
Chapter 4

An Empirical Analysis of

State-of-the-Art Classifiers for

Recognition of Hand Gestures

using Existing Features

In image processing, feature describes the pattern of an image. Feature ex-

traction and feature selection are two important steps in machine learning,

pattern recognition and image processing. Feature extraction is the trans-

formation of an initial set of features into a derived set of more informative

and non-redundant features. On the other hand feature selection is the pro-

cess of selecting subset of feature optimizing a certain criteria function. In

this chapter, an analysis on recognition of SSHG using five state of the art

classifiers viz., k-nearest neighbor (k-NN), naive Bayes, Bayesian network,

decision tree and Support Vector Machine (SVM) is presented. In this anal-

ysis, different feature sets viz., Hu’s invariant moments, Zernike moments,

Legendre moments and 14 geometric features are used. It is observed that

the feature set containing Legendre moments gives better performance than

the other feature sets.

The rest of the chapter is organized as follows: Section 4.1 presents the

related work in this domain. Section 4.2 provides the overview of features

used in this chapter. Section 4.3 defines the theory of the state-of-the-art

classifier. Experimental results are discussed in Section 4.4. Finally, Section

4.5 gives the observation of this chapter with the scope of future work.
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4.1. Related Works

4.1 Related Works

Historically, M.K. Hu is the pioneer in research on image analysis using sta-

tistical moments in the year 1961 [11]. He used geometric moment for auto-

matic character recognition. Later, in 1962 this method was applied in the

area of pattern recognition [2]. Then from 1971 onward, the moment invari-

ant methods are used for ship identification [72], artifact identification [13],

pattern matching [12]. The most popular work was done by Teague in 1980,

who introduced the concept of orthogonal moment for the first time and pro-

vided the basic concept on Legendre and Zernike moment [77]. In 1981 [61],

the geometric moment became extended to radial moments and provided a

general framework for deriving radial and angular invariants. The complex

moments was introduced in 1984 [1] and, in 2003 [83] another orthogonal mo-

ments Krawtchouk polynomial was introduced. This Krawtchouk moment

was extended to a new radial Krawtchouk moment using polar representa-

tion of an image in 2007 [81]. Some of the work on recent moments are (i)

Object identification using a neural network [33] and Zernike moments in-

variants. (ii) Fuzzy quaternion approach to object recognition using Zernike

moments invariant 1990 [52]. (iii)Gesture recognition via pose classifica-

tion [51]. Some more work in the area of pattern recognition using moment

are found in [6, 69]. In this chapter, Hu’s invariant moment, Zernike or-

thogonal moment, Legendre moment and geometric features are applied on

Sattriya dance dataset. The description of shape representation using mo-

ment features are discussed in the following Table 4.1.

Table 4.1: Description of Shape Representation using Moment Features

Moment Features Symbol Description
Zero-order M00 Total intensity of an image and geomet-

rical area for

First-order
x0 = M10/M00,
y0 = M01/M00

Centroid of the image

Second- order µ20, µ02, µ11 µ20, µ02 variance or distribution of hor-
izontal and vertical projection,µ11gives
covariance measure [48].

Third - order µ30, µ03 Skewness of the image projection, i.e.,
degree of deviation [48]

Fourth - order µ40, µ04 Kurtosis of images i.e., measure the
flatness and peakness of images [48].
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4.2 Computation of Feature Sets

In this chapter, four feature sets were extracted from the SSHG image

dataset. The four feature sets consist of Hu’s seven invariant moments (FS1),

Orthogonal Zernike moment up to tenth order (FS2) and Orthogonal Leg-

endre moments up to tenth order (FS3) and 14 Geometric features (FS4).

Each feature set is described briefly in the remaining part of this section.

4.2.1 Hu’s Seven Invariant Moments (FS1)

Hu’s invariant moments are based on second and third order central

moments. The Hu’s moment feature set is computed on three different

images viz., gray image, binary image and extracted boundary image.

Then, the extracted features set for different images are experimented on

standard classifier such as k-nearest neighbor (k-NN), naive Bayes, Bayesian

Network, decision tree and Support Vector Machine (SVM). The extraction

of Hu’s moment features from the image dataset is described briefly as

follows: The geometric moment of order (p+q) of a two dimensional image

f(x,y) of size M ×M are defined as [11, 77]

mpq =
M∑
x=1

M∑
y=1

xpyqf(x, y) (4.1)

p, q=0, 1, 2, . . .∞ where ’p+q’ represent the order of the moment and f(x, y)

denotes the intensity of the pixel at location (x,y).

When the function f(x, y) is translated by f(x′, y′) then central moment can

be written as:

µpq =
M∑
x=1

M∑
y=1

(x− x′)p(y − y′)qf(x, y) (4.2)

Where, f(x′, y′) represents the centroid of the image which can be defined

as x′ = m10/m00 and y′ = m01/m00. The Hu’s seven invariant moments

viz.,φ1, φ2, . . . φ7 are defined using central [48] moments as follows:

φ1 = µ20 + µ20 (4.3)

φ2 = (µ20 − µ20)
2 + 4µ11 (4.4)

φ3 = (µ30 − 3µ12)
2 + 3(µ21 − µ03)2 (4.5)

φ4 = (µ30 + µ12)
2 + (µ21 + µ03)2 (4.6)
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φ5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2] |

+3(µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2] (4.7)

φ6 = (µ20−µ02)[(µ30+µ12)
2−(µ21+µ03)

2]−4µ11(µ30+µ12)(µ21+µ03) (4.8)

φ7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2]

−(µ30 + 3µ12)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)2] (4.9)

As an example, Hu’s moment invariants of the binary image of the Alpadma

hasta of SSHG are shown in Figure 4-1.

Hu’s moment Features set(hf1, hf2, …., hf7) Images 
0.226307 0.002844 0.000857 0.000615 0.00001 0.000033 -1E-06 

 

 
P1_alpadma_n_1 

0.231371 0.002896 0.001408 0.000676 0.00001 0.000036 -1E-06 
 

 
P1_alpadma_n_8 

0.231833 0.002599 0.001547 0.000651 0.00002 0.000033 -1E-06 
 

 
P1_alpadma_n_10 

Figure 4-1: Example of Hu’s Moment Invariants

4.2.2 Zernike Moment Feature Set (FS2)

Shape analysis using Zernike moment gained popularity among researchers

in pattern recognition and image analysis for their invariance and orthogonal

property. Zernike moment of order n is defined as

Z(pq) =
(n+ 1)

π

2π∫
0

1∫
0

V ∗pq(ρ,θ)f(ρ,θ) (4.10)

Here, p represents the non negative integer and q is an integer with constraint

(p − |q|) is even. Here q < p and p and q denote the order of Zernike basis

function.

The kernel of Zernike moments is the orthogonal Zernike polynomial, defined

over the polar co-ordinate inside a unit circle. If (ρ, θ) is a polar co-ordinate.

Mathematically, Zernike polynomial Vpq(ρ, θ) can be defined over unit disk

as [48]

Vpq(ρ, θ)) = Rpq(ρ)(jpθ)whereρ <= 1 (4.11)
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where Rpq(ρ) is a real valued radial polynomial given by

Rpq(ρ) =

(p−|q|)
2∑

s=0

(−1)s
(p− s)!

s!( (p+|q|)
2
− s)!( (p−|q|)

2
− s)!

(4.12)

Zerinke moments rotation invariant, robust with respect to noise and minor

variation and have no information redundancy. Example of Zernike moment

features are shown in Figure 4-2.

Zernike moments features set(zf_00, zf_11, zf_20, zf_22, zf_31, zf_33 ….., z_10,8 zf_10,10) Images 
0.172431 0.028302 0.173894 0.31329 0.13100 0.074291 0.113188 0.15827 

0.055803 0.137155 0.078724 0.04778 0.075533 0.0603 0.08723 0.055142 
0.051437 0.059085 0.050106 0.026837 0.010276 0.024235 0.088369 0.088417 
0.116435 0.053791 0.021734 0.022582 0.04972 0.04494 0.031011 0.034657 
0.018418 0.039866 0.1106596 0.021857 

    
 P1_alpadma_n_

1 
0.183429 0.029496 0.173753 0.281164 0.129841 0.0376 0.109026 0.141683 
0.063923 0.147185 0.018467 0.014684 0.074058 0.06774 0.084874 0.063923 
0.062294 0.079642 0.039269 0.085826 0.051286 0.036128 0.012923 0.062103 
0.100207 0.017034 0.028398 0.061205 0.110265 0.070097 0.04184 0.067717 
0.018404 0.054212 0.0944695 0.106535 

     

 
P1_alpadma_n_

10 

Figure 4-2: Example of Zernke Moments of Order 0 to 10

4.2.3 Legendre Moments Feature Set (FS3)

This Legendre moment feature set is based on Legendre polynomial which

was introduced by M. R. Teague [77]. The Legendre moments of order p+q

is defined as follows [48, 69, 77]:

Lpq =
(2p+ 1)(2q + 1)

4

1∫
−1

1∫
−1

Pp(x)Pq(y)f(x, y)dxdy (4.13)

where the function Pp(x) denotes the Legendre polynomial of order p. If

f(i, j) represents the pixel value at the (i, j)th pixel of a N ×N image, then

the Legendre moments can be approximated by the following equation:

Lpq =
(2p+ 1)(2q + 1)

(N − 1)2

N∑
i=1

N∑
j=1

Pp(xi)Pq(yj)f(i, j) (4.14)

Here, (xi, yj) represents the normalized pixel in the range [-1, 1], given by

xi = (2i/N)− 1, yj = (2j/N)− 1.

The Legendre polynomial Pn(x) of order n is defined as:

Pn(x) =
n∑
k=0

(−1)(n−k)/2
1

2n
(n+ k)!xk

(n−k
2

)!(n+k
2

)!k!
, (4.15)
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Here, |x| ≤ 1 and (n-k) is even.

The recursive relation for Legendre polynomials can be written in simplified

form as [48]

Pn(x) =
(2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

n
(4.16)

Here P0(x) = 1;P1(x) = x; n > 1

Example of the Legendre moments of order 0 to 10 of two images are shown

in Figure 4-3.

Legendre-Moment Features Sets(lf_1, lf_2,……lf_66) Images 
0.55715 -0.24269 -0.34309 0.260251 -0.16117 0.216378 0.135369 -0.29001 

0.221406 0.379455 -0.04498 -0.27579 -0.45886 0.155347 0.265961 -0.17061 
0.332198 -0.38218 -0.18008 -0.07141 -0.06071 0.089528 0.14064 -0.08145 
0.279011 -0.3629 -0.08038 0.005706 0.13 -0.06903 0.080343 -0.32578 
0.341077 0.032694 0.021267 0.025678 -0.02177 -0.11558 0.124088 -0.33445 
0.255655 -0.1425 0.233067 -0.13065 -0.02946 -0.06636 0.097534 -0.11631 
0.275682 -0.00325 -0.18003 -0.40015 0.418341 -0.17782 -0.1287 -0.02326 
0.000716 0.201391 0.109543 0.003137 0.193929 -0.55 0.073072 0.233228 
0.097782 -0.19252 

 

 
 
P1_alpadma_n_1 

0.539775 -0.17977 -0.22511 0.265304 -0.11936 0.442221 0.015752 -0.248506399 
0.381235 0.332068 -0.15343 -0.16915 -0.31591 0.375689 -0.01185 -0.034064876 
0.233635 -0.41317 -0.01191 0.033154 -0.05483 0.150877 -0.07764 0.081768892 
0.158677 -0.27804 -0.10862 0.150451 -0.00196 -0.11221 -0.03716 -0.122251659 
0.479702 0.038038 -0.35893 -0.0092 -0.04255 -0.06843 -0.14848 -0.2571283 
0.273294 -0.02722 0.511985 -0.36658 -0.21302 -0.03597 0.042881 -0.047484167 
0.216788 -0.27229 -0.08266 0.232763 0.343635 0.050364 -0.16838 -0.0054431 
0.124197 0.138278 -0.06389 0.14192 0.232944 -0.6361 0.50301 -0.178423105 
0.08776 -0.1827 

 

 
 
P1_alpadma_n_10 

Figure 4-3: Example of Legendre Moments of Order 0 to 10

4.2.4 Geometric Feature Set (FS4)

Geometric features are those features which describe the shape of the im-

ages. Initially, 14 types of geometric features Viz., area, centroid, eccentric-

ity, bounding box, aspect ratio, convex hull, equiv diameter, Euler number,

major axis length, minor axis length, orientation, perimeter, max intensity,

min intensity are extracted. To improve the recognition performance, At-

tribute Ranking (Information Gain Ranking Filter) feature selection method

is used to choose the suitable features. Rank of the attributes given by this

features selection method are as follows:

– Centroid(0.35)

– Eccentricity(0.269)

– Orientation(0.256)

– Major Axis Length(0.215)

– Minor Axis Length(0.210)

– Aspect Ratio(0.195)
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– Perimeter(0.194)

– Area(0.17)

– BoundingBox(0.0)

– Orientation(0.0)

– EulerNumber(0.0)

– EquivDiameter(0.0)

– Perimeter(0.0)

– MeanIntensity(0.0)

– MinIntensity(0.0)

– MaxIntensity(0.0)

On the basis of this ranking, the 8 features with non-zero ranks are selected

and used throughout this experiment. This 8 features of feature set FS4 are

briefly described as follows [58]:

– Centroid: Centroid of the image can be defined as center of mass of the

object. For a 2D image f(x, y) (x=1,2,, M)and (y=1,2, . . . , M) of size

M ×M , the centroid (x̄, ȳ) is given by

x̄ =

∑
x

∑
y
x.f(x, y)

M∑
x=1

M∑
y=1

f(x, y)
, ȳ =

∑
x

∑
y
y.f(x, y)

M∑
x=1

M∑
y=1

f(x, y)
(4.17)

– Eccentricity: The eccentricity of an image can be defined as the ratio

of the distance between the foci of the object to its major axis length.

– Orientation: The orientation represents the angle (in degrees) between

the x-axis and the major axis of the object.

– Bounding Box: The bounding box is the smallest rectangle that con-

tain the object. For an image, the diagonal pixel points represent the

bounding box.

– Major Axis Length: The major axis length is the length of the longest

diameter of an object.

– Minor Axis Length: The minor axis length is the length of the shortest

diameter of the object.

– Aspect Ratio: The aspect ratio can be measured by the ratio of the

width to the height of the object.
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– Perimeters: A pixel in a binary image is a perimeters pixel if it is non-

zero and it is connected to at least one zero-valued pixel. The default

connectivity is 4 for two dimensional images. In this experiment the

attribute is taken to be the length (number of pixels) of the perimeter.

Example of the geometric feature set (comprises of 14 features) is shown in

Figure 4-4

Geometric features set(G_1, G_2,……G_14) Images 
860.56521 93.51949 49.04347 11.53709 9.750137 0.419399 -2.53190 
-9.652173 8.675686 88.06304 18.22882 5.869565 22.52173 -6.17061 

 

 
 
P1_alpadma_n_1 

 
 
855.55221 92.94951 50.03447 11.63709 9.82337 0.428399 -2.43190 
-9.501273 8.775686 88.16314 18.21222 5.903565 21.52233 -6.27161 

 

 
 
P1_alpadma_n_10 

 

Figure 4-4: Example of Geometric Feature Set

4.3 Classifiers

Classification means mapping the images into predefined classes i.e., it is the

function from the feature space to the output class. The classifiers used in

this chapter are described briefly in this section.

4.3.1 k-Nearest Neighbor

k-Nearest Neighbor classifieris (k-NN) [18] is a supervised classifier. It uses

distance based similarity measure to classify an unknown object to one of

the known classes. Given an unknown object or pattern the k-NN classifier

searches for the k training pattern which are closest to the given unknown

pattern or objects. These k training pattern are the k-nearest neighbor of

the unknown pattern. The unknown pattern is assign the most common

class among its k-nearest neighbors. For two objects X and S with feature

vectors (x1, x2, . . . ..., xN)T and (s1, s2, . . . ..., sN)T , some of the distance are

defined in terms of mathematical formula as follows:

Euclidean =

√√√√ N∑
i=0

(xi− si)2 (4.18)
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Manhattan =
N∑
i=0

| xi− si |2 (4.19)

Minkowski = (
N∑
i=0

(| xi− si |)q)
1
q (4.20)

Hamming(D) =
N∑
i=0

| xi− si |2 (4.21)

k-value determination

If k=1, then the nearest neighbor case is simply assign to that class. Gen-

erally, the value of k has to be selected by the user and it can be randomly

increased for large dataset. The k-value which gives minimum error rate is

selected. If the value of k is large, then it helps to reduce the noise effect

in classification. Although k-NN algorithm is very simple but problem is

when we apply the distance directly on training set with variable of differ-

ent measure scale. So, we need to standardize the distance with the given

formula.

Newvalue(Xz) =
Originalvalue−Minvalue

Maxvalue−Minvalue
. (4.22)

In our experiment, we use k=5 for feature set which gives low error rate on

SSHG dataset. We use Euclidean distance as it gives good results compared

to other distancce. Limitation of k-NN algorithm is that it is time consuming

for large training data.

4.3.2 Naive Bayes

Naive Bayes [18] classifier is one of the Bayesian classifier which can pre-

dict class membership using different probability convention. The Bayesian

classifier model is very popular model because of its simplicity, also no com-

plicated iterative parameter estimation required. This classifier is suitable

for very large dimension of data set. The model of this classifier can be done

in two ways: with class posterior probability known as discriminative model

and the alternate way is to learn the class conditional density. The Naive

Bayes classifier work based on a training set of objects and their associated

class level. We consider y1, y2, y3, . . . ym are m classes and X is the object of

the classifier which belongs to the class having highest probability. Then,

the Naive Bayes classifier predicts that the object X belongs to the class yi

if

P (yi/X) > P (yj/X) (4.23)
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for 1 ≤j≤m and j6=i

The SSHG dataset is tested on Naive Bayes classifier and results are dis-

cussed in next section.

4.3.2.1 Bayesian Network

Bayesian Networks(BN) [17] is an expert system, captures all the existing

knowledge. It is the succeed way to represent any distribution. This

classifier mainly deals with the uncertainty of random variable. It is

graphically shown by Directed Acyclic Graph(DAG) where each node

represent the random variable and arc represent the dependency between

the nodes. Representation of Bayesian Networks is shown in Figure 4-5 The

 
 
 
 
 
 
 
 
 
 
 

(a) Directed Acyclic Graph 

 
 
 

 
 

P(C/A) 
P(D/B) 
P(E/B) 
P(F/C) 

(b) Conditional Probability 
table 

 
 
 
 
 
 
 
 
 
 
 

(c) Bayesian network as a tree 
 

 
 

 
 
 
 
 
 
 
 
 

(d) Bayesian network without 
tree 
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Figure 4-5: Representation of Bayesian Network

directed graph X → Y provides information that X has direct control on

Y, and X is said to be parent of Y.

Each value of probability density function is computed as

P[x1, x2 . . . xn] = P [x1/x2 . . . xn]

= P [x1/x2 . . . , xn].P [x2/x3][xn−1/xn]P [xn]

= P [xi/xi+1, . . . , xn]

(4.24)Convention of Bayesian Network:

P (X) = π(P (Xi)/Pa(Xi)) where X = X1, X2, . . . , Xn are nodes. P (Xi) is

the joint probability of nodes X Pa(Xi) are parent node of Xi

4.3.3 Decision Tree

Decision Tree [56] is a tree which correctly classify the objects in the train-

ing set. Each of the leaf node represent the class, all internal nodes denote
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attribute-based test and branches are used for each possible outcome. The

path from root node to leaf node denotes classification convention. To clas-

sify any objects, it is necessary to start visiting the tree from root node,

evaluate the test at each node and take the branch which is appropriate for

the outcome of the test. This procedure continue until find the leaf node

and the object is classified base on the class label of the leaf node.

4.3.4 Support Vector Machine (SVM)

It is the most common supervised learning algorithm. Generally, SVM is a

binary classifier (separate two classes) however multiple SVMs could be used

for multi-class classification. SVM uses hyperplane as decision boundary

which separates the two classes by maximizing the distance or gap between

two classes. The object which are closed to the decision boundary on its

either side are called support vector. Optimal decision boundary depends

only those support vector.

The multiclass SVMs are generated by combining multiple two class SVM.

There are two popular techniques of obtaining multiclass SVM. (i) one vs one

and (ii) one vs rest [21]. The SVM classifier works as follows: Considering, D

as the given dataset as (x1, y1), (x2, y2), . . . (xD, yD) where xi is the training

sample and yi represent the corresponding class label whose value varies

between -1 and 1. The training tuple X can be written as (x1, x2) where x1, x2

are the attributes. The SVM gives the solution for the below mentioned

optimization problem. minw,h,ε
1
2
W TW + C

n∑
i=1

εi

subject to yi(w
Tφ(xi) + b) ≥ 1− ε, ε ≥ 0 In this classification, the vector xi

is mapped to the higher dimension by changing the value of φ. The kernel

function of SVM is

K(xi, xj) = φ(xi)
Tφ(xj) and C > 0 is known as penalty parameter. There

are three type of kernel function used for SVM classifier:

1. Linear: K(xi, xi) = xi
Txj.

2. Polynomial:K(xi, xi) = (γxi
Txj + r)

d
, γ > 0

3. Radial Basis Function(RBF): K(xi, xj) = exp(−γ || xi − xj ||2), γ > 0

4.4 Experimental Results

The experiments have been carried out on a PC with intel i5 processor con-

taining 4 GB main memory and 500 GB hard disk running 64 bit windows10

58



4.4. Experimental Results

operating system. MATLAB 2015 is used for the experiments.

4.4.1 Dataset Description

The experiments are conducted using Sattriya Dance single-hand gestures

(SSGH) dataset developed by us as part of this research work. The dataset

has both original images and additional instances generated by adding artifi-

cial noise. The description about creation of the SSHG dataset are discussed

Table 4.2: Dataset Description

Dataset Instances Feature set Attributes
SSHG (without noise) 1450 FS1 7

FS2 36
FS3 66
FS4 14

SSHG (with noise) 44,950 FS1 7
FS2 36
FS3 66
FS4 14

in the previous Chapter 3

4.4.2 Performance Analysis on SSHG Dataset With-

out Noise

Four types of feature-dataset FS1, FS2, FS3 and FS4 are computed from

SSHG dataset. These features set are experimented on different state-of-

the-art classifiers such as k-nearest-neighbor (k-NN), naive Bayes , Bayesian

network, decision tree and Support Vector Machine (SVM). For each clas-

sifier, 70% (1015) instances are used for training and remaining 30% (435)

instances are used to validate the results. The experimental outcome on

SSHG dataset with noise and without noise with five well known classifiers

are discussed as follows:

4.4.2.1 Performance Analysis on Feature set FS1

The feature set FS1 consists of seven invariant features. The feature set is

experimented on three type of images viz., gray-image, binary-image and

boundary-image for behavior analysis of images. The recognition accuracy

achieved for FS1 with the four state of art classifiers excluding SVM are

shown in Table 4.3.
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Table 4.3: Recognition Results on FS1

Dataset Classifier Total
instances

Correctly
classified

Average
recognition
rate

Gray-
image

k-NN(n=5) 435 302 69.43

Bayesian Network 435 274 62.99
Nave Bayes 435 221 50.80
Decision Tree 435 318 73.10

Binary-
image

k-NN(n=4) 435 336 77.24

Bayesian Network 435 270 62.07
Nave Bayes 435 385 88.51
Decision Tree 435 416 93.63

Boundary-
Extracted
image

k-NN (n=5) 435 311 71.49

Bayesian Network 435 316 72.64
Nave Bayes 435 308 70.80
Decesion Tree 435 350 80.45
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K-nn(n=5) Bayesian 
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Figure 4-6: Comparative Performance on SSHG Dataset using FS1

The comparative performance of the classifiers using FS1 can also be ob-

served from the graph given in Figure 4-6. From the above graph, it can

be observed that binary image dataset provides good results for most of the

classifier. Therefore, the remaining experiments carried out on binary image

dataset.
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4.4. Experimental Results

Table 4.4: Recognition Accuracy of Four Feature Set with State of Art Classifier

Feature
sets

Classifiers Total
instances

Correctly
classified

Classification
Accuracy

Hu’s mo-
ment

SVM Linear Kernel
(C=1, E=1)

435 296 68.05

SVM Polynomial
(C=3, E=4)

435 288 65.20

SVM RBF (C=9,
γ=.033)

435 309 71.03

Zernike
moment

k-NN(n=5) 435 304 69.65

Bayesian Network 435 153 34.94
Nave Bayes 435 122 28.04
Decision Tree 435 309 71.03
SVM-Linear Ker-
nel(c=1, E=1)

435 303 69.65

SVM-polynomial 435 296 68.04
SVM-RBF(c=9,
gamma=.033)

435 314 72.18

Legendre
moment

k-NN(n=5) 435 315 72.41

Bayesian Network 435 384 88.27
Nave Bayes 435 393 90.34
Decision Tree 435 418 96.09
SVM-Linear Ker-
nel(c=1, E=1)

435 411 94.48

SVM-polynomial 435 405 93.10
SVM-RBF(c=9,
gamma=.033)

435 395 90.80

Geometric k-NN(n=5) 435 175 40.22
Bayesian Network 435 55 12.64
Nave Bayes 435 122 28.04
Decision Tree 435 296 68.04
SVM-Linear Ker-
nel(c=1, E=1)

435 270 62.06

SVM-polynomial 435 182 42.06
SVM-RBF(c=9,
gamma=.033)

435 285 65.51

The performance of SVM classifier using FS1 on binary image dataset with

linear kernel, polynomial kernel and the radial basis kernel (RBF) is shown

in Table 4.4. It can be observed from this experiment that RBF kernel gives

better results compared to other kernels.
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4.4.2.2 Classification result on FS2

The feature set FS2 i.e., Zrenike moment features upto tenth order were

extracted from the SSHG-binary image dataset . The recognition accuracy

for this feature set is shown in Table 4.4. Here also, the SVM with RBF ker-

nel provides good result compared to other classifiers with accuracy 72.18%.

The different kernel parameter C and E are set for polynomial kernel, which

were obtained by varying the value within a range. For this kernel, C denote

the complexity parameter and E is the exponent. Also the parameter C and

γ for RBF kernel were determind by Grid Search algorithm [24]. In this

classifier, the parameter C control the cost of miss classification and γ repre-

sent the Gaussian kernel to handle nonlinear classification. It is graphically

represented by a peak. A small γ gives a sharp peak in the higher dimension

and large γ gives softer peak.

4.4.2.3 Classification result on FS3

The feature set FS3 comprises 66 features which were extracted using Leg-

endre moment upto tenth order. The recognition accuracy for feature set

FS4 has been shown in Table 4.4. From the table it can be concluded that

Decesion tree classifier gives good result with 96.09% accuracy.

4.4.2.4 Performance Analysis on Feature set FS4

The feature set FS4 (geometric features) includes 8 statistical features viz.,

centroid, eccentricity, orientation, major axis length, minor axis length, as-

pect ratio, perimeter are used throughout this experiment. The overall recog-

nition accuracy for geometric feature set is poor as compared to other feature

sets. The highest recognition accuracy rate is given by decision tree classifier

which is 68.04% as shown in Table 4.4.

4.4.2.5 Comparative Performance Analysis

The overall recognition accuracy for all the feature sets FS1, FS2, FS3,

FS4 are presented in the above tables. The comparative performance on

SSHG dataset is shown graphically in figure 4-7. From the graph it can be

observed that the feature set FS3 (Legendre moments) provides the highest

recognition accuracy for each classifier.
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Hu's moment

K-nn(n=5)
Bayesian 
Network

Naïve 
Bayes

Decision 
Tree

SVM-
Linear 
Kernel

SVM-
Polynomial 

Kernel
SVM RBF

Hu's moment 71.68 62.95 70.93 80.59 68 66.2 71.1

Zernike- moment 69.95 35.17 28.16 71.03 69.86 68.27 72

Legendre-moment 72.57 88.37 90.43 96.03 94.61 93.23 90.9

Geometric Features 40.39 12.8 28.16 78.92 62.06 42.06 65.52
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Figure 4-7: Comparative Performance of the Four Feature Sets on SSHG Dataset
Without Noise

4.4.3 Performance Analysis on SSHG Dataset With

Noise

Total number of instances of SSHG (with noise) dataset is 44,950. Exper-

iments similar to the ones presented in section 4.4.2 have been conducted

on this dataset to see the robustness of the features. For these experiments,

31,465 instances are used for training and 13,485 instances are used for test-

ing. The recognition accuracies for the four feature sets and the five classifier

on SSHG dataset with noise have been shown in Table 5.2. The comparative

performance can be observed from the graph presented in Figure 4-8.

It can be observed from the graph that the classifier give similar perfor-

mances on the both SSHG dataset with noise and without noise. Also it can

be observed that the recognition accuracies increases with more number of

instances as shown by the higher recognition accuracies on the dataset with

noise.

4.5 Discussion

In this chapter, an empirical analysis of state of the art classifiers for recog-

nition of single-hand gestures (Asamyukta hasta) of Sattriya dance has been

done. This experiments were done on both SSHG with noise and with-
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Table 4.5: Recognition Accuracy on SSHG Dataset on Noise

Feature set Classifier Total
instances

Correctly
classified
instance

Accuracy
(%)

Hu’s Mo-
ment

k-NN(n=5) 13,485 10,086 74.79

Bayesian Network 13,485 8840 65.55
Nave Bayes 13,485 9740 72.33
Decision Tree 13,485 10206 75.68
SVM-Linear Ker-
nel(c=1, E=1)

13,485 8813 65.35

SVM-polynomial 13,485 8522 63.19
SVM-RBF(c=9,
gamma=.033)

13,485 10,925 81.01

Zernike
Moment

k-NN(n=5) 13,485 9567 70.94

Bayesian Network 13,485 8274 61.35
Nave Bayes 13,485 7554 56.01
Decision Tree 13,485 9210 68.30
SVM-Linear Ker-
nel(c=1, E=1)

13,485 8894 65.95

SVM-polynomial 13,485 9342 69.28
SVM-RBF(c=9,
gamma=.033)

13,485 10113 75.00

Legendre
Moment

k-NN(n=5) 13,485 10,012 74.25

Bayesian Network 13,485 11,916 88.36
Nave Bayes 13,485 10,576 78.43
Decision Tree 13,485 11,601 86.03
SVM-Linear Ker-
nel(c=1, E=1)

13,485 12,464 92.43

SVM-polynomial 13,485 11,223 83.23
SVM-RBF(c=9,
gamma=.033)

13,485 12,419 92.09

Geometric k-NN(n=5) 13,485 6130 45.46
Bayesian Network 13,485 5144 38.15
Nave Bayes 13,485 4067 30.16
Decision Tree 13,485 9196 68.09
SVM-Linear Ker-
nel(c=1, E=1)

13,485 8097 60.04

SVM-polynomial 13,485 6076 45.06
SVM-RBF(c=9,
gamma=.033)

13,485 9982 74.02

out noise. Four feature sets Hu’s seven invariant moment (FS1), Zernike

moments (FS2), Legendre moments (FS3) and geometric feature (FS4) for
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K‐nn(n=5) Bayesian
Network Naïve Bayes Decision Tree SVM‐Linear

Kernel

SVM‐
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Kernel

SVM RBF

Hu's moment 74.8 65.56 72.23 75.69 65.36 63.2 81.02
Zernike‐ moment 70.95 61.36 56.02 68.3 65.96 69.28 75
Legendre‐moment 74.25 88.37 78.43 86.03 92.43 83.23 92.1
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Figure 4-8: Comparative Performance of the Four Feature Sets on SSHG With
Noise

performance analysis and five classifiers namely k-nearest neighbor, Bayesian

network, naive Bayes, decision tree and SVM with different kernels are used.

From the analysis, it can be observed that Legendre moments (FS4) show

better performance compared to other feature sets. It is also observed that

the recognition accuracy of geometric feature set (FS4) is the lowest. From

the above discussion it can be concluded that for recognition of single-hand

gestures of Sattriya dance, the features considered in this analysis are not

suitable with the existing classifiers. Therefore, it is necessary to explore

more suitable feature and also a better classifier for the purpose.
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