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2.1 Introduction

One of the basic properties of particles consisting of charged bodies and exposed to
electromagnetic radiation is that the induced electric and magnetic fields of these particles
gets aligned due to external force fields. And is the key factor in computation of light
scattering and other optical properties by particles under the influence of an incident
electromagnetic field.

Randomly oriented nonspherical particles are important in light scattering and
absorption studies as almost all natural particles systems are non-uniformly distributed
nonspherical particle systems. In the macroscopic level random orientation signifies a
uniform orientation distribution independent of the individual particle orientations. The
light scattering properties for such particle systems are also independent of the incident and
scattering directions. Theoretically dealing with randomly oriented particle systems require
orientational averaging over all the independent scattering directions i.e. polar (&) and

azimuth (¢ ) directions respectively. The atmospheric particles and those forming terrestrial

and cosmic dust, show light scattering and extinction characteristics which are typical to
randomly oriented systems. Almost all the available numerical codes and algorithms for
light scattering simulations of nonspherical particles (for e.g. T-Matrix and DDA) provides
the option of selective averaging over particle properties including the scattering directions
considered for a 3D scattering volume.

Considering independent orientation, simplifies the experimentations and
computations for light scattering by aggregates or multiparticle systems [1, 2]. But for
particle systems found in terrestrial and extra-terrestrial dust, the solution to the light
scattering problem is not that simple, particularly attenuation of the incident energy in the
narrow forward scattering band [3, 4]. In spite of all the simplifying approximations and
assumptions, light scattering by particle clusters or aggregates requires considerable
amount of intensive mathematical interpretations.

Basically averaging over orientation directions considers the range for@and¢, as

6 [0, ]is the polar (zenith) angle and ¢ [0,2] is the azimuth angle [5, 6].
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2.2 Light scattering and Maxwell’s equations

The light scattering theory starts with the general Maxwell’s electromagnetic equations.
And a light scattering problems involves rigorous solutions of the four integral equations
subjected to a set of physical boundary conditions. The most important components of light
scattering theory are the Stokes parameters and the Poynting vectors of Maxwell’s
equation. Mathematical relations between these components are established using different
formalisms in order to define the scattering problem associated with a particular scattering
event and consequently to obtain the scattering parameters and 4 x4 Mueller matrix

elements that is,

Fij =Fy Fpyene Fus 2.1
The Maxwell’s equations for an arbitrary field can be written as can,
V-D=p 2.2
V-B=0 2.3
__0B
VxE=-0B/ 2.4
— 340D
VxH =3+ 2.5

where D is the electric displacement, p is the electric charge density, B is the magnetic

induction, E is the electric field intensity, H is the magnetic field intensity, and J being the
electric current density.

Considering a time harmonic field the wave equations can be written as,

E(r,t) = E,e"®™ 2.6
H(r,t)=H e '™ 27

where k is the wave vector and o is the angular frequency.

Now the electromagnetic wave propagates in a homogeneous medium as [7],
E(r,t)=Re{E(r)e "} 2.8

H(r,t)= Re{H(r)e | 2.9
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Using these expressions the Maxwell’s equation in the frequency domain can be written as,
VxE=iaB 2.10

VxH =—iwD, 2.11
The second expression is obtained by using the continuity equation,

V-J=iwp 2.12
And D, =D+ ¥/ J 2.13

where D, is the total electric displacement.

The principles that govern the light scattering properties of a scattering particle are [7],

1. The electric and magnetic fields have continuous tangential components across the
boundary.

2. The solutions to the electromagnetic field equations must be divergence free.
The total field inside and outside the particle must be equal.

4. The tangential components of both electric and magnetic fields vanishes at infinite

distance from the origin.
2.2.1 The Poynting vector and boundary conditions

Consider a small volume element of area AA and thickness At (Figure 2.1). The volume
approaches zero when At and AA approaches zero. ‘n, ’ is the normal at the interface. D

and B are assumed to be finite in the small element considered.

Medium 1 Medium 2

v

n,

At

Figure 2.1 Discontinuity at the interface of two medium.
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The surface current (J ,) and surface charge density (o, ) can be written as,

J,=limg, ,V,J 2.14
pa=limy_,Vip 2.15

Now the boundary conditions could be written as [8],
The tangential component of E is continuous but H is discontinuous,

n, x(E, —E,)=0 2.16
nx(H,—H,)=J, 2.17
And normal component of B is continuous but D is discontinuous,
n-(B,—B,)=0 2.18.1
n-(D,-D,)=p, 2.18.2

Applying the vector identity equation for the cross product of E x H , we obtain,
V- (ExH)=H-(VxE)-E-(VxH) 2.19
We can write the Poynting theorem for time domain as [7],

V-(ExH)+H-a—B+E-a—D+E-J=O 2.20
ot ot

Where the term E x H is the Poynting vector S of the radiation field,

S=ExH 2.21
Now the total power provided by the source per unit volume of the medium is [8],
—jEJdv:j(ExH)derj(H-@+E-@]dv 2.22

v S \ at at

This is the energy conservation theorem which states that the decrease in energy of the
electromagnetic field is equal to the energy of source electric and magnetic fields plus
power density due to Poynting vector in the volume element.

Now in the frequency domain,

V-(ExH")=io(B-H -E-D")-E-J" 2.23

Now the Poynting vector is a physically measurable quantity and it must be real. But the
electric and magnetic field vectors E and H are complex guantities with real and imaginary
values. But keeping in mind the ability of optical devices, measurements o of only the real

or parts of E and H are taken. Considering only the real components of the Poynting vector,
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S =Re(E)xRe(H) 2.24
The vector field equations for time harmonic waves are given by [7],
E(r,t) =%[E(r)e-i“’t +E(ne] 2251
H(r,t)= %[H (e +H" (e ] 2.25.2

While measuring energy fields the measuring devices responds to time variations of the
Poynting vector.

Therefore we can write,

1 T
(s)=tim,.,, = ! S(t)dt 2.26
Hence from equation 2.24 we have,

S = Re(E)x Re(H)=%[E(r)e“‘" + E*(r)ei“"]x%[H (e +H*(re]| 227

:%[E(r)e‘“’t +E e [x[H(r)e ™ + H* (r)e

= %[E(r) < H"(r) + E(r) x H(r)e 2]

or,(s) :%Re{Ex H} 2.28

Equation 2.28 is the expression for time averaged Poynting vector, defined as the real part
of the vector product of electric field vector and the complex conjugate of magnetic field
vectors.

To find out the characteristics of the far field electromagnetic wave, we need to find
out the radiation field and Poynting vector inside and outside the scattering particle in the
medium [7],

<S> =%Re{Eout < H out*}:%Re{(Einc + Esca)>< (H *inc +H *sca)}

=($7)+(s") +(s*) 2.29
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where the Poynting vector for extinction phenomenon in the medium is given by,

<SM>:1RJmeH”“} 2.29.1
2

The Poynting vector for scattered wave is given by,

<§ﬂ=%RJE“meﬂ 2.29.2

And that for the incident electromagnetic wave is given by,

@széRJE“me% 2.29.3

2.2.2 Maxwell’s equations for an isotropic dielectric media

Now for a scattering event the medium plays an important role. It is necessary to define all
the properties of the medium in terms of physical parameters and incorporate them in the
Maxwell’s equations. The relations that govern the Maxwell’s equations in an isotropic

media is given by the constitutive relations [8],

B=uH 2.30.1
D=¢E 2.30.2
J=cE 2.30.3

where g is the magnetic permeability, ¢is electric permittivity and p is the electric

conductivity.
Now for a material medium the electrical and magnetic properties of the medium must be
taken into account. For a dielectric media the polarization must be taken into account.

Equation 2.30.2 becomes,
D=¢,E+P 2.31

Similarly Polarization P is the average electric dipole moment per unit volume,
P=¢,7.E 2.32
where ¢, is the permittivity of free space and y, is the electric susceptibility.

Similarly a magnetic medium is characterized by the magnetic moment M.

So equation 2.30.1 becomes,

B=u,(H+M) 2.33
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where g, is the permeability of free space.
M is the average magnetic dipole moment represented as,

M = y,.H 2.34

Xn is the magnetic susceptibility.
Again for an isotropic media,

e=¢gy6, =&+ 1.) 2.35.1

H= oty = oL+ 1) 2.35.2

where ¢,and u, are the relative permittivity and permeability of the medium.

2.3 Theory and mathematical formalism of Discrete Dipole Approximation (DDA)

DDA basically approximates a target by a finite array of polarizable points or dipoles. The
points acquire dipole moments in response to the incident electric field and produce
secondary sets of radiation or the scattered fields. The dipoles within a scattering volume
also interacts with one another via their electric fields resulting in the total scattered
radiation [9, 10].

2.3.1 Short theoretical background of DDA

The preliminary idea of DDA (also called dipole method or CDM) was introduced by
DeVoe in 1964 [11, 12]. But in its current widely used form, DDA was first proposed by
Purcell and Pennypacker [9]. DDA replaces the particle scatterer by point dipoles. These
dipoles interact with each other and also with the incident field, giving rise to a system of
linear equations. These equations can be solved in order to obtain dipole polarizations for
the scattering system. After going through rigorous mathematical treatment all the
scattering parameters can be obtained as functions of the dipole polarizations. The
theoretical framework of DDA was first reviewed extensively and modified by Draine and
Goodman [13] and later by Draine and Flatau [14]. Since the discrete dipole approximation
can also be obtained from the volume integral equation, the mathematical analysis put
forwarded by Lakhtakia and Mulholland is most widely used for the solution [8, 15].

The mathematical expressions of DDA can be derived from the Clausius-Mossotti

(or Lorentz-Lorenz) relation which relates the dielectric properties of a material to the
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polarizability of the primary elements or atoms. It is based on the theoretical assumption
that the atoms are located on a cubic lattice [16].

It is possible to obtain exact solutions to all the sets of mathematical equations
relating to the scattering problem associated with point dipoles. The approximation part of
the DDA theory is the N-point dipoles which gives a set of N linear equations. It is

important to properly specify the positions (location r; of the dipoles, j = 1, ... ,N) and the

dipole polarizabilities a ; of the associated dipoles.

2.3.2. Mathematical formalism of DDA

The basic assumption for obtaining solutions to DDA scattering equations is that all the
point dipoles must represent dipole polarizabilities of a small volume element within the
continuum target particle. In the final version of the approximation, the whole volume of
the target must be taken into account in terms of shape and size.
A specific target geometry can be treated as follows [14],

For simplification the target orientations are assumed to be fixed with respect to a
specific coordinate systemg, y,7.
1. A primary lattice is generated with lattice spacing d. And initial space coordinates of an
arbitrary point situated near origin is taken as (X,, Yo, 2, ).
2. As for the approximation, dipole arrays are used to represent the entire volume V of the
target particle.
3. The lattice spacing d and the position of primary lattice (XO, Yo Zo) are changed to achieve
a relatively accurate approximation of the target volume and dipole positions.

Each of the dipoles are assigned lattice sites as j = 1, ... ,N, with each occupied sites

having a cubic subvolume d®. The entire dipole array is rescaled in a way that the lattice

spacing d = % )%’ and total volume of all the occupied sites Nd® is equal to the volume V
of the target material.
4. A dipole polarizability @ is assigned to all the occupied lattice sites specified by j.

For measuring the dipole polarizabilities, Clausius-Mossotti relation are used [5],
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oM _3d3 g —1

= 2.36
A &+ 2

«;

where & is the dielectric function of the scatterer at a particular location I'; with respect
to the origin.
Draine and Goodman derived the lattice dispersion relations (LDR) using Clausius-

Mossotti relations, as in equation 2.36 and introduced two correction terms O[(kd)*] and

O[(kd)?*][13, 17]. A new concept has been introduced, that an infinite lattice of polarizable
points with dipole polarizability « (@) can be defined by the dispersion relations of a
material with a continuous refractive index m (co)

In the long-wavelength limit i.e.kd <<1, it is possible to obtain a solution to

dispersion relations.

The dipole polarizabilities for each of the lattice points a(w) is expanded in series in
powers of kd and m® = gas [10],

cMm
o \OR o 2.37

1™ o+ meb, + min,S) (d) - (2/3)iGka)?]
where the values of constants b1, b, and b3 are determined as follows,
b, =-1.891531,b, = 0.1648469 and b, =—1.7700004

Also the term S can be defined as,

S:

j

3 2
(e 2.38

=1

where @;and € are unit vectors for direction and polarization of incident wave.

For validity of DDA two conditions must strictly be fulfilled [14],

1. The first one is the |m|kd condition i.e.

mlkd <1 2.39

which states that lattice spacing d must be small compared to incident wavelength within
the target.
2. ‘d’ must be small compared to any structural lengths within the target geometry for
e.g. atomic spacing.
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The total volume of solid material excluding vacant spaces within the target material
is considered as V.
The total volume for an array of N dipoles with lattice spacing d can be written as,
V =Nd? 2.40
which is also the volume of the whole target material.
Now a term is introduced to specify the geometrical size of the target as “effective radius
(3 )",
a, =(3V/4r)" 2.41

The effective radius of a material target can be defined as the radius of a sphere

with equal volume as that of the target. Also any specific scattering problem could be
defined by quantity named “size parameter”,
x=kay =274 /A X=Kay 2.42
This important expressions takes into account all physical parameters that influence a
scattering event including incident wavelength.

Now for the first criterion (equation 2.39) to be adequately satisfied for number of dipoles

N, we require that,
3.3
N > (472)m’ 2.43
It is evident that materials with large values of |m| and ka,, , require extremely large
number of dipoles to satisfy the criterion. But a practical limit constraints the dipoles that

can be employed in a system based on the memory requirements and Random Access

Memory (RAM) capabilities of a scientific workstation. This limit isN <10°. So, DDA is

not very effective for larger size parameters and refractive index (m) values [18].
2.3.3 Calculation of scattering parameters, efficiencies and cross sections

The calculation of scattering parameters, scattering, absorption and extinction efficiencies
and cross-sections requires extensive solutions of the electromagnetic scattering equations
involving the incident and scattered radiation fields associated with the target particles. The
DDA formalism considers each point dipole as an independent source of secondary

radiation or scattered wave.
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Now considering the total number of dipoles j = 1, ... ,N at specific positions I;

and with polarizabilities a;, the polarization F’j for each of the individual dipoles can be
written as,

Pj = ajEj 244.1

where E ;is the electric field at r; due to the incident electromagnetic radiation.

The incident electric field can be written as,

E,.;=E,o0likr, -iot) 2.44.2

where E,is the amplitude of the incident beam and contribution of each of the mutually
interacting N —1dipoles to the incident field on a specific dipole is given by,

Ei = Einc,j _ZAjkPk 2.45

k#j
where -Ajk P, is the electric field at the position r; due to the contribution of the adjacent
dipole at I, with polarization P, (including retardation effects).
Each element of Ajk is in the form of a 3x3matrix with 9 elements, which is called the

Mueller Matrix. Also the expression forAjk is given by [14],

A :MX kz(ﬂ'kfjk _|3)+ikrjk—z_1(3fjkfjk —|3) v j#k, 2.46
r i
2

where k =T, =|r, -r,

Py = (r _rk)/ and 1,is a 3x3 identity matrix.
J

k

-1

To simplify the complex scattering problem Ajj is defined asA ; = a

With this modification, the only problem now is to find the polarization P,

satisfying a system of 3N complex linear equations. For a monochromatic incident wave

the self-consistent solution for all the oscillating dipole moments P; can be calculated from

these polarization equations. The extinction, absorption and scattering cross sections can
also be calculated from these equations as complex functions of polarization [9, 10]. The
solutions to these equations gives the amplitude scattering matrix which can be used to

calculate the Mueller Matrix elements.
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The solution to the set of linear equations is given by,

N
ZAjkPk = 2.47

k=1

After solving these equations for all the P;values the cross section values can be
calculated. Now we require the expressions of optical theorem to derive the extinction cross
section (C,,, ) values,

A Kk
[

*

ext — Im(Einc ' aEinc) 2.48.1

inc

Now the rate of energy attenuation of the incident beam is,

dE) P (VP 2.48.2
(dtj 2 (Elnc )_ 2 Im[P (0C ) P ]

Hence we can write equation 2.48.1 as,

_drks (e, P 2483

B

Taking ‘o’ as the angular frequency of the incident light and the expression for energy

absorbed as:
(Z—f) :—{Im[P (a2 yP ] - —k P.P 2.48.4
abs

Here the additional term k2 is a contribution of the radiative reactions.

The expression for absorption cross section (C,,) becomes,

Ark S Im[P . P] k3‘P‘ 2.49
|EO| 1—1

abs —

Once these cross sections are known it is possible to obtain the scattering cross

section (C._, ) by using the expression,

sca

Csca = Cext _Cabs 2.50.1
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The scattering cross section can be computed using the power radiated by the

oscillating dipoles. Now since the power radiated by the oscillating dipole is,

[‘Z_'fj _ ;: b.p" 2.50.2
Therefore,
k* N . .
=|E_ : J.d_Qé[Pj ~A(A-P;)]ep(-ikA-T,) 2.50.3

Also the expression for asymmetry parameter ‘g’ can be written as,
k® R A -
———— [den -k [P, —A(A - P ]exp(-iki-r)) 2.51
j=1

sca| inc|

g =(cosb) =
Again, in the far field the scattered electric field can be written as,

sca j

2 H N
E =w2em(—ikf-rijf—l3)P. 2.52
=1

A complex scattering matrix was introduced by Draine to compute the light
scattering properties of targets approximated by dipole arrays [10] as,
fru (05,05) 2.53

where index | = 1,2 represents orthogonal incident polarization states émand éozwith

é,, = k, x&,, while m = 1,2 denotes the scattered polarization states €& =€, = 6. and

A

e, =€, = gz;S, also 6, and ¢, denotes the polar and azimuthal directions of scattering plane

respectively.

The scattering matrix f_, can be related to the polarization states as follows,
The scattering field equations need to be solved for the two orthogonal polarization states
é01and é02-
Therefore, an incident electric field takes the form,
E,. =E.$ e><p(ikl20-rj—ia)t) 2.54

inc,j

‘ é. > being the incident wave polarization state, and where k is the wave vector.
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Assuming P]! to be the polarization for jth dipole, a new term can be defined as,
p\ =E;exp (iot)P; 2.55
The scattering properties of any arbitrary target can be fully characterized by a 2x 2

complex matrix f (IZO : IZ) where l20 and k represents the incident and scattered directions

[10]. The expression for this matrix can be written in terms of polarization as,
A 3 \ I A
fm,(ko,k)sk > pl-en exp(lkko-rj) 2.56
j=1

where €, is the polarization state of the scattered wave.
For an arbitrary incident wave the field equation is:

Ei. =Eo e><p(ikl€0 T — icot)
A 2
= E, explikk, r—ict) Y ag, 257
1=1

where EE(EO -E;‘,)}/2 and a, =E;E, ‘&,

Similarly the scattered wave can now be written as,

E R 2 2
.o = 0P (KK, -r—ict)> e, S 12 258

1 1=1

The scattered and the incident wave at the origin (E, (0)) can now be related as,

inc

(Esca és} — Mmr)( fll f12 j{Emc(O) égl) 2.59.1

Esca '@s kr f21 f22 Einc(o)' égz
However since the most general form of the amplitude scattering matrix [3] is given

as,

(82 23} in literature, equation 2.59.1 may also be expressed as,
4 1

( Esca 'és J — exp(iksca ) r)(SZ SBJ(Einc(O)'éill] 2.59.2
_ -éu .0Y.

_Esca : (bs -ikr S4 Sl Einc(o)
where éi” and éi | represents the parallel and perpendicular polarization directions.

8, =Ko x8,.
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So, we may also write,

(Sz 83](Einc(o)'éi||J=_i( 1:11 f12 j{Einc(o).é;lJ 2593
S4 Sl Einc(o)'éij_ - f21 - f22 Einc(O).éSZ

Now the scattering matrix elements can be calculated from f_,

f,, =iS, 2.59.4
f,, =—iS, 2.59.5
f,, =—iS, 2.59.6
f,, =iS, 2.59.7

2.3.4 Mueller Matrix or Scattering Matrix

The scattering properties of a finite target is fully described by the Stokes parameters

(1,,Q,,U;,V,) of an incident wave and (I,Qg,Uy,V, ) of the scattered wave. Stokes vector

‘I’ is the total light intensity, ‘Q” is the difference of light intensities polarized at 0° and 90°

2

respectively, ‘U’ is the difference between intensities polarized at angles +45° and -45°
respectively and finally “V’ is the difference in intensities polarized at right and left circular
polarization directions.

The scattered and incident waves can be related as [19],

I 1,

Q|_ 1 Q 2.60
Us | Kk?R® |U,
VS Vi

where F is the 16 element matrix or 4 x4 Mueller matrix or scattering matrix of the target
particle, k is the wave vector and R is the distance between the scatterer and the detector.
These stokes parameters are related to the Mueller Matrix in the form of a matrix equation

given as,
I s F11 F12 F13 F14 I i
QS — 1 F21 I:22 F23 I:24 Qi 2 61
Us k*R? F31 Faz F33 F34 Ui
Vs F41 F42 F43 F44 Vi
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For randomly oriented spherical or nonspherical particle systems the Mueller matrix
‘F’ reduces to a matrix with 8 non — zero and independent elements.

And can be written in a simple form considering matrix elements and their mirror
components due to symmetry [4, 5, 20-22],
F, F, O 0
F,, F, 0
0 0 FR; Fy
0 0 F, F,u

F_ 2.62

Finally the Mueller Matrix elements can be theoretically computed from the amplitude

scattering matrix elements as follows [3],
Fu=(S. +[,7 +1S: +[s.[" 2
Fio= (Sl —[s.* +[s.* ~[s,[° ) 2
F, =Re(S,S; +5,5;)
F.,=Re(S,S; -5,S;)

o= 81" =[S +[s:I° =[5, )12
Foo = (8" 15" =[5, =[5 2
F,, =Re(S,S; - S,S;)

F,, =Im(s,S; +5,S;)

F,, =Re(S,S; +5,5;)

F,, =Re(S,S; —5,S;)

F,s =Re(S,S; +5,5;)

F,. =Im(S,S; +5,5;)
F,,=Im(s,S; +5,5;)

F,, =Im(s,S; —S,S;)
F,,=1Im(s,S; —s,S;)

F,, =Re(S,;S; -5,5;)
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Now the differential scattering cross sections are measured from the Mueller matrix
elements as [18] follows,

Since the scattered intensity is given by,

Isca :iz dsca Iinc 2631

r dQ sca,inc
And since for unpolarised incident light the Stokes vector can be written in the form,
S, =1(1,0,0,0) 2.63.2

Therefore when the scattered light Es is polarized parallel to the scattering plane (XY), that
is when E, || XY, then,

dc,, 1 1
d—QZWQSZF +|83|2)=W(F“ +F,) 2.64
and whenE; L XY,
dC,.,, 1 1
do :Wﬂslr +|S4|2):W(F11 - I:21) 2.65
So the total intensity of scattered light (using equation 2.64 and 2.65) is given as,
dc,, 1 1
S =g sl sl s8R 2.66

where F,, is the first Mueller matrix element and for unpolarized incident light it is often
termed as the phase function or scattering function.

Another important expression from the Mueller matrix is that for the polarization
‘P’ defined as,

_(FA+FY)®
l:ll

P 2.67

For incident unpolarised light it is often termed as degree of linear polarization and given

as,

2.68

47
Optical characterization of particulate matter using indigenous computational and experimental techniques



Theory of light scattering and Discrete Dipole Approximation
Chapter |1

2.4 Size and shape averaging of the scattering parameters

The Mueller matrix has 16 elements or scattering parameters F;,where i, j = 1 to 4. These
matrix elements depends on the scattering angle (6), wavelength (A) and effective size (
a. ) of the unknown scatterer. The most important element for any scattering event is the

first element F11 phase function [4, 23-25].

Following the properties of Stokes vector where the scattering fields are additive or
total field is a simple vector sum of the individual fields, we can conclude that for the
scattering matrix elements the detected scattered field can be calculated by combining the
intensities scattered by all the particles in the system [23, 24]. For a complex system of
nonspherical particles distributed over wide ranges of shapes and size distribution,
averaging over both constituting shapes and sizes is necessary to arrive at any meaningful
conclusion. Averaging over the light scattering properties of individual particles gives the

scattering matrix elements in the final form F; (/1,9). The size averaged scattering matrix

elements for an incident wavelength of A, at any scattering angle @ for a particular shape is
of the form [26, 27],

F'j'}?Pe _ Fijsize(l’ 9) _ TFij (r, A, 0) n(r) dr 2.69

Tmin

Now suppose N is any arbitrary number such that N =1,2,3...... and the total value of N

signifies the number of random shapes present in the scattering volume for a particular
scattering system. Again Fij (r,}t,é’) is any arbitrary light scattering matrix element for a

single scattering particle of volume equivalent sphere radius r at any scattering angle 6,

and n(r)dr is the number of particles having radii between r and r + dr, also I, and I,

are the volume equivalent sphere radii of the largest and smallest member of the particle
size distribution.

Hence the total scattering matrix element considering both shape and size dispersed
systems can be obtained by averaging their values over the total number of shapes (which

are already size averaged for each shape) as,
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N
Froe =2 Fuy 2.70
1
Letting,
<F'\72?pe> - 5|ze .[F 0 r) 2711

Tmin

N
e (5,07 - 6
1

N,sca

() = (o) = [Coar) () 2712

shape shape
where < sca>5,ze ZCN sca

(CRE) = (Cox )y = ICext r)n(r)dr 2.71.3

Tmin

N
where (C, )" =" C e

size
1

(Caehe) = (Cavs) g f Caps(r) n(r) dr 2.71.4

shape shape
where < abs>5|ze ZCN abs

and where i, j = 1 to 4. All the size and shape averaged values of scattering parameters are
of the form given by equations 2.71.1 to 2.71.4 [26, 27],
The distribution function n(r) can be normalized as,

[n(rydr=1 2.72

In case of averaging, it is necessary to find out the volume scattering function (VVSF)
denoted by ,8(0). This quantity gives the combined scattered fields due to the contributions
of all the shape and size averaged intensities.

For arandomly oriented axially symmetric system ﬁ(@) is represented as [24 - 28],

B (0)= =7 '[F,J (@,r)n(r)dr 2.73

Tmin
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or, B(0)=(B,.(0)"" 2.74

where the units of B(o)is per steradians per centimetre (sr*cm™).

Now degree of linear polarization is written as [5],

P(9)= —% such that |P(¢) <1 2.75
(811(0)) 5 -

These two components g3(o) and P(&) are the most important components in case of light

scattering studies with unpolarized incident light which is evident in case of studies of
terrestrial and extra-terrestrial dust particles and atmospheric aerosols as applicable in this
thesis work.
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