
"The Dark Arts are many, varied, ever-changing, and eternal.

Fighting them is like �ghting a many-headed monster, which,

each time a neck is severed, sprouts a head even �ercer and clev-

erer than before. You are �ghting that which is un�xed, mutat-

ing,indestructible."

Severus Snape in "Harry Potter and the Half-Blood Prince"

2
Neutrino phenomenology and scalar dark

matter with inverse and type II seesaw

In the second chapter we present a TeV scale seesaw mechanism for exploring

the dark matter and neutrino phenomenology in the light of recent neutrino and

cosmology data. A unique realization of the Inverse seesaw (ISS) mechanism with

A4 �avor symmetry is being implemented as a leading contribution to the light

neutrino mass matrix which usually yields vanishing reactor angle θ13. Making

use of a non-diagonal structure of Dirac neutrino mass matrix and 3σ values of

mass square di�erences the neutrino mass matrix is parameterized in terms of

Dirac Yukawa coupling �y�. We then use type II seesaw mechanism as a correction

which turns out to be active to have a non-vanishing reactor mixing angle without

much disturbing the other neutrino oscillation parameters. Then we constrain a

common parameter space satisfying the non-zero θ13, Yukawa coupling and the

relic abundance of dark matter. Contributions of neutrinoless double beta decay

are also included for standard light neutrino interaction. This study may have

relevance in future neutrino and Dark Matter experiments.
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2.1 Introduction

The link between neutrino oscillation and modern cosmology needs an elucidation

since both of them infer physics beyond Standard Model (BSM). Several theories

have been deciphered to bridge between these two separate sectors of particle

physics and cosmology [1]. There is now a plethora of evidences in support of

the existence of dark matter (DM) which constructs approximately one-fourth

of the energy density of the universe [2�5]. Despite a number of recent studies

of simpli�ed DM models their nature remains rather elusive. Even the most

successful Standard Model (SM) also does not furnish any signature of dark

matter candidates and their properties. This is one of the pressing problems

in both high energy physics and cosmology. Therefore, searching for a concrete

realization to provide a hint towards physics BSM will be of utmost interest. It

will be more fascinating if the discovery of neutrino oscillation and the existence

of DM can be framed within a single particle physics model.

Even though astrophysical and cosmological observations, strongly suggest about

the Presence of DM in the universe, the exact particle nature of DM is still

unidenti�ed. Planck 2013 data [5] says that, DM composes 26.8% of the energy

density of the present universe, which predicts the present abundance (familiar

as relic abundance) of DM as

ΩDMh
2 = 0.1187± 0.0017, (2.1.1)

where Ω implies the density parameter, Hubble parameter/100= is denoted as

h = [6]. Authors in [7] proposed a ten-point test that new particle has to satisfy

so that it can be regarded as a potential DM candidates. The existence of dark

matter is universally accepted, its nature remains elusive. It is usually assumed

to be a single particle, but it may also be more than one. In speci�c models, it is

often considered to be a fermion, scalar or vector [8]. Among the requirements the

potential DM candidate must meet, the stability is protected by invoking some

parity symmetry like Z2 which is supposed to appear as a residual of a discrete

�avor symmetry. There have been extensive studies in this �eld adopting various

�avor symmetry groups [9�11]. We have plenty of examples where di�erent kinds
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of DM were extensively studied with their stability in several ways. Recently

connection between neutrino and the DM, using various �avor symmetries is

drawing more attention in particle physics and cosmology. Here also we present

a picture to construct a bridge between these two di�erent sectors of particle

physics adopting the A4 based ISS realization. The most peculiar signatures of

the ISS scenario are the additional decay channels of the Higgs boson into a

heavy and ordinary neutrino, which con�rms the SM particles to be a gateway

to the scalar DM. In order for the SM particles being a portal to the dark sector,

there must be at least two particles, one fermion and one boson in the dark

sector. Here in our model Higgs boson, is considered as a DM candidate, couples

with SM neutrino through a right handed neutrino. Two neutral components

of this Higgs which is a triplet under A4 is responsible in making correlation

with neutrino mass and dark matter. A remnant Z2 symmetry can explain the

stability issue of the potential dark matter. This Z2 symmetry also prevents the

interaction of other particle contents of the model with the DM. Apart from the

stability issue one more important test it must pass is to satisfy the observed relic

density given by Eq. (2.1.1). For getting the correct relic abundance we require

to take the DM mass from 50 GeV onwards. The Yukawa, which is responsible

in making correlation between neutrino mass and DM coupling also needs to be

�xed in such a way that the potential DM candidate gives rise to correct relic

abundance.

Several seesaw mechanisms have shown a promising role in explaining neutrino

mass and mixing. The inverse Seesaw (ISS) has been found to be an entirely dif-

ferent realization, which delicately attempts for the generation of a tiny neutrino

mass at the cost of proposing the RH neutrino masses at the TeV scale which

may have a better collider accessibility in near future. The essence of the ISS

lies in the fact that, the double appearance of the mass scale associated with M

in the denominator of the inverse seesaw formula allows it (M) to take a mass

scale, which is much lighter than the one associated with the type I seesaw mech-

anism. Which in turn renders us with sub-eV scale SM neutrinos, at the cost of

electroweak scale mD, TeV scale M and keV scale µ, as explained in [12]. This
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RH neutrino mass at TeV scale helps us to get the required mediator mass in

order to obtain the appropriate relic abundance of relics. In addition to the ISS

we are working with the Type II seesaw mechanism which turns out to be in-

strumental to have the non-vanishing reactor mixing angle. Both the inverse and

type II seesaw are realized adopting the A4 �avor symmetry. Then we have also

studied the e�ective mass prediction to neutrinoless double beta decay (NDBD)

for standard contribution.

We organize this chapter as follows. In section. 2.2 we present our model. Sec-

tion 2.3 provides the stability issue of DM. Non-zero reactor angle is explained in

the section 2.4. Section 2.5 has been presented with the analysis on Neutrinoless

double beta decay. Section 2.6 o�ers the observation of the Relic abundance

of DM in the background of the presented model. We have kept the numerical

analysis in section 2.7. Finally, in section 2.8 we end up with our conclusion.

2.2 Neutrino mass model with various seesaw

scenarios

2.2.1 Inverse seesaw mechanism

In our work we focus on the simplest ISS mechanism which is able to open up a

new window to look for a comparatively lower right handed neutrino mass scale

than the one present in type I seesaw [12�19]. The ful�llment of the ISS scheme

requires the SM fermion sector to be extended by the inclusion of three RH

neutrinos N and three additional neutral fermion singlets SiL, where i = 1, 2, 3.

It is worth stating that, the implementation of the ISS allows us to make use of

extra symmetries in order to provide the neutrinos the following bilinear terms,

L = −ν̄LmDN − S̄LMN − 1

2
S̄LµS

C
L +H.C., (2.2.1)

The above Lagrangian implies a 9× 9 leptonic mass matrix,

Mν =


0 mD 0

mT
D 0 M

0 MT µ

 . (2.2.2)
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In spite of its many phenomenological successes the ISS has a drawback that

the RH mass term in the Mν22 entry of Mν is allowed by symmetries. This is

a typical problem of inverse seesaw models. But it is prevented here by using

Z3 symmetry. After block diagonalization of the Eq. (2.2.2) we get the lightest

neutrino mass eigenvalue as ,

mI
ν = mD(MT )−1µM−1mT

D, (2.2.3)

which is considered as the leading contribution to the light neutrino mass. Unlike

the GUT scale seesaw mechanism, the ISS still needs an appropriate ground

where the six new neutrinos could �nd their places in the elemental particle

content and normally can get a mass term.

Non Abelian discrete �avor symmetries have played an important role in particle

physics since long. In particular the symmetry group A4 have been immensely

found of utmost operation [20�24]. In this work we have analyzed the model

presented by the authors in [9], extended with additional �avons with inverse

and type II seesaw. We summarize the A4 based ISS model by assigning the

matter �elds as shown in Table 2.1. We introduce four RH neutrinos, three of

which N = (N1, N2, N3) are supposed to be a triplet of A4 and the rest as a

singlet N4. We assign the SM type Higgs η to the A4 triplet, which is considered

as a DM candidate in the present analysis. We have four additional SM fermion

singlets among which `S' is transforming as A4 triplet and S4 as A4 singlet. To

get a desired neutrino mass matrix structure we are extending the Higgs sector by

introducing six more Higgs �elds, boosted by two additional symmetries Z2 and

Z3 whose quantum numbers are given in Table 2.1. We construct the ISS mass

matrices using the multiplication rules of A4 as given in Section 1.8 of Chapter

1.

2.2.2 Type II seesaw with triplet Higgs

To implement the type II seesaw mechanism, the SM is extended by the addition

of a new SU(2)L triplet scalar �eld ∆ whose 2× 2 matrix representation is given
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as

∆ =

 ∆+/
√

2 ∆++

∆0 ∆+/
√

2

 , (2.2.4)

The VEV of the SM Higgs < φ0 >= v/
√

2, the trilinear mass term µφ∆ generate

an induced VEV for the Higgs triplet as ∆0 = v∆

√
2 where, v∆ ' µφ∆v

2/
√

2M2
∆

[25]. The light neutrino mass is contributed by the type II seesaw mechanism in

the following manner

mII
LL = fνv∆, (2.2.5)

where the analytic formula for induced VEV for the neutral component of the

Higgs scalar triplet, derived by minimizing the scalar potential [25], is

v∆ ≡ 〈∆0〉 =
µφ∆v

2

√
2M2

∆

(2.2.6)

In the low scale type II seesaw which is dynamic at the TeV scale, we can consider

a very small value of the trilinear mass parameter to be

µφ∆ ' 10−8GeV.

The sub-eV scale neutrino mass coming from type II seesaw mechanism constrains

the corresponding Majorana Yukawa coupling as

f 2
ν < 1.4× 10−5(

M∆

1TeV
)

Within the reasonable value of fν ' 10−2, the triplet Higgs scalar VEV is v∆ '
10−7GeV which is in agreement with oscillation data. It is worth to note here that

the tiny trilinear mass parameter µφ∆ controls the neutrino overall mass scale,

but does not play any role in the couplings with the fermions. The structure of

the matrix mII
LL, with w = fνv∆ is explained in Section. 2.4.

2.3 Stabilizing the dark matter

An elegant way to establish the DM stability is by invoking a parity symmetry

like Z2. Here is an attempt to search for a theory which is responsible for explain-

ing neutrino phenomenology and dark matter stability as well. The A4×Z2×Z3
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symmetry here only allows the coupling of the η with the singlet RH neutrinos

rather than with charged fermions or quarks. It is worth noting that the align-

ment 〈η〉 ∼ (1, 0, 0) breaks A4 × Z2 × Z3 to Z2 since (1, 0, 0) remains manifestly

invariant under one of the generators of the group A4. In this manner sponta-

neously breaking of the symmetry, obeyed by the bigger group A4 × Z2 × Z3 to

Z2 con�rms the DM stability. The stability of the DM candidate is guaranteed

by this remnant symmetry. The Z2 residual symmetry is de�ned by

N2 → −N2, S2 → −S2, η2 → −η2

N3 → −N3, S3 → −S3, η3 → −η3

The leading order Yukawa Lagrangian for the neutrino part is given by the fol-

lowing equation.

LIν = yν1Le(Nη)1 + yν2Lµ(Nη)1′′ + yν3Lτ (Nη)1′ + yν4LeN4h

+ys(SS)φs + y′sS4S4φs + yR(NS)φR + y′RN4S4φR.
(2.3.1)

Le Lµ Lτ lce lcµ lcτ N N4 h η S4 S φR φs ζ ξ ∆

SU(2)L 2 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 3

A4 1 1′ 1′′ 1 1′′ 1′ 3 1 1 3 1 3 1 1 1′ 1′′ 1

Z2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 1

Z3 ω ω ω ω2 ω2 ω2 ω2 ω2 1 1 ω ω 1 ω 1 1 ω

Table 2.1: Particles and their quantum numbers under SU(2)L symmetry, and

A4, Z2, Z3 �avour symmetry groups

The following �avon alignments help us to get a desired neutrino mass matrix.

〈ΦR〉 = vR, 〈Φs〉 = vs, 〈h〉 = vh, 〈η〉 = vη(1, 0, 0).

It is clear from the Eq. (2.3.2) and Eq. (2.3.3) that, mD is related to vη and vh,

M is determined by the VEV vR. From this, the order of magnitude involved

in the Eq. (2.2.3) is so, that mν ∝ (vη+vh)2

v2
R

µ. Here vη and vh are of the order
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of electroweak breaking, vR is of the order of TeV scale. Therefore, to get mν in

sub-eV, µ which is coming from the VEV of ΦS should be of the order of keV.

The two components of η are not generating the VEV [9], considered potential

DM candidate. Decomposition of the following terms present in the Eq. (2.3.1)

has been shown as follows

ys(SS)φs = ys(S1S1 + S2S2 + S3S3)φs,

yR(NS)φR = yR(N1S1 +N2S2 +N3S3)φR.

The chosen �avon alignments and the A4 product rules allow us to have the

Yukawa coupling matrices as follows

mD =


yν1〈η〉 0 0 yν4〈h〉
yν2〈η〉 0 0 0

yν3〈η〉 0 0 0

 =


x1a 0 0 y1b

x2a 0 0 0

x3a 0 0 0

 , (2.3.2)

M =


yR〈φR〉 0 0 0

0 yR〈φR〉 0 0

0 0 yR〈φR〉 0

0 0 0 y′R〈φR〉

 =


M1 0 0 0

0 M1 0 0

0 0 M1 0

0 0 0 M2

 ,

(2.3.3)

µs =


ys〈φs〉 0 0 0

0 ys〈φs〉 0 0

0 0 ys〈φs〉 0

0 0 0 y′s〈φs〉

 =


µ1 0 0 0

0 µ1 0 0

0 0 µ1 0

0 0 0 µ2

 , (2.3.4)

The light neutrino mass matrix as produced by the above three matrices under

the ISS framework is given by

mν =


y2
1b

2µ2

M2
2

+
a2x2

1µ1

M2
1

a2x1x2µ1

M2
1

a2x1x3µ1

M2
1

a2x1x2µ1

M2
1

a2x2
2µ1

M2
1

a2x2x3µ1

M2
1

a2x1x3µ1

M2
1

a2x2x3µ1

M2
1

a2x2
3µ1

M2
1

 . (2.3.5)

The assigned A4 charge of this Higgs triplet η restricts the interaction of η with

the charged leptons. In this model the charged leptons gain mass from the
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Lagrangian give by

LIl = yeLel
c
eh+ yµLµl

c
µh+ yτLτ l

c
τh (2.3.6)

Following is the mass matrix for charged leptons.

ml =


ye〈h〉 0 0

0 yµ〈h〉 0

0 0 yτ 〈h〉

 (2.3.7)

2.4 The reactor mixing angle

It is needless to say that there is a menagerie of theories, put forward in estab-

lishing the θ13 as having a nonzero value. Here also we are trying to present

such a picture by including a perturbation called type II perturbation to the

Lagrangian given by Eq. (2.3.1) which is realized within the type II seesaw

mechanism [25�30]. The type II seesaw Lagrangian is followed by this term

LII = fν(LeLτ + LµLµ + LτLe)ζ
∆

Λ
+ fν(LeLµ + LµLe + LτLτ )ξ

∆

Λ
(2.4.1)

Where, Λ represents the cuto� scale. With the type II perturbation the La-

grangian takes the following form,

L = yeLel
c
eh+ yµLµl

c
µh+ yτLτ l

c
τh+ yν1Le(Nη)1 + yν2Lµ(Nη)1′′ + yν3Lτ (Nη)1′

+yν4LeN4h+ ys(SS)φs + y′sS4S4φs + yR(NS)φR + y′RN4S4φR

LII = fν(LeLτ + LµLµ + LτLe)ζ
∆

Λ
+ fν(LeLµ + LµLe + LτLτ )ξ

∆

Λ
.

(2.4.2)

The last two terms represent the perturbation to the leading order terms in the

above Lagrangian giving rise to non-zero θ13. Here we have implemented the A4

group to explain the structure of the type II seesaw neutrino mass matrix given

by Eq. (2.4.3). The triplet Higgs �eld ∆L is supposed to be an A4 singlet. Two

more �avon �elds ζ and ξ have been introduced which are assumed to transform

as A4 singlets as summarized in the Table. 2.1. The �avon alignments which help

in constructing the mII
LL matrix are as follows

〈∆〉 ∼ v∆, 〈ζ〉 ∼ vζ , 〈ξ〉 ∼ vξ
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. ζ and ξ are assumed to take the VEV in the same scale vζ = vξ = Λ. With

these �avon alignments the structure of mass matrix mII
LL will take the form

mII
LL =


0 −w w

−w w 0

w 0 −w

 . (2.4.3)

2.5 Neutrinoless double beta decay

The time period for neutrinoless double beta (0νββ) decay rate is exactly propor-

tional to the e�ective neutrino mass square |mee
ν |2 (for a detail please see [31�33]).

Which implies that in determining the time period for NDBD, the e�ective mass

plays a non-trivial role in the scenario of three generations of neutrinos. The

e�ective neutrino mass can be given by

|mee
ν | = |U2

eimi|, (2.5.1)

In addition to this, following non-standard contributions become transparent in

Figure 2.1: Feynman diagram representing 0νββ Decay because of light neutrino

exchanges.

the present model.

• Two separate contributions due to light and heavy neutrino exchanges to

0νββ come into play. And this event is established by writing the �avor

eigenstates as a linear combination of light and heavy mass eigenstates.

The only contribution that becomes e�ective in the ISS regime comes from

the contribution due to light neutrino exchanges.

να = Nαiνi + Uαjξj, (2.5.2)
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where, Nαi and Uαj are the mixing matrices for light and heavy neutrino

respectively. |mee
ν | takes distinct values depending on the framework (quasi

degenerate or normal/inverted hierarchies), the neutrino mass states are in.

Now considering the light neutrino contribution (the only contribution for

ISS in this model), the key formula which determines the e�ective neutrino

mass is

mee
ν,LL ' U2

e1m1 + U2
e2e

2iαm2 + U2
e3e

2iβm3. (2.5.3)

• The triplet Higgs contribution from the type II seesaw is of the order of

10−13mi which is much smaller as compared to the leading contributions.

Of special importance is the fact that, the chosen value of Yukawa coupling

giving rise to the observed relic abundance of our DM candidate, constrains

the lightest neutrino mass signi�cantly in the presented forum. The �ne tuned

Yukawa couplings (0.994 − 1) is noticed to play a vital role in achieving the

lightest neutrino mass and in turn to get the e�ective neutrino mass prediction

within the GERDA bound (0.5eV ). The type II perturbation strength is found

to play some role in giving mlightest within the PLANK bound (0.065 eV for IH).

The introduced model also evinces the role of UPMNS matrix elements and the

lightest neutrino mass as |mee
ν | is dependent upon them.

2.6 Relic density of dark matter

The relic abundance of a DM particle χ is given by the Boltzmann equation

[34�37]
dnχ
dt

+ 3Hnχ = − < σv > (n2
χ − (neqbχ )2), (2.6.1)

where nχ is the dark matter (χ) number density with neqbχ as the equilibrium

number density of χ, in thermal equilibrium. The Hubble rate is denoted as H

and < σv > is the thermally averaged annihilation cross-section of the DM χ.

Numerical solution of the Boltzmann equation is given by [35]

Ωχh
2 ≈ 1.04× 109xF

Mpl
√
g∗(a+ 3b/xF )

, (2.6.2)
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where xF = mχ
TF

with TF as the freeze-out temperature, g∗ denotes the number of

e�ective relativistic degrees of freedom at the time of freeze-out. DM particles

with electroweak scale mass and couplings freeze out at temperatures in the range

xF ≈ 20− 30. This in turn simpli�es to, as shown by the authors in [38],

Ωχh
2 ≈ 3× 10−27cm3s−1

< σv >
. (2.6.3)

For complex scalar DM, the annihilation rate is given by Eq. (2.6.4). The relic

abundance is related to the cross section of the DM-DM interaction. The terms in

Eq. (2.3.1) evinces the interaction shown by �gure 2.2. While �nding the allowed

parameter space satisfying the correct relic abundance and neutrino oscillation

parameters we vary the Relic mass and the Majorana fermion mass(the right

handed neutrino) both of which are involved in the cross section formula as

shown in [39] reads as

(σv)χχ†complexscalar =
v2y4m2

χ

48π(m2
χ +m2

ψ)2
. (2.6.4)

With v = relative velocity of the two relic particles and is typically 0.3c at the

freeze out temperature, χ is the relic particle (DM), y is the Yukawa coupling,

mχ the mass of the relic, mψ is the mass of the mediator particle. The dark

Figure 2.2: Feynman diagram showing the scattering of η2 and η3.

matter relic abundance may get a�ected by some kind of annihilation processes

which might have taken place between the two neutral scalars depending on their

mass di�erence ∆m = mη2 −mη3 . If the mass splitting has the same order with

the freeze-out temperature, the co-annihilation between the two neutral scalars

play a signi�cant role in �nding the dark matter relic abundance. But if ∆m is
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Figure 2.3: Self annihilation of η2 and η3 into SM fermions (conventions are

followed from [41]).

larger than the freeze-out temperature, then the immediate heavier neutral scalar

a�ects the dark matter relic density notably. The self annihilation between dark

matter and immediately heavier component of the scalar triplet η contribute to

the dark matter annihilation cross section. Many authors in [34, 36, 40] explored

this kind of self annihilation consequences on dark matter relic abundance. To

compute the e�ective annihilation cross section we are following the analysis done

by the authors in [34]. The relevant annihilation channels and interactions can be

given by �gure 2.3. For low mass scheme (mDM < MW ), the self annihilation of

either η2 or η3 into SM particles takes place via the SM Higgs, which is depicted

in �gure 2.3. The according annihilation cross section [36, 40] is followed by Eq.

(2.6.5).

σxx =
|Yf |2|λx|2

16πs

(s− 4m2
f )

3/2√
s− 4m2

x((s−m2
h)

2 +m2
hΓ

2
h)
, (2.6.5)

where x → η2,3, the coupling of x with SM Higgs h is denoted by λx and Yf

implies the fermion Yukawa coupling, which has been estimated to be 0.32 albeit

the full possible range of values is λf = 0.26 − 0.63 [6]. Γh = 4.15MeV is the

decay width of the SM Higgs, mh is 126 GeV. s is the thermally averaged center

of mass squared energy given by

s = 4m2 +m2v2. (2.6.6)

where, v is the relative velocity and m is the mass of the relic. In order to yield

the correct relic abundance we need to constrain the Yukawa coupling along with

the relic mass and the mediator mass. Similar to the works done in [42, 43] here

also we suppose the neutral component of the scalar triplet as the DM candidate.

We choose the relic mass as lighter than the W boson mass mDM ≤ MW . And
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interestingly for the relic mass is kept in a comparatively smaller mass scale

which is around 50 GeV. The mediator mass here in our case, i.e., the Majorana

neutrino mass is required to vary from 153 GeV to 154 Gev to obtain the observed

relic density. This type of �ndings have been extensively studied in the literature

[39, 44]. For a light DM with a mass below 10 GeV, the LHC searches have a

better awareness for complex scalar DM cases. Moreover, the LHC has a better

reach than direct detection experiments with DM masses up to around 500 GeV

for the complex scalar DM case.

2.7 Numerical analysis

The latest global �t [45] value with their best �t point (bfp) for 3σ range of

neutrino oscillation parameters used to study neutrino phenomenology are given

in Table 2.2 and Table 2.3: Cosmological constraint says that,

Oscillation parameters bfp 3σ Cl

∆m2
21[10−5eV 2] 7.5 (7.02, 8.07)

∆m2
31[10−3eV 2] 2.457 (2.317, 2.607)

sin2 θ12 0.304 (0.270, 0.344)

sin2 θ13 0.0218 (0.0186, 0.0250)

sin2 θ23 � 0.381-0.643

Table 2.2: Neutrino Oscillation data for Normal mass Ordering

Oscillation parameters bfp 3σ Cl

∆m2
21[10−5eV 2] 7.5 (7.02, 8.07)

∆m2
23[10−3eV 2] −2.449 −2.590,−2.307

sin2 θ12 0.304 0.270, 0.34

sin2 θ13 0.0219 0.0188, 0.0251

sin2 θ23 � 0.388, 0.644

Table 2.3: Neutrino Oscillation data for Inverted mass Ordering

m1 +m2 +m3 ≤ 0.23eV.
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Figure 2.4: Variation of relic abundance with Yukawa coupling.

The Yukawa coupling governing the interaction is present in the established math-

ematical expression which computes the scattering cross section of this interac-

tion in turn the relic abundance of the potential DM. As a proper choice of

Yukawa coupling, the mediator mass along with the complex scalar mass allows

us to achieve the observed relic abundance we need to put constraints on them.

In our work we �rst �x the above mentioned parameters to get the relic abun-

dance which is reported by PLANCK 2013 data. Fixing the relic mass around

50 GeV and varying the mediator mass from 153 to 154 GeV we get the idea of

Yukawa coupling yielding the correct relic abundance. Since the required relic

abundance for the potential DM candidate desires a mediator mass at a much

lower scale (around 153 GeV), the ISS realization helps us in this regard (which is

here, the mediator particle governing the t-channel scattering as shown in �gure

2.2). The Yukawa coupling needs to fall between 0.99 to 1 to have a better reach

of the relic abundance as shown in �gure 2.4. We rede�ne the parameters of the

matrix shown by the Eq. (2.3.5) in terms of p, q and r. Where, p =
ax1
√
µ1

M1
,

q =
ax2
√
µ1

M1
and r =

ax3
√
µ1

M1
. From the requirement of bringing the light neutrino

mass matrix into TBM form we equate the 11-element of mν to 2q2−pq [9]. This
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is done in accordance with adjusting the Yukawa couplings and the associated

VEVs. Along with this redefenition we also make q = r by x2 = x3 for numer-

ical analysis. This structure of light neutrino mass matrix leads to a neutrino

mass spectrum which is of inverted hierarchical type and a zero eigenvalue with

m3 = 0. For numerical analysis we take another couple of de�nitions for the

Yukawa couplings x1 = x and x2 = x3 = y. We have kept x = 1 and varied y

for computing the oscillation parameters and mee
ν , however there is no signi�cant

changes observed by keeping y �xed and varying x. Each value of y gives rise to

various sets of the neutrino mass matrix parameters p, q. We parameterize the

light neutrino mass matrix obtained from the ISS realization with the help of

recent neutrino oscillation data given in Table 2.2 and Table 2.3. Along with the

rede�ned parameters of the light neutrino mass matrix and using Eq. (2.3.2),

Eq. (2.3.3) and Eq. (2.3.4) the new light neutrino mass matrix is found to be of

TBM type given by Eq. (2.7.1)

mν =


2q2 − pq pq pq

pq q2 q2

pq q2 q2

 . (2.7.1)

We have analyzed the model only for IH case as the light neutrino mass matrix

structure only allows us to have the inverted hierarchy mass pattern. After

diagonalizing the complete mass matrix the mass eigenvalues are found to be

m1 = −2(pq − q2), m2 = q(p + 2q) and m3 = 0. Then we parametrize the

mass matrix keeping x = 1 while at the same time varying y between a range

around 0.994−1. Choosing each set of p, q values which have been found di�erent

for di�erent �y� values, we get several light neutrino mass matrices. The same

Yukawa coupling y is being varied in the dark matter sector too for showing its

contribution to obtain the correct relic abundance. For the generation of non-

zero reactor mixing angle, we include type II correction [25] to the leading order

neutrino mass matrix as explained in Section 2.4. This perturbation brings out

non-zero θ13 in 3σ range along with m3 6= 0 leaving the light neutrino masses

with IH nature only. The numerical value of the perturbation term w = fνv∆

critically depends upon the Majorana coupling fν , trilinear mass parameter µφ∆,
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and M . Accordingly, we vary the type II seesaw strength from 10−6 to 0.01 to

produce non-zero θ13. It is observed from the �gure 2.5 that, the type II seesaw

strength of 10−3 eV is generating the non-zero θ13 in the 3σ range in all cases.

The perturbation matrix takes the following structure.

mII
ν =


0 −w w

−w w 0

w 0 −w

 ,

After adding the perturbation we get the neutrino mass matrix as follows.

mν = mI
ν +mII

ν .

Now the elements of these diagonalized matrices are associated with the pa-

rameters of the model and the type II perturbation term. The set of p, q values

obtained for each y value and chosen for analysis are listed in Table 2.4, Table 2.5

and Table 2.6. In addition p, q corresponds to some complex sets of solution too.

Taking them under consideration, no signi�cant changes in the numerical analysis

have been noticed.

A comparison among the various sets of results obtained in the DM phenomenol-

ogy part has been made in Table 2.7 and neutrino phenomenology has been

shown in the Table 2.8. The light neutrino mass matrix (2.7.1) is having only

Parameters y = 0.994 y = 0.996 y = 0.998 y = 1

p 0.366138 0.366146 0.366154 0.357719

q 0.0899502 0.089768 0.0895865 0.091516

Table 2.4: Values of p, q obtained by solving for IH case with best �t central

value of 3σ deviations

two unknown parameters, solution for which demands two equations. Two mass

squared di�erences which we get from neutrino oscillation data, lead to those

two parameters. Then using the solutions for p and q the light neutrino mass

matrix is obtained. Then we �x the mass eigenvalues from that light neutrino

mass matrix.
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Parameters y = 0.994 y = 0.996 y = 0.998 y = 1

p 0.371351 0.371359 0.371367 0.362663

q 0.0911924 0.0910077 0.0908236 0.0928181

Table 2.5: Values of p, q obtained by solving for IH case with a upper bound of

3σ deviations

Parameters y = 0.994 y = 0.996 y = 0.998 y = 1

p 0.360693 0.3607 0.360708 0.352452

q 0.088626 0.0884465 0.0882677 0.0901551

Table 2.6: Values of p, q obtained by solving for IH case with an lower bound of

3σ deviations

Using the best �t central values from the oscillation data, we numerically �t the

leading order neutrino mass matrix. A thorough analysis has been carried out

to check whether the oscillation parameters are near to reach or not by taking

the upper and lower bound of 3σ deviation as well. Here we try to exhibit an

unexplored parameter space satisfying both the DM relic abundance and neutrino

phenomenology.

The scattering cross section of the decay channel described by �gure 2.3 to various

SM fermions have been calculated. They are found to have an order of 10−60cm2 /

10−42GeV−2 which is much smaller than the cross section which has been achieved

for the t-channel contribution (of the order of 10−44cm2). They will have little

contribution (can be neglected therefore) to the relic abundance of the potential

DM candidate. We have already noticed that for obtaining the observed Ω we

need to �x the Yukawa coupling. Fixing the Yukawa coupling as varying from

0.99 to 1, varying mDM from 30 to 60 GeV and varyingMR from 120 to 167 GeV,

we study the order of relic abundance. We �t the values of oscillation parameters

using recent cosmological constraints for inverted mass ordering. We compute all

the oscillation parameters also by varying the type II seesaw strength. Variation

of type II seesaw strength with the non-vanishing θ13, has been shown in �gure

2.5 and �gure 2.6. The production of other oscillation parameters, e.g. the two

mixing angles and two mass squared splitting as a function of nonzero θ13 has been
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shown in the �gure 2.7, �gure 2.8 and �gure 2.9 for di�erent values of Yukawa

coupling. The sum of absolute masses has also been calculated to see whether it

satis�es the Planck upper bound or not. Seeing that, the sum of absolute neutrino

masses can give some clue on neutrinoless double beta decay, a little study has

been performed to check whether the presented model is able to contribute to

the 0νββ physics. In �gure 2.10 we plot for the contribution of the e�ective

mass to 0νββ decay due to light neutrino exchanges for standard contribution

showing the variation of e�ective mass with the type II seesaw strength. Figure

2.11 displays the variation of mee
ν with the lightest neutrino mass, in our model

m3. In �gure 2.12 we present the variation of e�ective mass with mlightest and

type II seesaw strength taking the upper and lower bound of 3σ deviation. Since

the presented model only present a hierarchy of inverted kind the lowest mass

range has been selected which is resulted from the perturbation. The variation

in mee
ν for non-standard contribution with di�erent y values have been checked

and found to be in agreement with the experimental bounds. The e�ective mass

for non-standard contribution has been obtained around 0.0489 almost for all

the values of Yukawa couplings chosen for the analysis. It is worth noting that

the variation in Yukawa coupling leaves trivial impacts on mee
ν for non-standard

contribution. For showing the variation of mee
ν with m3, we choose those values

of m3 obtained as a result of adding the type II seesaw strength.

The following observations have been made from the results and analysis.

• The relic abundance has been found to match the value shown by PLANCK

2013 data, for a choice of Yukawa coupling ranging from 0.99 to 1 provided

the Relic mass is �xed at 50 GeV keeping the mediator mass at a range

from 153 to 154 GeV. A detailed analysis of the choice of Yukawa coupling,

the Relic mass (mχ) and the mediator mass (mψ) for this particular model

has been presented in the Table 2.7.

• The oscillation parameters are near to reach only when the Yukawa coupling

is varied from 0.994 to 1 and as a further increase/decrease of the Yukawa

coupling does not yield good neutrino phenomenology we have considered
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mχ mψ y Ω

30 GeV (121− 122) GeV (0.99− 1) X

40 GeV 139 GeV (0.99− 1) X

50 GeV (153− 154) GeV (0.99− 1) X

60 GeV (166− 167) GeV (0.99− 1) X

Table 2.7: Comparison of relic abundance Ω with various choices of Yukawa

couplings, DM mass, RH neutrino mass

3σ ranges θ13 θ12 θ23 ∆m2
21 ∆m2

23 Σ mod mi

bfp X X X X X X

lower bound X X X X X X

upper bound X X X X × X

Table 2.8: Summary of results obtained from various allowed mass schemes.

those corresponding values of relic abundance obtained for Yukawa coupling

ranging from 0.994 to 1.

• It has been noticed that the proposed model evidences correct neutrino

phenomenology using the best �t and lower 3σ bound in case of inverted

hierarchy mass pattern only. All the oscillation parameters have seen to

come inside the frame while taking the the best �t and lower 3σ bound.

• The non-zero value of θ13 has been found to be consistent with the variation

of type II seesaw strength.

• Both the standard and new physics contribution to 0νββ decay in the

allowed hierarchy is obtained in the vicinity of experimental results [46].

2.8 Conclusion

An A4 based IH neutrino mass model originating from both inverse and type

II seesaw have been studied. Here ISS is implemented as a leading order con-

tribution to the light neutrino mass matrix yielding zero reactor mixing and
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bound of 3σ deviation.
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Figure 2.12: Variation of e�ective mass mee
ν (in eV) with type II seesaw strength

and the m3 for upper and lower 3σ bounds.

m3 = 0. Then the type II seesaw has been used in order to produce non-Zero

reactor mixing angle, which later on produces m3 6= 0 keeping the hierarchy as

inverted only. We have studied the possibility of having a common parameter

space where both the Neutrino oscillation parameters in the 3σ range and DM
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relic abundance has a better reach. With a proper choice of Yukawa coupling(y),

right handed neutrino (mediator particle) mass (mψ) , and complex scalar (po-

tential DM candidate) mass (mχ) the variation in relic abundance as a function

of Yukawa coupling has been shown. For a choice of Yukawa coupling between

0.994 to 0.9964, mDM around 50 GeV, the mediator mass needs to fall around

153 GeV to match the correct relic abundance. The same Yukawa coupling has

got a key role in generating the Neutrino oscillation parameters as well. We have

studied the prospect of producing non-zero θ13 by introducing a perturbation to

the light neutrino mass matrix using type II seesaw within the A4 model. We

have also determined the strength of the type II seesaw term which is responsible

for the generation of non-zero θ13 in the correct 3σ range. We have also checked

whether the proposed model can project about neutrinoless double beta decay or

not. In context to the presented model we have found a wide range of parameter

space where one may have a better reach for both neutrino and dark matter

sector as well. This model may have relevance in studying baryon asymmetry of

the universe, which we leave for future study.
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