Table of Contents

Abstract	II
Declaration by the candidate	IX
Certificate of Supervisor	Х
Certificate of ODEC	XI
Acknowledgement	XII
List of Publications	XIII
Table of Contents	XV
List of Figures	XIX
List of Tables	XXVI

Chapter 1 Introduction

1.1	Ion sensitive field effect transistor and Enzyme field effect	2
1.2	transistor Motivation	3
1.3	Thesis outline	5
	Bibliography	8

Chapter 2 Overview on Ion Sensitive Field Effect Transistor and Enzyme FET

Introd	action	12
Theory	y on ISFET	16
2.2.1	Site binding theory	18
2.2.2	Electrical double layer	19
	Theory 2.2.1	IntroductionTheory on ISFET2.2.1Site binding theory2.2.2Electrical double layer

2.3	ISFET modeling		24
2.4	Enzyr	ne Field Effect Transistor	30
	2.4.1	Enzyme catalyzed reaction of substrate	32
	2.4.2	Diffusion –reaction equation	34
2.5	Result	ts and Discussion	42
	Biblio	graphy	48

Chapter 3 Threshold voltage modeling using capacitance voltage characteristics

3.1	Introduction	59
3.2	Theory	60
3.3	Proposed model description	61
3.4	Current voltage characteristics	65
3.5	Model extended to ISFET device	66
3.6	Results and Discussion	67
	Bibliography	71

Chapter 4 Long term drift in ISFET due to Hydrogen ion diffusion

4.1	Introduction	74
4.2	Model Formulation considering only the diffusion of protons	76
	4.2.1 Change in threshold voltage due to diffused hydrogen	76
4.3	ion in the oxide layer Mathematical modeling considering the electric field due to	80
4.4	diffusion Experimental Details	84

4.5	5 Results and Discussion		85
	Bibliography		91
	-		
Chap	ter 5	Fabrication of a Schottky based ISFET immobilized	
		with enzyme CYP450	
5.1	Introdu	ction	94
5.2		le of operation	95
5.3	1	tion of the ISFET	97
	5.3.1	ISFET made into an ENFET	100
		5.3.1.1 Partial purification of the enzyme	103
		5.3.1.2 Enzyme immobilization	103
	5.3.2	Mercury (Hg) MOSFET	104
5.4	Circuit diagram		105
5.5	Results	and Discussion	108
	5.5.1	Transfer Characteristics	110
	5.5.2	Output Characteristics	116
	5.5.3	Sensitivity	117
	5.5.4	Stability	120
	5.5.5	Hysteresis	121
	5.5.6	Detection limit and change in pH after reaction	123
	5.5.7	Reproducibility of the sensor system	124
	5.5.8	Procedure for measurement of n hexadecane	125
	5.5.9	Convertibility of the fabricated ISFET	126
	5.5.10	Comparative analysis	128
	Bibliog	raphy	129

Chapter 6	Modeling and ex	xperimental	validation	of the op	ptimal
	positioning of	reference	electrode	for a S	ilicon
	Nitride pH ISFE	Г			

6.1	Introduction		134
6.2	Theory		134
6.3	Mathen	natical modeling	137
	6.3.1	Model description	138
	6.3.2	Model formulation	139
6.4	Experin	nental set up	144
	6.4.1	Generation of gate voltage	151
6.5	Results	and Discussion	155
	Bibliog	raphy	165

Chapter 7 Conclusion	168

Future Scope	172
Future Scope	17.