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CHAPTER 2 

Review of Literature 

2.1. Nanotechnology and nanomaterials 

Richard P. Feynman coined the term “Nanotechnology” for the first time in 1959 

while delivering a lecture at an American Physical Society meeting on a topic entitled, 

“There’s Plenty of Room at the Bottom” [1]. As such, nanotechnology offers the 

scope to synthesize nano-scale materials or simply nanomaterials (NM), via physico-

chemical modifications (atomic, molecular, and supramolecular) of matters. 

Generally, it has been found that materials of 100 nm or lesser size are best for 

industrial or commercial applications [2,3]. Based on their architecture, these NMs 

may be classified as 0D, 1D, 2D, and 3D [1]. However, NMs are also formed through 

natural processes; for example, some fragments of soil colloids (1-1000 nm) that are 

of sized in the range 1-100 nm are denoted as natural nanoparticles [4]. These natural 

nanoparticles are formed by geological processes like volcanic eruptions, weathering, 

microbial action, etc. and can be organic (e.g. virus, proteins, polysaccharides, etc.) or 

inorganic viz. aluminosilicates, oxyhydroxides, etc. [5]. Contrary to the natural 

nanoparticles, artificially manufactured or engineered NMs (ENM) possess 

characteristic differences in their structure and overall chemistry [6]. The popularity in 

ENMs has sprung up mainly by dint of their application in medicine, industry, 

agriculture, and environmental engineering [7].  

 

2.2. Metal-based ENMs 

Metallic NMs are the most studied particles because of their potential application in 

various fields and also due to the simple synthetic methodology [8]. 
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Fig. 2.1: A gist of different structural conformations of metallic NMs. Reproduced 

from Xia et al. [9]. 

 

Also, the metallic precursors of these NMs cover more than two-thirds of the 

periodic table making them an interesting subject for novel discoveries in material 

science. Fascinatingly, the metallic NMs exhibit great diversity in their structural 

properties which not only renders them unique characters but also influences their 

applicability to a large extent [8]. A summary of various possible structural 

conformations of the metallic NMs has been provided in Fig. 2.1 [8,9].  
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In their work, Bratlie et al. [10] elaborated the importance of NM’s structure on their 

catalytic properties. In any catalytic reaction, it is quintessential to attain perfect 

binding between the reagent molecules and the catalyst (here NM) to form new bonds 

i.e. the product molecules. This condition relies on: (i) the available orbitals of the 

reagent molecules, and (ii) atomic arrangement of the NM surface. Hence, 

manipulating the structural arrangement of NMs could be a major step towards 

designing more efficient metallic NMs [8].  

2.3. Metal-oxide NMs 

Recently lot of interest has cropped up on metal-oxide NMs (MONMs) which is 

mainly credited to their diverse applicability in medicine, agriculture, and engineering 

[11]. The MONMs exhibit unique physico-chemical properties attributed by their high 

density and limited corner/edge size on the surface sites. Thus the MONMs duly fill 

the gap between bulk materials and atomic/molecular structures which attests their 

importance in nanotechnological applications [12]. In many MONMs viz. CuO, ZnO, 

TiO2, SnO2, Al2O3, MgO,  AgO,  CeO2, ZrO2 etc. it was observed that reduction in 

size increased surface strain/stress and  concomitant structural perturbations [13-15]. 

In addition the size-shape dependent attributes, some other important features that 

determine NM behavior are (i) ionic strength, (ii) zeta potential, and (iii) valency of 

the metallic precursors in the NMs [16].  

I. Ionic strength: The ionic strength of the electrolyte is an important parameter 

which determines the behaviour of the NMs in solutions. French et al. [17] 

showed that the aggregation-dispersion dynamics of NMS greatly vary 

depending on the ionic strength of aqueous matrix. On the basis of their in-depth 

experimentations with a typical TiO2-NM they concluded that dispersion of 

NMs might accelerate with increment of the ionic strength of the solution up to 

a certain point and such relation is not exactly linear, rather curvilinear.  

II. Surface charge and zeta-potential: Generally, the metallic NMs have negative 

charge on their surfaces attributed by the -OH group which aid them to bind any 

metal ion or ligand present in a solution. The pH of the matrix (solid or aqueous) 

largely regulates the charge-mediated binding efficiency of NMs [3]. 

Interestingly, formation of a “double-charged layer” or “ionic double layer” 

could be evidenced with the dispersed metallic NMs, i.e. (i) the charged surface 
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layer of the NMs, and (ii) another layer with diffused charge could be formed by 

the attracted ions in the solution.  

III. Valence: It is a key attribute in the field of nanotechnology, supramolecular 

chemistry, catalysis, etc. [18]. According to Martin-Palma and Lakhtakia [19] it 

is very important to understand the valence band and the conduction band which 

control the properties of many nanomaterials. Fig. 2.2 presents a typical 1D 

band scheme for direct and indirect bandgap semiconducting metal-based NMs 

where the direction of the wave vector is fixed irrespective of the magnitude.  

 

 

Fig. 2.2: One-dimensional band diagrams containing (a) direct and (b) indirect 

bandgaps. Reproduced from Martin-Palma and Lakhtakia, [19] 

 

Pieters et al. [18] reported the multivalent characteristics of Au nanomaterials 

which are greatly utilized as nano-scaffolds in drug development. Enormous progress 

has been made in the development of multivalent NMs which can adapt their valence 

with the target spontaneously [18]. 

2.3.1. Silver NM 

Silver is a transition metal with soft texture and white-lustrous color. It has properties 

like high electrical and thermal conductivity. Generally, Ag-NMs are very popular due 
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to its anti-microbial activity [20]. The silver nanoparticles are profusely used in textile 

fibres and would healing and/or disinfectant ointments owing to the elevated activities 

of the nanoscale silver [21]. Several workers reported different synthetic pathways for 

Ag-NM viz. physical, chemical, and biological. Evaporation-condensation and laser 

ablation are the mostly used physical approaches for Ag-NM synthesis [20]. 

According to Wiley et al. [22], laser ablation offers pure and clean metallic Ag-NMs 

without using chemical reagents in solution. Chemical reduction is the mostly used 

chemical method of Ag-NM production. In this method, several reducing agents viz. 

sodium borohydride, N, N-dimethylformamide, ascorbic acid, hydrazine, etc. are used 

to reduce Ag
+ 

in aqueous or nonaqueous solutions [20]. However, due to the 

contingent toxic nature of these chemical precursors, Ag-NMs are deemed highly 

toxic for living organisms. In this regard, biologically assisted green synthesis of Ag-

NMs has gained lot of momentum recently. Green synthetic systems use any 

biological microorganisms such as bacteria, fungi (yeast) and plant extracts for 

preparing nanoparticles. The interesting review by Pandian et al. [23] elaborated 

several bio-assisted synthetic methods of silver nanoparticles with special emphasis on 

plant-leaf extract mediated development of AgNMs. 

2.3.2. Iron oxide NM 

Polymorphic crystalline iron oxides with magnetic properties Can be found in many 

natural and anthropogenic processes [24]; among which hematite (α-Fe2O3), 

maghemite (γ-Fe2O3), and magnetite (Fe3O4) are most abundant. The β-Fe2O3 and ε-

Fe2O3 forms of maghemites are generally prepared in laboratories as Fe-oxide NMs 

[25]. Among different chemical synthetic routes of Fe-oxide NMs sol-gel, thermal 

decomposition, co-precipitation, and microemulsion based preparations are 

predominantly followed by researchers because of the simplicity and reproducibility 

of these procedures [25]. Stoichiometric mixture of iron (Fe
2+

 and Fe
3+

) salts are 

dissolved in any basic solutions (NaOH or NH4OH) and this process is technically 

termed as ‘co-precipitation’; however, the nature of the basic solution (sulphates, 

chlorides, nitrates etc) and the Fe
2+

/Fe
3+

 ratio largely govern  the characteristics of end 

products [25,26]. The co-precipitation method can yield Fe-oxide NMs in the range of 

5-20 nm diameters. However, optimization of synthesis parameters like pH, 

temperature, and ionic force of the medium are vital towards controlling the size and 

surface properties of the synthesized Fe-ox NMs [25]. 
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In the sol-gel synthesis method, the surface of the Fe-ox NMs are coated with organic 

molecules, polymers (e.g. poly(ethylene glycol), poly(vinyl alcohol) etc), 

biomolecules (e.g. gelatin, chitosan , and dextrosan) or mineral molecules (e.g silica)   

[25,27] . Generally, water is used as the solvent and the metallic precursors are 

hydrolyzed by either by the addition of acid or a base. Moreover, speed of reactions, 

pH, temperature, and precursor are altered to obtain the iron oxide NMs of size. For 

example, 6-15 nm sized nano-maghemite (γ-Fe2O3) particles are prepared at 400°C 

[28]. On the other hand, microemulsion method is primarily used to produce catalytic 

Fe-oxide NMs that yields cubic or spherical particles with narrow pore size (4-15 nm) 

and high surface area (> 300 m
2
 g

–1
) [29,30]. Moreover, water-in-oil microemulsion 

methods hold much interest in Fe-ox NM synthesis due to its unique command on the 

size distribution of the synthesized nanoparticles [25,31]. Sometimes, iron oxide 

nanoparticles (4-16 nm) are synthesized via thermal denaturation followed by 

oxidation of the precursors (e.g Fe
3+

-acetylacetonate and iron nitroso 

phenylhydroxylamine) in organic solvents (e.g oleic or lauric acids). 

Maghemite (γ-Fe2O3) particles are extensively used in pollution control due to 

their ability to consume secondary pollutants and chemicals from industrial 

wastewater [25]. The Fe-oxide NMs in the size distribution range of 10-80 nm are also 

used as solid-gas-liquid phase catalysts in industries for enhanced production of 

styrene, photocatalytic production of hydrogen and oxygen, catalytic conversion of 

methane in aromatic compounds, fuel cells and production of biodiesel [25]. Iron 

oxides are integral ingredients composite solid propellant formulations and render 

acceleration of the combustion that in-turn greatly improves the rate of burning of the 

propellant. Some Fe-ox NMs (hematite (α-Fe2O3) and maghemite (γ-Fe2O3)) are 

effectively used as burn catalysts to fuel propellers in the domain of solid propulsion 

[25,32]. Moreover, Fe-ox NMs are also applied in several biomedical operations (e.g. 

drug delivery), and nuclear magnetic resonance imaging [33]. 

2.3.3. Copper oxide (CuO) NM 

CuO is a higher oxide of Cu naturally found as the mineral tenorite. The compound 

has a characteristic black color and a melting temperature >1200°C. Generally, it is 

formed by burning Cu in O2 available environment as: 
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In laboratory conditions, CuO NMs are generally prepared through precipitation 

method [34]. Metallic salts viz. CuCl2 and Cu(NO3)2.3H2O dissolved in deionized 

water are adjusted to pH 14 by adding NaOH till a black precipitate occurs. This 

precipitate is then washed with deionized water and absolute alcohol until neutral 

reaction (pH=7) is attained. Then, drying of the at 80°C followed by high temperature 

calcination (about 500°C) for few hours yields the CuO NMs. 

Copper (II) oxide is used as a glazing and coloring agent in ceramic industry and 

also to sanitize materials for its superb anti-bacterial properties [35].  Cu-oxide NMs 

in the form of Cu-ammonium hydroxide is utilized in the production of rayon. 

Table 2.1: Utility of different metal-oxide based nanomaterials 

Sl. 

No. 

Metaloxide 

NMs Applications References 

1 CuO Redox catalyst  [36] 

  Microwave irradiation  [37] 

  Photoconductive and photothermal 

applications 

 2 ZnO UV blockers  [36] 

  Mixed varistors  [15] 

  Solar cell and optoelectronics  [38] 

  Gas sensors 

   Catalysts 

 3 MgO Industrial scrubber for gaseous 

pollutants (CO2, NOx, Sox) 

 [39] 

  

Catalysts 

 4 ZrO2 Ceramics  [40] 

  

Solid electrolyte  [41] 

  

Gas sensors 

 

  

Catalysts 

 5 CeO2 Chemical catalysts  [42] 

  

Photocatalysts  [43] 

  

Electrolyte 

 6 TiO2 Chemical catalysts  [44] 

  

Photocatalysts  [45] 

  

Industrial scrubber for air 

pollutants 

 7 Al2O3 Catalysts  [46] 

  

Coating agent  [47] 
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Copper (II) oxide NMs are effectively used as catalysts in rocket propellants due to its 

superior properties like uniform propellant combustion rate and low-pressure index. 

Considering its narrow band gap (~1.2 eV), Cu-oxide NMs are extensively used as p-

type semiconductor. Other important applications of Cu-oxide NMs are seen in the 

preparation of batteries (both dry and wet cell) and as polishing agent for optical 

instruments. Additionally, this nanomaterial is extensively utilized during welding 

operations with copper alloys [48]. 

2.3.4. Magnesium oxide (MgO) NM 

The solid and hygroscopic magnesium oxide (MgO) (i.e., magnesia) is often found in 

nature as periclase; remains in lattice form (series of ionic bonds of Mg
2+

 and O
2-

). 

The general reaction can be seen as under: 

MgO + H2O ↔ Mg(OH)2 

Magnesium hydroxide is produced in the presence of water and this reaction can 

reversely yield MgO by heating it to separate moisture. Due to its high boiling point 

(~3600°C), Mg-ox NMs are widely used in the refractory industry. There are few 

dense engineering ceramics of the structural type made from pure magnesia. Mg-oxide 

NMs are also used in chemical, construction, environmental and electrical appliance 

industries. 

2.3.5. Zn-oxide (ZnO) NM 

ZnO is known to be a highly functional, and versatile inorganic material in 

nanotechnology due to its unique properties viz. optical, chemical sensing, 

semiconducting, electric conductivity, and piezoelectric properties  [49]. Zn-oxide 

NMs are prepared through different routes but the mostly followed methods include 

thermal evaporation of ZnO powders at 1400°C, hydrothermal synthesis, sol–gel 

technique, simple thermal sublimation, self-combustion, polymerized complex 

method, vapor–liquid–solid technique, double-jet precipitation, and solution synthesis 

[49-51]. Interestingly, different production methods yield variable structural 

configuration of the ZnO-NMs and thus selection of production method varies greatly 

on the basis of the desired application. Moreover, the optimization of vital parameters 

viz. solvent type, salt precursors, pH, and the temperature is important for controlled 

yield of this NM. As mentioned earlier, several successful structural re-arrangements 
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of ZnO-NMs have been synthesized by changing the physic-chemical parameters of 

the synthesis method. Some of the major configurations of the ZnO nanostructures are 

nanorods, nanosphere, nanotubes, nanowires, nanoneedles, and nanorings [51]. 

Zn-oxide NMs are very popular as antibacterial/antimicrobial agent and hence 

used widely in medicine and cosmetic industries. The “calamine” lotion is prepared 

out with Zn-oxide powder. ZnO is also utilized in the manufacture of rubber and 

cigarettes. It is recently used as preservative of food items and as a coating agent in 

paint industries. Other important applications of ZnO NMs are in manufacture of 

concrete and ceramics where it is used as an additive. 

2.3.6 Ti-dioxide (TiO2) NM 

A wide range of application has been observed of TiO2 nanoparticles as paints, 

toothpaste, sunscreen etc. Because of their photocatalytic activity they have 

tremendous expectation in the area of effective energy uses through utilization of solar 

energy based devices. They are found to be generally transparent in visible light 

region. But their optical sensitivity cab be enhanced in visible light region by doping 

or sensitization [52]. Synthesis of this type of nanostructures can be attained through 

various approaches i.e., Sol-Gel method, Sol method, Hydrothermal method etc [52]. 

2.4. NMs in soil environment 

World’s land and water resources are considerably exposed to engineered 

nanomaterials [53,54].
 
 Therefore, it is important to derive mechanistic interpretations 

through focused as well as holistic experimentations to ascertain the true impacts of 

NMs on soil environment. The behaviour and effects of nanoparticles in soil-plant 

systems are rather unpredictable because of influence of numerous factors (inherent 

soil chemistry, soil porosity, water retention capacity, size of NMs, coating materials, 

time and level of exposure) [7]. Very recent studies have revealed concentration 

driven agglomeration property of engineered nanomaterials in soil largely influences 

nitrogen metabolism, photosynthesis, and growth of crop plants [55,56]. The unique 

features of NMs (aggregation/agglomeration, dissolution, dispersibility, charge, 

surface area, and surface chemistry) greatly modify the stability and migration of the 

nanomaterials within soil system; which may also alter the physical and chemical  
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character of the contaminated soils [57]. Whereas, pH, organic matter, soil biota, 

colloidal composition, elemental solutes, ionic strength, porosity, and moisture 

contents of soils significantly alter behaviour of NPs within soil system [3]. As such, 

the distinctive physico-chemical properties of AgNPs are likely to affect microbial 

diversity in soil [53,58-60].
  
 

Soil represents a relatively complex medium for the understanding of the 

physicochemical behavior of manufactured NPs. In comparison with the dissolved 

phase, in which behavior can be understood largely in terms of particle stability 

against aggregation, soils present a solid matrix with which NPs may interact, as well 

as an aqueous phase, which may contain appreciable amounts of natural 

colloidal/particulate material. In the context of environmental toxicology, a key issue 

is the understanding of how specific organisms are exposed to NPs present in different 

phases (soil, soil water) and how the presentation of the NPs within these phases 

further influences exposure. As mentioned earlier some major attributes viz. 

agglomeration/aggregation, dissolution rate, area-charge -surface chemistry of the 

NMs need to be studied to ascertain their eco-toxicity potential. According to Stone et 

al. [61] these properties are instrumental in controlling the stability and subsequent 

transport of the NMs in the environmental matrices. The routes of contribution of 

engineered nanomaterials into the environment are represented in Fig. 2.3. 

 



22 
 

 

Fig. 2.3: Routes of contribution of engineered NMs (ENM) into the environment. 

Reproduced from Wang et al.  [33]. 

 

2.4.1. Agglomeration/Aggregation of NMs in soil 

The strong bonding between the core of the NMs is called aggregation while 

agglomeration implies to the weak Van der Waals force bonding among the NM 

surfaces [3,62]. According to Lin et al. [63], agglomeration occurs when the Brownian 

motion induced particles collide with each other creating a condition where energy of 

motion/attraction is greater than energy of repulsion. Contrarily, when the cores of the 

NMs collide they tend to aggregate forming “particle flocks” that settle down 

eventually due to gravity [64]. The size of NM aggregates varies mostly with the 

concentration of the NM in the solution and also with the initial size of the NMs [3]. 

Fig. 2.4 presents a schematic view of the major factors that influence 

agglomeration/aggregation and dissolution processes of NMs.   
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Fig. 2.4: Factors affecting the processes of aggregation/agglomeration and dissolution 

of single nanoparticles. 
a
 Considering similar surface charge. 

b
 Acting only on larger 

particles. Adapted from Tourinho et al. [3]. 

Phenrat et al. [65] observed that Fe-oxide NMs tend to form stable aggregates 

when the concentration of the solution is increased from 2 mg L
-1

 to 10 mg L
-1

. 

Similar studies on Zn-oxide NMs also revealed formation of stable aggregates at 

higher concentrations which were diverse in sizes and some aggregates were almost 

10 times larger in size than the primary particles [66]. In their study with Au NMs in 

hemoglobin solution, Moerz et al. [67] cited that the extent of Au NM-Hemoglobin 

agglomeration depends greatly on the Hemoglobin: Au NM concentration ratio. A 

pictorial interpretation from their study has been shown in Fig. 2.5. 

 

Fig. 2.5: A pictorial interpretation representing DLS stable mean agglomerate radius. 

Adapted from Moerz et al.  [67]. 

However, the agglomeration/aggregation in NMs varies greatly with the type of 

NMs. For instance, Ti-oxide NMs form uniform sized aggregates whereas Zn-oxide 

NMs portray a variety of aggregate sizes when dispersed in solutions [3,66,68]. 
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2.4.2. Surface characteristics 

Presence or absence of coating greatly modifies the characteristics of the NMs in the 

environment. In case of coated NMs, determination of their stability over time is an 

important parameter to check. Considering the enhanced utilization of NMs as 

cleansing agents for several environmental pollutants it is important to check their 

coating stability and the (bio) degradability of the coating over time [3]. 

The DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory classically 

explains the stability of NMs in any medium. Basically, this theory   considers 

stability as a function of the repulsive (i.e., electrostatic) and attractive forces (i.e., 

Van der Waals) to which a particle is subjected [3]. However, the DLVO theory has 

been least applied to investigate colloidal behavior of NMs in natural environment. 

Although, the conceptual framework of the DLVO theory holds much promise in 

highlighting the behavioral trends of NMs in environment, especially in aqueous 

media  [69,70]. 

2.4.3. Dissolution and transport 

Thermodynamic instability is a characteristic of some types of metal-based NMs that 

eventually leads to their dissolution over time. Dissolution implies to the detachment 

of an ion from the particle, later migrating through the electrical double layer into the 

solution [3,71]. However, with such dissolution the probability of toxicity enhances 

due to higher introduction of ionic moieties from the metal-based NMs. Hence, it is 

important to learn on the extent of dissolution and the relative toxicities of both the 

nanoparticulate and dissolved forms to better understand the potential NP effects on 

organisms over time [3].  
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Fig. 2.6: Schematic diagram representing the factors which effect the 

dissolution/transport of nanoparticles between soil and pore water (pHPZC=point of 

zero charge). Adapted from Tourinho et al.  [3]. 

 

In the United Kingdom, MONMs find their extensive utility in medicine, 

electronics and sensors, cosmetics (mainly sun-screen lotions), fuel additives, 

catalysts, paints etc [72]. As per the report of Schmid and Riediker  [73], the food and 

paint industry in Switzerland utilize Al-Ox, Fe-Ox, SiO2, TiO2, and ZnO NMs at 1 ton 

per year per company. 

2.5. Bioaccumulation (mass concentration) of metal based NMs 

Mostly, the NMs released/introduced into the environment eventually enter the food 

chain and get accumulated in the living systems [7]. Usually, plants have been 

recognized as a perfect model to study the toxicokinetic behavior of NMs because 

they represent both terrestrial and aquatic environment. In their study, Aubert et al. 

[74] highlighted the Mo-NM sorption by the roots of Brassica juncea leading to their 

significant growth inhibition. Several reports also other than roots, phyllosphere 

mediated NM transport is also possible for certain plants. For example, foliar 

application of TiO2 and Ag-NM in Lactuca sativa induced no toxic effects with 

regular glutathione (GSH) and phytochelatin activity [75]. These studies reveal that 

metal-based NMs might enter plant system through both rhizospheric and aerial 

modes. In case of animals, mostly the environmental toxicology experiments have 

been studied on fish-models. Although there are reports on nematodes to observe the 
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toxicity of NM, insights on their bioaccumulation has not been addressed fully. Judy 

et al. [76] studied the biomagnification of Au-NMs in hornworms exposed to Au-NM 

fortified tobacco leaf diet. The authors found that the bioaccumulation of Au-NM was 

mostly related to their zeta-potential rather than their size or dissolution dynamics. 

Similarly, TiO2 NMs are highly persistent in environment due to their very low 

dissolution in soil or aquatic media. It has been elaborately shown that the TiO2 NMs 

form stable aggregates in soil solution and subsequently accumulate in the body of 

organisms (mainly by bonding with lipids and carbohydrates) at each trophic level 

[3,17]. In nematodes, metal based NMs may also enter through dermal contact. The 

negatively charged cuticle of nematodes greatly attracts metallic NMs [77]. Although, 

the primary route of NM into an organism’s body is mainly through ingestion of 

contaminated food/feed [3]. Overall, the accumulation of NMs greatly varies with the 

metallic precursor of the NM and also with the type of organisms exposed. For 

example, earthworms exposed to both ZnO and TiO2 showed more accumulation of 

ZnO [78]. Speaking of soil organisms, collembolans will mainly be exposed to NMs 

present in soil pore water, earthworms to both pore water and soil particles by dermal 

and oral contact, and woodlice to food (decaying leaf material) and soil particles by 

ingestion and to a limited extent to soil pore water [3]. 

Table 2.2 presents a summary of environmental toxicology studies on soil 

nematodes exposed to metal-based NMs. Ag-NMs are good anti-bacterial agents but 

in higher concentration they induce oxidative stress in organisms. Eisenia fetida 

greatly accumulate Ag in their tissue when exposed to nano-Ag rather than its salts 

(AgNO3). According to Shoults-Wilson et al. [79], this accumulation is mainly 

attributed to the non-dissolved nano-Ag and not the dissolved ionic form. Similar 

reports also vouch for the toxicity of Ag-NMs over silver nitrate in Caenorhabditis 

elegans exposed at a dose of 10-1000 mg L
-1

 [80]. They confirmed that Ag-NM 

exposure primarily disrupts the reproductive capacity of the worms through significant 

free radical generation. Also, a lethal dose of 55 mg L
-1

 was ascertained surpassing 

which significant dermal abnormalities were observed leading to 60% mortality of the 

exposed worms [80]. 

Fe-oxide NMs are one of the least studied particles in the domain of 

nanotechnology which has started to change considering their recently recognized 

potential in biomedical application [81]. Recent investigation by Gonzalez-Moragas et 



27 
 

al. [82] presented eco-toxicity potential of citrate-coated Fe-ox NMs to soil borne 

organisms like Caenorhabditis elegans at a dose of 100-500 ppm and duration was for 

1 day. They coined that in higher concentration (500µg mL
-1

) the oxidative stress 

marking genes (sod1, sod 2), and intestinal genes (chc-1, dyn-1, eps-8, act-5, and elt-

2) significantly upregulate. They also noted a significantly high expression of 

metallothionein protein in the highly dosed specimen, although no prominent 

mortality was encountered. Gourgou et al. [83] illustrated significant accumulation of 

magnetic Fe-NMs (size 100 nm) in the body of Caenorhabditis elegans in Agar 

medium. They observed that the internalized NMs drastically reduced the locomotive 

ability (velocity) of the worms. They also found effects on survivality, fecundity, and 

growth. 

Cu-NM exposure at concentration up to 1g L
-1

 showed no toxic effects to the 

enchytraeid Enchytraeus albidus [84]. They conducted their study with a 

concentration range of 400-1000 ppm, for 2 days period in soil medium. Contrarily, 

Amorim et al. [85] illustrated that Cu-NMs significantly deplete the  carbohydrate, 

lipid, and protein contents (energy reserves) in  E. albidus after 6 week exposure with 

Cu-NMs (100-200 mgL
-1

).  Application of CuO NMs in soil at the rate 65 mg kg
-1

 

recorded no toxic effects on growth and proliferation of Eisenia fetida [86]. 
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 Table 2.2: A gist of available literature on response of soil-based nematodes in metal-based NM enriched environment 

NMs Size (nm) Organisms 

Concentration 

(ppm) Exposure  Media Indicators Reference 

Ag <100 Caenorhabditis elegans 0.05–0.5  1-3 days K-media Survival, growth, and fecundity [87] 

 

50.3  Do 10–1000  1-2 days 

K-

media+Agar Survival and fecundity [80] 

 

10-50 Eisenia fetida 10–1000  4 weeks Soil 

Survival, fecundity, and growth 

Reproduction/fecundity [88] 

 

30-50 Do 1000  < 1 week Soil Survival [89] 

 

7-14 Do 10-50  4 months Soil Stress enzymes and health [90] 

Fe3O4 5.6 Caenorhabditis elegans 100-500  1 day Agar Biochemical and genetic assessments [82] 

 100 Do - - Agar Movement resistance [83] 

CuO 20-100 E. fetida 5–50  4-8 weeks Soil 

Survival, fecundity, and growth 

gene expression [86] 

 

80 Enchytraeus albidus 400–1000  2 day Soil Gene expression [84] 

 

80 Do 130-230  3-8 weeks Soil Energetic reserves [85] 

ZnO <50 Folsomia candida  230  4 weeks Soil Survival and reproduction [91] 

 

<100 Do  100–6400  4 weeks Soil Survival and reproduction [92] 

 

<100 Eisenia veneta  6–96  1 d Water Survival [93] 

 

<100 Do  250-750  21 d Soil 

Survival, immune activity, and life history 

trait [93] 

 

1–2.5 Caenorhabditis elegans 10–1,625  1-3 days Water Survival, reproduction, mobility, genetic [94] 

 

20 Do 0.4–8.1  1 day Water Survival, fecundity, growth, and feeding [77] 

 

40–100 Eisenia fetida 0.1-10000  2 weeks 

Filter paper-

soil Survival and reproduction [95] 

  

Eisenia Andrei 

    TiO2 10-50 Lumbricus terrestris 1-100  1 week Manured soil Rate of apoptosis and mortality [96] 

 

5-21 Eisenia fetida 20-10000  

1-17 

weeks Soil Survival, fecundity, growth, and avoidance 

 

  

Eisenia Andrei 

   

[97] 

CeO2 15-45 Caenorhabditis elegans 1.0 1 day K-media Apparent growth, survival, gene expression [98] 
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Gomes et al. [84] proposed that Cu-induced toxicity was mainly driven by the 

undissolved Cu-NMs. They even traced damage at the molecular level (gene 

expression) suggesting the deleterious impact of Cu-NMs on exposed organisms. 

Generally, oxidation of Cu-NMs yields Cu-ions which might be the cause of such 

toxic effects [3]. 

ZnO is a highly investigated NM regarding environmental toxicology 

enumerations in living organisms [3]. Several workers have observed genetic and 

physiological changes (mainly stress enzymes viz. catalase, super oxide dismutase, 

and peroxidase) in Eisenia fetida exposed to ZnO NMs [3,78]. Hooper et al.  [93] 

compared the toxicity of ZnO NM and ZnCl2 on growth and proliferation of E. veneta. 

For this experiment 6-96 ppm concentration range was exposed and duration of the 

study was 1 days in water medium. They reported that soil spiked with ZnO NM 

reduced the reproduction of E. veneta by 30% but did not hamper their immunity. It 

was confirmed through SEM and EDX that ZnO-NMs got accumulated in the body 

tissue through an internal mechanism [93]. Similar report by Canas et al. [95] also 

elaborate the deleterious effect of ZnO NMs to E. fetida at higher concentrations, 

especially in the form of oxidative stress. In case of the isopod Porcellio scaber nano-

Zn accumulation was primary routed through dissolution of ZnO-NMs rather than 

direct accumulation of the particles [66]. Contrarily, Manzo et al. [91] extended 

information on accumulation of dissolved-Zn species in lieu of particulate-Zn in the 

body of Folsomia candida exposed to ZnO-NMs
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