LIST OF TABLES

Table	Caption	Page No.
2.1	Utility of different metal-oxide based nanomaterials	18
2.2	A gist of available literature on response of soil-based nematodes in	28
	metal-based NM enriched environment	
3.1	Guidelines followed for calibration and daily maintenance of the	54
	laboratory equipments.	
4.1	Treatment combinations for soil and aqueous media	93
4.2	Impacts of various concentrations of GSNP and CSNP on soil quality	120
4.3	Leaching of nitrate from GSNP-treated soils	122
4.4	Effect of AgNP on leaf number and leaf area index (LAI) in tomato	128
	plant	
4.5	Catalase activity, lipid peroxidation, proline content, photosynthetic rate,	131
	chlorophyll content, and hill activity in treated and untreated tomato	
	(mean± standard deviation)	
4.6	Impact of GSNPs and CSNPs on total, NFB, and PSB bacterial growth	132
	(number of bacteria mL^{-1})	
4.7	Impact of AgNP on changes in pH, available K, microbial biomass	135
	carbon (MBC), microbial biomass nitrogen (MBN) and Ag content in	
	soil (mean± standard deviation)	
4.8	Impact of AgNP on changes in available N, available P, urease,	137
	phosphatase activity, sulphur and sulphate content in bare soil (mean±	
	standard deviation)	
4.9 a	Changes in water soluble, exchangeable, and carbonate bound fractions	141
	of silver in AgNP treated soil (mean± standard deviation)	
4.9.b	Changes in oxide, organic and residual bound fractions of silver in	141
	AgNP treated soil (mean± standard deviation)	
4.10	Calculated specific surface area and particle size distribution of AgNP in	142
	aqueous media and filtered soil extracts in DLS analysis	
4.11	Co-relation analysis of N, P, K, Ag, and sulphate in various aqueous	146
	media and bare soil	
4.12	Impact of AgNP on germination of tomato seeds	148
4.13	Impact of AgNP on pH, bulk density, and water holding capacity of field	149

condition soil.

	condition son.	
4.14	Impact of AgNP on available N, P, and K of field condition soil.	150
4.15	Impact of AgNP on urease and phosphatase activity of field condition	151
	soil.	
4.16	Impact of AgNP on yield of tomato crop grown under field condition.	151
4.17	Changes in body weight and count of Eisenia fetida under AgNP	154
	exposure (mean± standard deviation)	
4.18	Activity of reduced glutathione (GSH), glutathione peroxidase (GPx),	155
	and total protein content in earthworms exposed to AgNP (mean \pm	
	standard deviation)	
5.1	Treatment combinations for pot scale study in Fe rich soil	184
5.2	Surface area, pore radius, pore volume and band gap of OCIO	195
5.3	Total bacterial count in soil treated with OCIO	197
5.4	Changes in body weight and count of Eisenia fetida under OCIO	199
	exposure (mean± standard deviation)	
5.5	Activity of catalase, reduced glutathione (GSH), super oxide dismutase (SOD), and lipid peroxidation content in earthworms exposed to OCIO	200
5.6	Effect on Fe uptake and total protein content of E. fetida treated with	200
	OCIO	
		202
5.7	Effect of synthesized materials in pH change and Fe content (mg L ⁻¹)	202
	release	
5.8	Effect of OCIO on changes of pH, Available N, sulphate, and Fe content	204
	in (NH ₄) ₂ SO ₄ mixed solutions	
5.9	Impact of OCIO on solubility patterns of pH, available K, alkalinity and phosphate in soil mixed aqueous media	206
- 10		
5.10	Impact of OCIO on solubility patterns of sulphate, sulphur, nitrate and	206
	chloride in soil mixed aqueous media	
5.11	Impact of OCIO on solubility patterns of Fe, Mn, Ca, and Mg in soil	207
	mixed aqueous media.	
5.12	Ionic strength data of Visual Minteq	207

5.13	Saturation index of minteq output at various time intervals	208
5.14	Physico-chemical characteristics of the test soil	210
5.15	Impact of the OCIO on changes in pH, bulk density, water holding	211
	capacity, and soil organic carbon in soil	
5.16	Impact of the OCIO on changes in available N, available P, DTPA	212
	extractable Fe, urease, and phosphatase activity in soil	
5.17	Zeta potential, hydrodynamic diameter, cation exchange capacity, and	214
	surface area of soil treated with OCIO	
5.18	Physico-chemical characteristics of the test soil under field condition	217
5.19	Impact of OCIO on Soil organic carbon, MBC, and MBN content of field condition soil	218
5.20	Impact of OCIO on pH and Fe availability of field condition soil	218
5.21	Impact of OCIO on available N, total N, and urease activity of field	219
	condition soil	
5.22	Impact of OCIO on available P and phosphatase activity of field	220
5.22	condition soil	220
5.23	Impact of OCIO on chlorophyll and carotenoid content	221
5.24	Impact of OCIO on Lycopene content and yield of tomato grown under	222
	field condition.	
5.25	Effect of OCIO on hill activity and photosynthetic rate in tomato grown	224
	under field condition	
5.26	Effect of OCIO on NR, GS, and GOGAT activity in tomato grown in	224
	field condition	
5.27	Effect of OCIO on NR, GS2, GOGAT, and Fd gene in tomato grown in	224
	field condition	
5.28	Effect on uptake of N, P, and Fe of tomato grown in field condition	225
5.29	Effect of OCIO on catalase, lipid peroxidation, and super oxide	225
	dismutase activity in leaves of tomato grown in field condition	

LIST OF FIGURES

Figure	Caption	Page no.
1.1	Schematic representation of the thesis organization.	7
2.1	A gist of different structural conformations of metallic NMs.	13
2.2	One-dimensional band diagrams containing (a) direct and (b) indirect bandgaps.	15
2.3	Routes of contribution of engineered NMs (ENM) into the environment.	22
2.4	Factors affecting the processes of aggregation/agglomeration and dissolution of	f 23
	single nanoparticles. a Considering similar surface charge. b Acting only on large	r
	particles.	
2.5	A pictorial interpretation representing DLS stable mean agglomerate radius.	23
2.6	Schematic diagram representing the factors which effect the dissolution/transport	rt 25
	of nanoparticles between soil and pore water (pHPZC=point of zero charge).	
3.1	Research Plan of the research work.	40
3.2	Preparation route for green silver nanomaterials.	41
3.3	Preparation route for conventional silver nanomaterials.	41
3.4	Impacts of silver nanomaterials on soil- plant quality attributes in French beau	n 43
	cultivation.	
3.5	Impact of green silver nanoparticles (GSNP) on soil TKN status.	43
3.6	Impact of green silver nanoparticles (GSNP) on nitrate leaching of soil.	44
3.7	Impact of AgNP on soil quality attributes in long term incubation study.	45
3.8	Effect of AgNP on various pH conditions	46
3.9	Effect of AgNP on P and N solubility in aqueous medium	46
3.10	Preparation route of oxalate capped iron oxide nanomaterial	48
3.11	Effect of OCIO on various pH conditions.	49
3.12	Effect of OCIO on P and N solubility in aqueous medium	50
3.13	Effect of OCIO on soil quality attributes of in pot scale study	51
3.14	Fe deficiency recovery potential of OCIO in nutrient leached soil	51
4.1	(a–d) SEM micrographs showing the impact of GSNPs on soil texture; (e–h) EDX	K 117
	analysis results of soil composition depicting the impacts of GSNP.	
4.2	XRD analyses showing the impact of SNPs on soil structure.	118
4.3	Comparison of the beneficial impacts of green silver nanoparticles (GSNPs) and	
	conventional silver nanoparticles (CSNPs) on soil health. (a) pH, water holding	g

capacity (WHC), cation exchange capacity (CEC), soil total organic carbon (TOC), bulk density (BD), and available N (Av N) and P (Av P) expressed as benefit percentages.

4.4	Total Kjeldahl N (TKN) content (%) in sterilized soils treated with GSNPs.	122
4.5	Impacts of GSNPs and CSNPs on leaf number, LAI, pod yield, weight loss per	124
	pod, and nutrient uptake (N and P) of P. vulgaris.	
4.6	Impacts of SNPs on proline levels, crude protein content, chlorophyll content,	125
	activity of nitrate reductase (NR) enzyme, and the expression of mRNA for NR	
	and Fd in leaves of P. vulgaris under various treatments.	
4.7	Impact of AgNP on pH, N, P, K availability, soil respiration, urease and	127
	phosphatase activity of cropped soil under tomato cultivation	
4.8	Uptake of N, P, K, and Ag in AgNP treated and untreated tomato (Lycopersicon	128
	esculentum) (Error bar represent standard deviation).	
4.9	Activity of glutamine synthetase (GS) and glutamate synthase (GOGAT), nitrate	129
	reductase (NR) and expression of GS2 and GOGAT gene in leaves of AgNP	
	treated tomato (Error bar represent standard deviation).	
4.10	Effect of AgNP on pH in soil and aqueous media (Error bar represent standard	134
	deviation).	
4.11	Impacts of AgNP on N, P, and K availability in soil and aqueous media (Error bar	138
	represent standard deviation).	
4.12	Impacts of AgNP on availability of S in soil and aqueous media (Error bar	139
	represent standard deviation).	
4.13	Silver (Ag ⁺) release profile in soil and aqueous media in presence of other	143
	elements (N, P, K, and S) (Error bar represent standard deviation).	
4.14	UV-VIS spectra of AgNP under various conditions in filtered soil extracts and	144
	aqueous media.	
4.15	Impacts of AgNP on microbial biomass carbon (MBC), microbial biomass	147
	nitrogen (MBN), total bacterial count, bacterial biomass and enzyme activity	
	(urease and phosphatase) (Error bar represent standard deviation	
4.16	Impact of AgNP on SOC content of field soil under tomato cultivation.	150
4.17	Impact of AgNP on shelf life of tomato under field condition.	152
4.18	Response of E. fetida to AgNP exposure (Error bar represent standard deviation).	156
	(A) Activity of Catalase and Glutathione S transferase (GST), and Ag	

accumulation in AgNP treated and untreated earthworms; (B) Histological evidence of AgNP induced stress in earthworms.

- 5.1 Comparative FT-IR spectrum of Fe(ox)-Fe(0) and Fe(ox)-Fe₃O₄ (OCIO) with Iron 193 oxalate complex (a); Fe(ox)-Fe(0) promoted reversible methylene blue to Leuco methylene blue redox reaction (b); XRD spectrum of Fe(ox)-Fe(0) (c) and OCIO (d).
- 5.2 HR-SEM image (a); EDAX (b); HR-TEM image (c); HR-TEM image and SAED 194 (d); and particle distribution analysis (e) of OCIO nanomaterial.

195

- 5.3 BET plot for OCIO.
- 5.4 Full scan XPS spectra for OCIO (a) and XPS spectra of deconvoluted Fe3p1/2 196 and Fe3p3/2 (b).
- 5.5 Anti-bacterial assay of the synthesized compound on N-fixing (Rhizobium sp.) (a) 197 and P-solubilizing (Serratia marcescens) (b) soil bacteria.
- 5.6 Relative seed germination (RSG), relative root growth (RRG) and germination 198 index (GI) of V. radiata (a) and V. mungo (b) seeds treated with OCIO, FeSO₄, Fe–EDTA and Fe–oxalate.
- 5.7 Effect on pH shift (a) and Fe release (b) from OCIO, Fe-EDTA and Fe-oxalate; 201
 The proposed mechanism of H⁺ ion scavenging property of OCIO (c).
- 5.8 Differences in phosphorous solubility profile from KH₂PO₄ and its interaction 203 with Fe release from OCIO, FeSO₄, Fe-EDTA, and Fe-oxalate.
- (a): Changes in pH, Avl P, phosphatase activity, Fe content in leached soil; (b): 215uptake of P and Fe, Chlorophyll content & yield in leached plant.
- 5.10 Leaf chlorotic symptoms in control, Fe-EDTA, Fe-oxalate and FeSO₄ treatments. 216
- 5.11 Impact of OCIO on shelf life of tomato grown under field condition. 223

ABBREVIATIONS

SNP	Silver nanoparticles
PEG	Polyethylene glycol
AgNO ₃	Silver nitrate
OCIO	Oxalate capped iron oxide nanoparticles
FeSO ₄	Ferrous sulphate
EDTA	Ethylenediaminetetraacetic acid
KH ₂ PO ₄	Potassium dihydrogen phosphate
$(NH_4)_2SO_4$	Ammonium sulphate
LSD	Least significance difference
Avl N	Available Nitrogen
Avl P	Available Phosphorus
Avl K	Available Potassium
S	Sulphur
NFB	Nitrogen fixing bacteria
PSB	Phosphate solubilizing bacteria
UV-VIS	Ultraviolet-visible spectroscopy
CFU	Colony forming unit
BD	Bulk density
WHC	Water holding capacity
MBC	Microbial biomass carbon
MBN	Microbial biomass nitrogen
TOC	Total organic carbon
CEC	Cation exchange capacity
TKN	Total Kjeldahl nitrogen
AAS	Atomic Absorption Spectrophotometry
LAI	Leaf area index
GS	Glutamine synthetase
GOGAT	Glutamate synthase
NR	Nitrate reductase
GSH	Reduced glutathione

GST	Glutathione S transferrase
GPx	Glutathione peroxidise
SOD	Super oxide dismutase
TSS	Total soluble solid
DDW	Double distilled water
SEM	Scanning electron microscope
EDX	Energy-dispersive X-ray spectroscopy
XRD	X-Ray Diffraction
BET	Brunauer–Emmett–Teller
ANOVA	Analysis of variance
DTPA	Diethylenetriaminepentaacetic acid
QA	Quality assurance
QC	Quality control
RBD	Randomized block design
qRT-PCR	Real time polymerase chain reaction