oscillation parameters we

proceed towards building an ISS and type II based model adopting the S4 �avor

symmetry group.

Having set the stage with so many RHNs it may be a ground for the search

of Neutrinoless double decay (NDBD) which crucially involves RHNs. NDBD

process is a distinctive probe for the determination of Majorana nature of neu-

trinos. This is a process which has non-trivial implications for particle physics

and cosmology, although its observation still remained elusive. The search for

this process constitutes another new province of neutrino physics permitting us

to look for possible CP violation e�ects in lepton number violating processes.

With this motivation in the light of the presented model we have also studied

the e�ective mass prediction to neutrinoless double beta decay assuming it to

take place via to light neutrino exchanges.

This chapter is organized as follows. In Section. 5.2 we present the ISS model

with type II seesaw. Section. 5.3 has been dedicated for neutrinoless double beta

decay. In Section. 5.4 is kept for numerical analysis. We discuss the results in

Section. 5.5. Finally, in Section. 5.6 we end up with our conclusion.
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5.2 Structure of the model

As already mentioned in the earlier chapters the ISS scheme manifests in ad-

dressing a sub-eV neutrino mass scale at the cost of proposing the RHN mass

at a scale much lower than that associated with the Type I seesaw [7�12]. If we

recall the ISS Lagrangian it goes like as follows.

L = −ν̄LmDνR − S̄LMνR −
1

2
S̄LµS

C
L + H.C.. (5.2.1)

The ISS model contains a pair of two gauge singlet leptons, νR and S respectively.

µ is the lepton number violating scale here, which plays a non-trivial role in this

seesaw scheme. The fact that if µ takes a zero value, then the lepton number

symmetry is preserved , leading to a vanishing light neutrino mass. This fact

demands a nonzero µ scale to bring a non-zero light neutrino mass. The scale

of µ adds a new dimension in the mass generation mechanism of light neutrinos

via accommodating a TeV scale RHN. This feature makes the ISS unique among

all the seesaw schemes. Essentially the scale of the lepton number violating

parameter µ is of order keV for an electro-weak scale Dirac neutrino mass mD.

In this scheme the e�ective light neutrino mass is obtained from the following

equation.

mI
ν = mT

D(MT )−1µM−1mD, (5.2.2)

In this work Eq. (5.2.2) decides the structure of the leading order light neutrino

mass. To implement the ISS scheme and to get a desired light neutrino mass

structure we extend the SM scalar structure with the inclusion of �ve �avons

which transform as singlets and one additional Higgs η transforming as doublet

under SU(2) symmetry group. Three right handed gauge singlets νR are intro-

duced, which are supposed to transform as a triplet 31 of S4. We assign the SM

type Higgs η to the triplet 31 of S4. The additional three SM fermion singlets

'Si' are assumed to transform as an S4 triplet 31. The charge assignments of the

particle content of the model is presented in Table 5.1.

The Yukawa Lagrangian relevant for the above particle content is given by,

LI = yDL̄νRη + yD
′L̄νRh+ yMνRSΦR + ysSSΦs, (5.2.3)
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L̄ νR lR h η S ΦR Φs Φl Φl
′ Φl

′′

SU(2)L 2 1 1 2 2 1 1 1 1 1 1

S4 31 31 31 11 31 31 11 11 31 32 11

Z2 + - + - - - + + + + +

Table 5.1: Fields and their transformation properties under SU(2)L, the S4 �avor

symmetry and Z2 �avor symmetry

The following �avon alignments help us to get a desired neutrino mass matrix.

〈ΦR〉 = vR, 〈Φs〉 = vs, 〈h〉 = vh, 〈η〉 = vη(1, 0, 0).

Decomposition of the various terms present in the Eq. (5.2.3) into singlets fol-

lowing the S4 rules mentioned in Section 1.8 of Chapter 1 (for detail please see

[13]), has been shown as follows

yDL̄iνjRη = yD[(L2ν3R + L3ν2R)η1 + (L1ν3R + L3ν1R)η2 + (L2ν1R + L1ν2R)η3]

= yD(L2ν3R + L3ν2R)vη,

yD
′L̄iνjRh = yD

′(L1ν1R + L2ν2R + L3ν3R)vh,

yMνiRSjΦR = yM(S1ν1R + S2ν2R + S3ν3R)vR,

ysSSΦs = ys(S1S1 + S2S2 + S3S3)vs.

With the help of the S4 product rules and using the chosen �avon alignments

mentioned above we can design the following mass matrices.

mD = y


vh 0 0

0 vh vη

0 vη vh

 , µ = ys


1 0 0

0 1 0

0 0 1

 vs,M = yR


1 0 0

0 1 0

0 0 1

 vR.

(5.2.4)

We notice that, mD is connected to vη and vh, and M is determined by the VEV

vR. In this way, the order of magnitude involved in the Eq. 5.2.2 is such that,

mν ∝ (vη+vh)2

v2
R

µ. Here vη and vh are of the order of electroweak breaking, vR is of

the order of TeV scale. Therefore, to get mν in sub-eV, µ which is coming from

the VEV of ΦS should be of the order of keV.
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Type II seesaw with triplet Higgs

We have chosen type II seesaw for reproducing non-zero θ13. For the implementa-

tion of type II seesaw mechanism the SM is extended by the inclusion of an addi-

tional SU(2)L triplet scalar �eld ∆. Apart having bilinear and quartic terms the

triplet also has a trilinear mass term µφ∆ which generates an induced VEV for the

neutral component of the Higgs triplet as ∆0 = v∆

√
2 where, v∆ ' µφ∆v

2/
√

2M2
∆

[14�18]. The type II seesaw contribution to light neutrino mass is given by

mII
LL = fνv∆, (5.2.5)

In the low scale type II seesaw mechanism operative at the TeV scale, barring

the naturalness issue, one can consider a very small value of the trilinear mass

parameter to be

µφ∆ ' 10−8GeV.

The sub-eV scale light neutrino mass with type II seesaw mechanism constrains

the corresponding Majorana Yukawa coupling as

f 2
ν < 1.4× 10−5(

M∆

1TeV
).

Within the reasonable value of fν ' 10−2 , the triplet Higgs scalar VEV is v∆ '
10−7GeV which is in agreement with oscillation data. The Yukawa Lagrangian

for the type II seesaw part is given by,

LII = fν
LLζ4

Λ
+ fν

LLξ4
Λ

(5.2.6)

Where, Λ is the cuto� scale. With the type II perturbation the Lagrangian takes

the following form

L = yDL̄νRη + yD
′L̄νRh+ yMνRSφR + ysSSφs + fν

LLζ4
Λ

+ fν
LLξ4

Λ
. (5.2.7)

The �rst four terms of the above equation are considered to be the leading order

contribution, and the last two terms are for the perturbation to generate non-zero

θ13. As summarized in the Table 5.1 the SU(2)L lepton doublets are supposed

to transform as S4 triplets. The SU(2)L triplet Higgs �eld ∆L is supposed to
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transform as a S4 singlet. We have introduced two more �avon �elds ξ and ζ

which are assumed to transform as 2 and 31 of S4 respectively.

The decomposition of the LLζ4
Λ

term into S4 singlet with the multiplication rules

can be shown as follows

LLζ∆ = (L2L
′
2 − L3L

′)
3 ζ1∆

31 × 31 ∼ 2

2× 2 ∼ 1

1× 1 ∼ 1

The decomposition of the LLξ∆
Λ

term into S4 singlet with the multiplication rules

is given by

LLξ∆ = (−L2L1 − L1L2 + L1L3 + L3L1)vξ∆

31 × 31 ∼ 31

31 × 31 ∼ 1

The �avon alignments which help in constructing the mII
LL matrix are as follows

∆ ∼ v∆, < ζ >∼
√

2vζ(1, 0), < ξ >∼ vξ(0, 1,−1).

ζ and ξ are assumed to take the VEV in the same scale vζ = vξ = Λ. With these

�avon alignments the following structure for the type II seesaw mass matrix mII
LL

is constructed.

mII
LL =


0 −w w

−w w 0

w 0 −w

 . (5.2.8)

The three matrices (5.2.4) lead to the following leading order light neutrino mass

matrix under the ISS framework.

mν = y2Uνm
diag
0 UT

ν , (5.2.9)

where, m0 is a non-diagonal matrix given by Eq. (5.4.1). The two Yukawa

couplings are supposed to have the same numerical value, yD = yD
′ = y, which
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governs the interactions shown by the �rst two terms in the Eq. (5.2.3). Now

the Lagrangian for the charged lepton mass is ,

Ll = ylL̄lRΦl + yl
′L̄lRΦl

′ + yl
′′L̄lRΦl

′′, (5.2.10)

The following �avon alignments allow us to have the mass matrix corresponding

to the charged lepton sector as given by the Eq. (5.2.11).

< Φl >= vl(1, 1, 1), < Φl
′ >= vl

′(1, 1, 1), < Φl
′′ >= v′′l

S4 product rules and the chosen vev alignments yield the charged lepton mass

matrix as follows,

ml =


yl
′′vl
′′ ylvl − yl′vl′ ylvl + yl

′vl
′

ylvl + yl
′vl
′ yl

′′vl
′′ ylvl − yl′vl′

ylvl − yl′vl′ ylvl + yl
′vl
′ yl

′′vl
′′

 , (5.2.11)

As the charge lepton matrix in non-diagonal, the charge lepton mass matrix ml

is diagonalized by the magic matrix Uω exhibited in the following equation.

Uω = 1/
√

3


1 1 1

1 ω ω2

1 ω2 ω

 , (5.2.12)

(with ω = exp 2iπ/3). Considering up to leading order ISS, one can write,

UTBM = U †l Uν .

where, Ul corresponds to the identity matrix if the charged lepton mass matrix

is diagonal. Since in our work, the charged lepton mass matrix is non-diagonal,

Ul is nothing but the magic matrix Uω given by Eq. (5.2.12). Now in the basis,

where charged lepton is diagonal

Uν → UTBM = U †ωUν ,

The Eq. (5.2.9) implies that,

UωmνU
−1
ω = y2UωUνm

diag
o UT

ν U
−1
ω =⇒ mTBM

ν = y2UTBMm
diag
o UT

TBM. (5.2.13)
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5.3 Neutrinoless double beta decay

Neutrinoless double beta decay (NDBD) is a process where two protons are

converted into two electrons with no neutrinos in the �nal state, leading to the

violation of lepton number by two units.

N(A,Z)→ N(A,Z + 2) + e− + e−.

This violation of lepton number makes this process a strong probe of Majorana

neutrinos [19�22]. The time period of NDBD is dependent on the e�ective mass

mee
ν as we have already mentioned in Chapter 2. If we recall the e�ective mass

formula it is given by,

|mee
ν | = |U2

eimi|, (5.3.1)

There may have several contributions [23, 24] that in�uence the e�ective mass

prediction. In this work since we have considered the ISS mechanism to explain

tiny neutrino mass, only relevant contribution will come from the process oc-

curred due to SM light neutrino exchanges. On the other hand the contribution

from the triplet Higgs is of the order of 10−13mi which is relatively concealed

as compared to the dominant contribution [25]. One can determine the e�ective

neutrino mass from the following expression given by,

mee
ν,LL ' U2

e1m1 + U2
e2e

2iαm2 + U2
e3e

2iβm3. (5.3.2)

From the e�ective mass formula it is clear thatmee
ν,LL solely depends on the matrix

elements of the �rst row of the UPMNS mixing matrix and the light neutrino mass

eigenvalues. The matrix elements are functions of the neutrino mixing angles.

Therefore, mee
ν,LL for the present model under discussion is dependent on the

predictions regarding the oscillation parameters, made by the model. At the

same time the light neutrino mass eigenvalues are di�erent for di�erent mass

hierarchy patterns, normal and/or inverted. This fact clearly indicates that, the

e�ective mass will be di�erent for di�erent mass hierarchy patterns. We evince

the plots for e�ective mass prediction due to SM light neutrino exchanges in

�gure 5.9.
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5.4 Numerical analysis

The global �t neutrino oscillation data used for this work is taken from [26],

which is exhibited in Table 5.2.

Oscillation parameters bfp(NO) 3σ Cl(NO) bfp(IO) 3σ Cl(IO)

∆m2
21[10−5eV 2] 7.5 (7.02 , 8.07) 7.5 (7.02 , 8.07)

∆m2
31/∆m

2
23(NO/IO)[10−3eV 2] 2.457 (2.317 , 2.607) −2.449 (-2.590 , -2.307)

sin2 θ12 0.304 (0.270 , 0.344) 0.304 (0.270 , 0.34)

sin2 θ13 0.0218 (0.0186 , 0.0250) 0.0219 (0.0188 , 0.0251)

sin2 θ23 � 0.381-0.643 � (0.388 , 0.644)

Table 5.2: Gobal �t oscillation data from reference [26]

Each value of y (which is present in the mD) gives rise to various sets of the

neutrino mass matrix parameters a, b.

As shown in [6] that the ISS mechanism also yields some potential way to obtain

TBM mixing pattern. In the present analysis, we consider M ∝ I, µ ∝ I and

mD ∝ M0. These three matrices give rise to neutrino mass matrix which is of

TBM pattern, that naturally accounts for vanishing θ13. We parameterize the

light neutrino mass matrix obtained from the ISS realization with the help of

recent neutrino oscillation data given in Table 5.2. Using Eq. (5.2.4) the light

neutrino mass matrix is found to be

M0
ν = y2 ysvv

y2
Rv

2
R


v2
h 0 0

0 v2
h + v2

η 2vhvη

0 2vhvη v2
h + v2

η


Now, if we de�ne some parameters a =

√
ysvs

yRvR
vh and b =

√
ysvs

yRvR
vη the light neutrino

mass matrix can take the following form given by Eq. (5.2.11).

M0
ν = y2


a2 0 0

0 a2 + b2 2ab

0 2ab a2 + b2

 = y2mo, (5.4.1)

then we solve for a and b with the help of two mass squared splittings taken from

the global �t oscillation data. While �nding the solutions for a and b each time
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we vary the Yukawa coupling y present in Eq. (5.2.9). For each Yukawa value

we get di�erent sets of solutions for a and b. Choosing each set of a, b values and

that particular Yukawa coupling chosen for a particular set we get sets of light

neutrino mass matrices. Once we get these light neutrino mass matrix, to this

we add the type II perturbation matrix to reproduce nonzero θ13. After adding

the perturbation we get the neutrino mass matrix as follows,

Mν = M0
ν +mII

ν = y2UTBMm
diag
ν UT

TBM +mII
ν .

The numerical value of the perturbation term w = fνv∆ critically depends upon

the Majorana coupling fν , trilinear mass parameter µφ∆ and M . Accordingly,

we vary the type II seesaw strength from 10−6 to 0.01 eV to produce non-zero θ13.

It is observed from the �gures 5.1 and 5.2 that the type II seesaw strength of 10−3

eV is generating the non-zero θ13 in the 3σ range of all the cases. After getting

the complete mass matrix we diagonalize it. After diagonalization the mass

eigenvalues are found to be m1 = y2a2, m2 = y2(a + b)2, m3 = y2(a − b)2. Now

the elements of these diagonalized matrices are associated with the parameters of

the model and the type II perturbation term. The set of a, b values obtained for

each y value and chosen for analysis are listed in Table 5.3, Table 5.4, Table 5.5

for NH case and Table 5.6, Table 5.7, Table 5.8 for IH case.

Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0633626 0.0632349 0.0631076 0.0624 0.0622749 0.062729

b 0.161879 0.161552 0.161227 0.16017 0.159849 0.16026

Table 5.3: Values of a, b obtained by solving for NH case with best �t central

value of 3σ deviations

Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0641786 0.0640492 0.0639203 0.063792 0.0636641 0.0635368

b 0.164422 0.16409 0.16376 0.163431 0.163104 0.162777

Table 5.4: Values of a, b obtained by solving for NH case with a upper bound of

3σ deviations

151



Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0625069 0.0623809 0.0622554 0.0621304 0.0620059 0.0618818

b 0.159456 0.159135 0.158815 0.158496 0.158178 0.157862

Table 5.5: Values of a, b obtained by solving for NH case with an lower bound of

3σ deviations

Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0640348 0.0639057 0.0637771 0.063649 0.0635215 0.0633944

b 0.162732 0.162404 0.162077 0.161752 0.161428 0.161105

Table 5.6: Values of a, b obtained by solving for IH case with best �t central

value of 3σ deviations

Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0647916 0.064661 0.0645309 0.0644013 0.0642722 0.0641437

b 0.165197 0.164864 0.164533 0.164202 0.163873 0.163545

Table 5.7: Values of a, b obtained by solving for IH case with a upper bound of

3σ deviations

Parameters y = 0.99 y = 0.992 y = 0.994 y = 0.996 y = 0.998 y = 1

a 0.0631378 0.0630105 0.0628838 0.0627575 0.0626317 0.0625065

b 0.160259 0.159935 0.159614 0.159293 0.158975 0.158656

Table 5.8: Values of a, b obtained by solving for IH case with an lower bound of

3σ deviations
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5.5 Results and discussions

A thorough analysis has been carried out to check whether the oscillation pa-

rameters are near to reach or not by taking the upper and lower bound of 3σ

deviation as well. We �t the values of oscillation parameters using recent cos-

mological constraints for both normal and inverted mass ordering. We compute

all the oscillation parameters also by varying the type II seesaw strength. Vari-

ation of type II seesaw strength with the non-vanishing θ13, for both hierarchy

patterns have been shown in �gure 5.1 using the best �t values and �gure 5.2

for the extremum bounds of 3σ deviations. The production of other oscillation

parameters, e.g. the two mixing angles and two mass squared splitting as a func-

tion of nonzero θ13 has been shown in the �gure 5.3, �gure 5.4 and �gure 5.5

for NH case, �gure 5.6, �gure 5.7 and �gure 5.8 for IH case for di�erent values

of Yukawa coupling. The sum of absolute masses has also been calculated to

see whether it satis�es the Planck upper bound or not. Seeing that, the sum of

absolute neutrino masses can give some clue on neutrinoless double beta decay,

a little study has been performed to check whether the presented model is able

to contribute to the 0νββ physics. In �gure 5.9 we plot for the contribution of

the e�ective mass to 0νββ decay due to light neutrino exchanges for standard

contribution. Also the e�ective mass prediction has been studied varying the

type II strength. A comparison among the various sets of results has been shown

in the Table 5.9. From the results obtained as clear from the plots 5.1-5.8,

we can get the following observations.

• The Yukawa coupling is varied from 0.992 to 1 which is demanded by the

neutrino parameters to being in their allowed 3σ range.

• The non-zero value of θ13 has been found to be consistent with the variation

of type II seesaw strength for both kinds of hierarchy patterns.

• The proposed model is able to evince a good neutrino phenomenology

within the NH framework while taking into consideration the lower bound

of 3σ deviation. All the oscillation parameters have been obtained within

the correct 3σ range for any value of Yukawa coupling ranging from 0.992
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Figure 5.1: Generation of non-zero sin2θ13, varying the type II strength for best

�t mass squared splittings for NH (left panel) and IH (right panel) case.
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Figure 5.2: Generation of non-zero sin2θ13, varying the type II strength using

lower and upper bound of 3σ deviations.
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Figure 5.3: Variation of sin2θ12, sin2θ23 ,∆m2
31 and ∆m2

21 with sin2θ13 for NH

case with best �t values
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31 and ∆m2
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case with with upper bound of 3σ deviation
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21 with sin2θ13 for IH

case with best �t value
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Figure 5.7: Variation of sin2θ12, sin2θ23 ,∆m2
23 and ∆m2

21 with sin2θ13 for IH

case with lower bound of 3σ deviation
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Figure 5.8: Variation of sin2θ12, sin2θ23 ,∆m2
23 and ∆m2
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Figure 5.9: Variation of e�ective mass |Mee| (in eV)for the standard and non-

standard contribution to 0νββ decay due to light neutrino exchanges [27].

to 1 for NH case. Taking the best �t value and the upper bound of 3σ

deviation for NH case, the model is found to be unable to produce ∆m2
21

and ∆m2
31 within the correct 3σ range.

• It has been noticed that the proposed model also shows evidences for correct

neutrino phenomenology using the best �t and lower 3σ bound for mass

squared splittings in case of inverted hierarchy mass pattern.

• The e�ective mass predictions for 0νββ decay for both NH and IH are

obtained in the vicinity of experimental results as shown in �gure 5.9.

5.6 Conclusion

We have studied an S4 based ISS model which is accompanied by the type II

seesaw as a perturbation to the leading order ISS mass, from the need of bringing

non vanishing reactor angle into account. We have chosen one ISS scheme among

the seven schemes as listed by the authors in [6] and extended the study to a

search for θ13 6= 0. The entire study has been performed from a di�erent aspect;
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Model θ13 θ12 θ23 ∆m2
21 ∆m2

31,∆m
2
23

∑
i=1,2,3 mod mi

NH (bfp) X X X × X X

NH (lower 3σ bound) X X X X X X

NH (upper 3σ bound) X X X × × X

IH (bfp) X X X X X X

IH (lower 3σ bound) X X X X X X

IH (upper 3σ bound) X X X × X X

Table 5.9: Summary of results obtained from various allowed mass schemes.

by extracting the Yukawa coupling (y) from the light neutrino mass matrix and

varying it from and to a certain range, in order to check the parameter space of

the Yukawa coupling strength and the global �t neutrino parameters. For NH

mass pattern it is seen that only the lower bound of the mass squared splittings

can give a solution for the model parameters a, b who further give rise to the other

oscillation parameters in correct 3σ range for the chosen range of Yukawa coupling

(y). For the same Yukawa coupling range the model prediction is more sensitive

to IH mass pattern, as we obtain the oscillation parameters in agreement with

experiments, while scanning the mass squared splittings from the lower bound of

the 3σ bound to the best �t central value. Thus, we can conclude that a broader

region of parameter space exists in case of IH. From the type II seesaw term we

have the type II strength w which reproduces non-zero θ13 in the correct 3σ range.

We have also studied the e�ective mass prediction for the contribution of NDBD.

However, for both hierarchy pattern we get the e�ective mass within GERDA

limit [27]. The variation of Yukawa coupling makes a better plot for a detailed

study of the neutrino parameters. As we also have some complex solution for the

model parameters a, b, considering them we can further go for lepton asymmetry

study (by considering a non-degenerate M structure), as the complex nature of

a, b may be a source of CP violation. The complex solutions of a, b almost yield

the same neutrino phenomenology. Moreover, this study of variation of Yukawa

coupling may have some e�ect on the order of lepton asymmetry that can account

for the observed matter-antimatter asymmetry.
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