List of Tables

Table	No. Table Captions	Page No.
СНАР	PTER III	
3.1	Specifications of the visible wavelength lasers	76

3.2	Specifications of the photodiode S1227-16BR	77
3.3	Specifications of the photodiode BPW34	78
3.4	Specifications of the Nuneb pro nebulizer	80
3.5	Specifications of NI USB-6008 Data Acquisition system	82
3.6	Particle size distribution for water droplets	84

CHAPTER IV

4.1	Particle size distribution of graphite	99
4.2	Refractive index of graphite	100
4.3	Composition of the synthesized fayalite particles as determined by EDX analysis	111
4.4	Particle size distribution parameters for fayalite	115
4.5	Refractive index of fayalite	116
4.6	Single scattering albedo and Asymmetry parameter values of fayalite	118

CHAPTER V

5.1	Maximum particle sizes and corresponding $ m kd$ values for silica	132
5.2	Critical parameters of Gamma size distribution function for silica	133
5.3	Refractive indices of silica at room temperature (25°C)	134
5.4	Single scattering albedo (a) and shape averaged asymmetry parameter (g) of silica	134

CHAPTER VI

6.1	Maximum particle sizes at which the condition $ m kd \le 1$ is satisfied	
6.2	Refractive indices of graphite and fayalite	
6.3	Percentage composition of graphite and fayalite particles for Model1 and Model2	
6.4	Modeling variables of computational Model1	
6.5	Modeling variables of computational Model2	158
6.6	Relative rms errors of Model1 and Model2 as compared with experimental results	163

List of Figures			
Figure No.	Figure Captions Pag	ge No.	
CHAPTER I			
1.1	Light scattered by a (a) single particle and (b) multiparticle system	4	
1.2	Nephelometer setup	16	
CHAPTER II			
2.1	Discontinuity at the interface of two medium	33	
CHAPTER III			
3.1	Graphical User Interface of Blender - geometry generation software	58	
3.2	A primitive basis shape in Blender	59	
3.3	Specimen shapes generated using Blender 2.76b	59	
3.4	GUI of DDSCAT Convert for shape file input	60	
3.5	The input parameters of DDSCATConvert	60	
3.6	3D Coordinates of dipoles in the converted target	61	
3.7	3D representation of target in reference coordinate system	61	
3.8	3D rendered representation of dipole arrays for specimen targets	62	
3.9	DDSCAT input parameter file part 1	63	
3.10	DDSCAT input parameter file part 2	63	
3.11	Shape file after conversion with DDSCATConvert	64	
3.12	The main output file of DDSCAT part 1	65	
3.13	The main output file of DDSCAT part 2	65	
3.14	Scattered beam and the detector	71	
3.15	Schematic diagram of the light scattering setup	74	
3.16	Photograph of the complete experimental setup	75	
3.17	Top view of the experimental setup	75	
3.18	Profiles of the three laser wavelengths 543.5 nm, 594.5 nm and 632.8 nm respectively specified by symbols in the legend	76	

Figure No.	Figure Captions Pag	e No.
3.19	Photographs of (a) S1227-16BR and (b) BPW34	77
3.20	Spectral response of (a) S1227-16BR and (b) BPW34	77
3.21	Schematic diagram of the Aerosol sprayer system	79
3.22	Photograph of the aerosol nebulizer	79
3.23	Photograph of the Nuneb pro nebulizer	80
3.24	(a) NI USB – 6008 (b) Control panel	81
3.25	Pin description of NI USB – 6008 where AI – analog input, AO – analog output, P I/O – digital I/O and GND – ground.	82
3.26	Correction factor for scattering volume	83
3.27	(a) Phase function and (b) polarization for water droplets at 543.5 nm wavelength with symbols in the legends representing computational and experimental values (plotted with error bars)	85
3.28	(a) Phase function and (b) polarization for water droplets at 594.5 nm wavelength with symbols in the legends representing computational and experimental values (plotted with error bars)	85
3.29	(a) Phase function and (b) polarization for water droplets at 632.8 nm wavelength with symbols in the legends representing computational and experimental values (plotted with error bars)	86
CHAPTER IV	,	
4.1	Target1 generated for the model shape1 (a) target modelled as a single irregular particle, (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	95
4.2	Target2 generated for the model shape1 (a) target modelled as a single irregular particle with added deformations to account for surface roughness (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	95
4.3	Target3 generated for the model shape1 (a) target modelled as aggregates of small spherical monomers (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	96
4.4	Target1 generated for the model shape2 (a) target modelled as a single irregular particle, (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	96
4.5	Target2 generated for the model shape2 (a) target modelled as a single irregular particle with added deformations to account for surface roughness (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	97

Figure No.	Figure Captions Pag	ge No.
4.6	Target3 generated for the model shape2 (a) target modelled as aggregates of small spherical monomers (b) Dipole representation in 3D rendered form with 25,465 and (c) 34,681 dipoles respectively	97
4.7	Scanning electron micrography (SEM) images of graphite particles	98
4.8	(a) Phase function for model shape1 at 543.5 nm incident wavelength with curves represented by symbols given in the legends indicating computed values of phase function for 3 targets and experimental values. (b) Phase function for model shape2 at 543.5 nm incident wavelength with curves represented by symbols given in the legends indicating computed values of phase function for 3 targets and experimental values	102
4.9	(a) Phase function for model shape1 at 632.8 nm incident wavelength (25,465 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values. (b) Phase function for model shape1 at 632.8 nm incident wavelength (34,681 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values.	102
4.10	(a) Phase function for model shape2 at 632.8 nm incident wavelength (25,465 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values. (b) Phase function for model shape2 at 632.8 nm incident wavelength (34,681 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values.	103
4.11	(a) Plot of computed results for best possible shape averaged values of phase function (Target2) versus experimental values for 543.5 nm incident wavelength. (b)Plot of computed results for best possible shape averaged values of phase function (Target2), versus experimental values for 632.8 nm incident wavelength	103
4.12	(a) Polarization for model shape1 at 543.5 nm incident wavelength with curves represented by symbols given in the legends indicating computed values of phase function for 3 targets and experimental values. (b) Polarization for model shape2 at 543.5 nm incident wavelength with curves represented by symbols given in the legends indicating computed values of phase function for 3 targets and experimental values	104

Figure No.	Figure Captions Pag	e No.
4.13	(a) Polarization for model shape1 at 632.8 nm incident wavelength (25,465 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values. (b) Polarization for model shape1 at 632.8 nm incident wavelength (34,681 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values.	104
4.14	(a) Polarization for model shape2 at 632.8 nm incident wavelength (25,465 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values. (b) Phase function for model shape2 at 632.8 nm incident wavelength (34,681 dipoles) with curves represented by symbols given in the legends indicating measured values of phase function for 3 targets and experimental values.	105
4.15	(a) Plot of computed results for best possible shape averaged values of polarization (Target2) versus experimental values for 543.5 nm incident wavelength. (b)Plot of computed results for best possible shape averaged values of polarization (Target2), versus experimental values for 632.8 nm incident wavelength	105
4.16	Flowchart for sol-gel synthesis of fayalite	109
4.17	(a) and (b) HR-SEM images of laboratory synthesized fayalite micro particles	110
4.18	EDX spectroscopy analysis of laboratory synthesized fayalite microparticles	110
4.19	XRD spectra of laboratory synthesized fayalite microparticles	112
4.20	(a) The target geometry 1 generated with Blender3D, (b) 3D rendered images of the model shape after conversion in DDSCAT Convert, (c) Dipole representation of the target particle	113
4.21	(a) The target geometry 2 generated with Blender3D, (b) 3D rendered images of the model shape after conversion in DDSCAT Convert, (c) Dipole representation of the target particle	113
4.22	Particle size distribution of fayalite	115
4.23	(a) Size and shape averaged values of Phase function at 543.5 nm incident wavelength with curves represented by legends indicating computed and experimental values. (b) Size and shape averaged values of Polarization at 543.5 nm incident wavelength with curves represented by legends indicating computed and experimental values	116

Figure No.	Figure Captions Page	e No.
4.24	(a) Size and shape averaged values of Phase function at 594.5 nm incident wavelength with curves represented by legends indicating computed and experimental values. (b) Size and shape averaged values of Polarization at 594.5 nm incident wavelength with curves represented by legends indicating computed and experimental values	117
4.25	(a) Size and shape averaged values of Phase function at 632.8 nm incident wavelength with curves represented by legends indicating computed and experimental values. (b) Size and shape averaged values of Polarization at 632.8 nm incident wavelength with curves represented by legends indicating computed and experimental values	117
CHAPTER V		
5.1	Flowchart of the particle sizing technique	129
5.2	(a) Target model as a sphere (Shape1) in BLENDER3D, (b) Representation of target geometry as dipole arrays, (c) 3-D rendered dipole representation of the target	130
5.3	(a) Target model as a cube (Shape2) in BLENDER3D, (b)13 Representation of target geometry as dipole arrays, (c) 3-Drendered dipole representation of the target	
5.4	(a) Target model as a cuboid (Shape3) in BLENDER3D, (b) Representation of target geometry as dipole arrays, (c) 3-D rendered dipole representation of the target	131
5.5	Scanning Electron Micrography images of silica microparticles	132
5.6	Particle size distribution function of silica microparticles	133
5.7	(a) Size averaged computational values of phase function for the three model shapes and experimental values as reference, at 543.5nm wavelength, (b) Plots for size averaged values of polarization and the experimental values at 543.5nm wavelength	136
5.8	(a) Size averaged computational values of phase function for the three model shapes and experimental values as reference, at 594.5nm wavelength, (b) Plots for size averaged values of polarization and the experimental values at 594.5nm wavelength	136
5.9	(a) Size averaged computational values of phase function for the three model shapes and experimental values as reference, at 632.8 nm wavelength, (b) Plots for size averaged values of polarization and the experimental values at 632.8 nm wavelength	137

Figure No.	Figure Captions 1	Page No.
5.10	(a) Shape and size averaged values of theoretical ph function and experimental values at 543.5nm wavelength, Shape and size averaged values of polarization a experimental values at 543.5nm wavelength	(b)
5.11	(a) Shape and size averaged values of theoretical ph function and experimental values at 594.5nm wavelength, Shape and size averaged values of polarization experimental values at 594.5nm wavelength	(b)
5.12	(a) Shape and size averaged values of theoretical ph function and experimental values at 632.8nm wavelength, Shape and size averaged values of polarization experimental values at 632.8nm wavelength	(b)
Chapter VI		
6.1	(a), (b), (c), (d), (e) and (f) Blender representation of tag geometries shape1, shape2, shape3, shape4, shape5 and sha used in the models	-
6.2	(a), (b), (c), (d), (e) and (f), 3d rendered dipole representation of the target geometries	tion 151
6.3	Scanning Electron Micrographs of (a) Graphite and Fayalite	(b) 153
6.4	Particle size distribution function of the mixture	154
6.5	The computed values of (a) Scattering efficiency, Extinction efficiency, (c) Single scattering albedo, Asymmetry parameter vs. incident wavelengths for Model1	(b) 156 (d)
6.6	Theoretical and experimental phase function and polarizatival values at incident wavelengths (a) and (b) 543.5nm, (c) and 594.5nm and (e) and (f) 632.8nm respectively for Mod Experimental curves are plotted with error bars	(d)
6.7	The computed values of (a) Scattering efficiency, Extinction efficiency, (c) Single scattering albedo, Asymmetry parameter vs. incident wavelength, for Model 2	(b) 159 (d)
6.8	Scattering efficiency (Q_{Sca}) vs. size parameter at (a) 543.5 m (b) 594.5 nm and (c) 632.8 nm wavelengths respectively	nm, 160
6.9	Theoretical and experimental phase function and polarization values at incident wavelengths (a) and (b) 543.5nm, (c) and 594.5nm and (e) and (f) 632.8nm respectively for Mod Experimental curves are plotted with error bars	(d)

List of symbols and abbreviations

UV	Ultra Violet
РАН	Polycyclic aromatic hydrocarbon
μm	micro meter
nm	nanometer
DDA	Discrete Dipole Approximation
FDTD	Finite-Difference Time-Domain method
TMM	T-matrix method
λ	wavelength
FEM	Finite Element Method
$a_{\scriptscriptstyle e\!f\!f}$	Effective particle size
m	complex refractive index
Ν	number of dipoles
CCG	Complex Conjugate Gradient method
FFT	Fast Fourier Transform
x	Particle size parameter
GOA	Geometric Optics Approximation
heta	Scattering angle
Q_{sca}	Scattering efficiency
Q_{ext}	Extinction efficiency
Q_{abs}	Absorption efficiency
a	Single scattering albedo
g	Asymmetry parameter
d	Interdipole separation

k	wave vector
ϕ	Azimuth angle
Ι	Field intensity
C _{ext}	Extinction cross section
C_{abs}	Absorption cross section
C_{sca}	Scattering cross section
ω	angular frequency
F	Mueller Matrix
F_{11}	Phase function
$-\frac{F_{12}}{F_{11}}$	Degree of linear polarization
eta(heta)	Volume scattering function or 'VSF'
GUI	Graphical User Interface
001	Graphical Oser Interface
RAM	Random Access Memory
	-
RAM	Random Access Memory
RAM EBCM	Random Access Memory Extended Boundary Condition Method
RAM EBCM SEM	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy
RAM EBCM SEM Γ	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy Gamma function
RAM EBCM SEM Γ σ_g	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy Gamma function standard deviation
RAM EBCM SEM Γ σ_g r_g	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy Gamma function standard deviation modal radius
RAM EBCM SEM Γ σ_g r_g mW	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy Gamma function standard deviation modal radius milliwatt
RAM EBCM SEM Γ σ_g r_g mW DAQ	Random Access Memory Extended Boundary Condition Method Scanning Electron Microscopy Gamma function standard deviation modal radius milliwatt Data Acquisition
RAM EBCM SEM Γ σ_g r_g mW DAQ IR	Random Access MemoryExtended Boundary Condition MethodScanning Electron MicroscopyGamma functionstandard deviationmodal radiusmilliwattData AcquisitionInfra-red.