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2.1 Introduction 

One of the basic properties of particles consisting of charged bodies and exposed to 

electromagnetic radiation is that the induced electric and magnetic fields of these particles 

gets aligned due to external force fields. And is the key factor in computation of light 

scattering and other optical properties by particles under the influence of an incident 

electromagnetic field. 

Randomly oriented nonspherical particles are important in light scattering and 

absorption studies as almost all natural particles systems are non-uniformly distributed 

nonspherical particle systems. In the macroscopic level random orientation signifies a 

uniform orientation distribution independent of the individual particle orientations. The 

light scattering properties for such particle systems are also independent of the incident and 

scattering directions. Theoretically dealing with randomly oriented particle systems require 

orientational averaging over all the independent scattering directions i.e. polar ( ) and 

azimuth ( ) directions respectively. The atmospheric particles and those forming terrestrial 

and cosmic dust, show light scattering and extinction characteristics which are typical to 

randomly oriented systems. Almost all the available numerical codes and algorithms for 

light scattering simulations of nonspherical particles (for e.g. T-Matrix and DDA) provides 

the option of selective averaging over particle properties including the scattering directions 

considered for a 3D scattering volume. 

Considering independent orientation, simplifies the experimentations and 

computations for light scattering by aggregates or multiparticle systems [1, 2]. But for 

particle systems found in terrestrial and extra-terrestrial dust, the solution to the light 

scattering problem is not that simple, particularly attenuation of the incident energy in the 

narrow forward scattering band [3, 4]. In spite of all the simplifying approximations and 

assumptions, light scattering by particle clusters or aggregates requires considerable 

amount of intensive mathematical interpretations. 

Basically averaging over orientation directions considers the range for and , as 

],0[   is the polar (zenith) angle and ]2,0[    is the azimuth angle [5, 6]. 
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2.2 Light scattering and Maxwell’s equations 

The light scattering theory starts with the general Maxwell’s electromagnetic equations. 

And a light scattering problems involves rigorous solutions of the four integral equations 

subjected to a set of physical boundary conditions. The most important components of light 

scattering theory are the Stokes parameters and the Poynting vectors of Maxwell’s 

equation. Mathematical relations between these components are established using different 

formalisms in order to define the scattering problem associated with a particular scattering 

event and consequently to obtain the scattering parameters and 44  Mueller matrix 

elements that is, 

441211 ......,, FFFFij           2.1 

The Maxwell’s equations for an arbitrary field can be written as can, 

 D           2.2 

0 B           2.3

t
BE


          2.4 

t
DJH


          2.5 

where D is the electric displacement,  is the electric charge density, B is the magnetic 

induction, E is the electric field intensity, H is the magnetic field intensity, and J being the 

electric current density. 

Considering a time harmonic field the wave equations can be written as, 

)(

0),( wtkrieEtrE           2.6 

)(

0),( wtkrieHtrH           2.7 

where k is the wave vector and ω is the angular frequency. 

Now the electromagnetic wave propagates in a homogeneous medium as [7], 

   tierEtrE  )(Re,         2.8 

   tierHtrH  )(Re,         2.9 
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Using these expressions the Maxwell’s equation in the frequency domain can be written as, 

BiE            2.10 

tiwDH           2.11 

The second expression is obtained by using the continuity equation, 

iJ            2.12 

And JiDDt 
          2.13 

where tD is the total electric displacement.    

The principles that govern the light scattering properties of a scattering particle are [7], 

1. The electric and magnetic fields have continuous tangential components across the 

boundary. 

2. The solutions to the electromagnetic field equations must be divergence free. 

3. The total field inside and outside the particle must be equal.  

4. The tangential components of both electric and magnetic fields vanishes at infinite 

distance from the origin. 

2.2.1 The Poynting vector and boundary conditions 

Consider a small volume element of area ΔA and thickness Δt (Figure 2.1). The volume 

approaches zero when Δt and ΔA approaches zero. ‘ 1n ’ is the normal at the interface. D 

and B are assumed to be finite in the small element considered.  

 
Figure 2.1 Discontinuity at the interface of two medium. 
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The surface current ( AJ ) and surface charge density ( A ) can be written as,  

JJ ttA   0lim         2.14 

 ttA   0lim         2.15 

Now the boundary conditions could be written as [8],  

The tangential component of E is continuous but H is discontinuous, 

 0)( 121  EEn         2.16 

 AJHHn  )( 121         2.17 

And normal component of B is continuous but D is discontinuous, 

0)( 12  BBn         2.18.1 

ADDn  )( 12         2.18.2 

Applying the vector identity equation for the cross product of HE , we obtain, 

)()()( HEEHHE       2.19 

We can write the Poynting theorem for time domain as [7], 

  0








 JE

t

D
E

t

B
HHE      2.20 

Where the term HE is the Poynting vector S of the radiation field, 

HES           2.21    

Now the total power provided by the source per unit volume of the medium is [8],  

  dv
t

D
E

t

B
HdsHEJdvE

vv S

  
















     2.22 

This is the energy conservation theorem which states that the decrease in energy of the 

electromagnetic field is equal to the energy of source electric and magnetic fields plus 

power density due to Poynting vector in the volume element. 

Now in the frequency domain, 

    **** JEDEHBiHE        2.23 

Now the Poynting vector is a physically measurable quantity and it must be real. But the 

electric and magnetic field vectors E and H are complex quantities with real and imaginary 

values. But keeping in mind the ability of optical devices, measurements o of only the real 

or parts of E and H are taken. Considering only the real components of the Poynting vector, 
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   HES ReRe          2.24 

 The vector field equations for time harmonic waves are given by [7], 

    titi erEerEtrE  )(
2

1
, * 

      2.25.1 

    titi erHerHtrH  )(
2

1
, *        2.25.2 

While measuring energy fields the measuring devices responds to time variations of the 

Poynting vector.  

Therefore we can write, 



T

t dttS
T

S
0

)(
1

lim        2.26 

Hence from equation 2.24 we have, 

         titititi erHerHerEerEHES  )(
2

1
)(

2

1
ReRe **  

 2.27 

=      titititi erHerHerEerE  )()(
4

1 **    

=  tierHrErHrE 2* )()()()(
2

1   

Or,  *Re
2

1
HES         2.28 

Equation 2.28 is the expression for time averaged Poynting vector, defined as the real part 

of the vector product of electric field vector and the complex conjugate of magnetic field 

vectors. 

To find out the characteristics of the far field electromagnetic wave, we need to find    

out the radiation field and Poynting vector inside and outside the scattering particle in the 

medium [7], 

      scaincscaincoutout HHEEHES ***
Re

2

1
Re

2

1
  

scaincext SSS         2.29 
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where the Poynting vector for extinction phenomenon in the medium is given by, 

 extextext HES *Re
2

1
        2.29.1 

The Poynting vector for scattered wave is given by, 

 scascasca HES *Re
2

1
        2.29.2  

And that for the incident electromagnetic wave is given by, 

 incincinc HES *Re
2

1
        2.29.3 

2.2.2 Maxwell’s equations for an isotropic dielectric media 

Now for a scattering event the medium plays an important role. It is necessary to define all 

the properties of the medium in terms of physical parameters and incorporate them in the 

Maxwell’s equations. The relations that govern the Maxwell’s equations in an isotropic 

media is given by the constitutive relations [8], 

HB           2.30.1 

ED           2.30.2 

EJ           2.30.3 

where   is the magnetic permeability,  is electric permittivity and   is the electric 

conductivity. 

Now for a material medium the electrical and magnetic properties of the medium must be 

taken into account. For a dielectric media the polarization must be taken into account. 

Equation 2.30.2 becomes, 

PED  0          2.31 

Similarly Polarization P is the average electric dipole moment per unit volume, 

EP e 0          2.32 

where 0 is the permittivity of free space and e  is the electric susceptibility.  

Similarly a magnetic medium is characterized by the magnetic moment M. 

So equation 2.30.1 becomes, 

 MHB  0         2.33 
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where 0 is the permeability of free space. 

M is the average magnetic dipole moment represented as, 

HM m          2.34 

m  is the magnetic susceptibility. 

Again for an isotropic media, 

)1(00 er          2.35.1 

)1(00 mr          2.35.2 

where r and r are the relative permittivity and permeability of the medium. 

2.3 Theory and mathematical formalism of Discrete Dipole Approximation (DDA) 

DDA basically approximates a target by a finite array of polarizable points or dipoles. The 

points acquire dipole moments in response to the incident electric field and produce 

secondary sets of radiation or the scattered fields. The dipoles within a scattering volume 

also interacts with one another via their electric fields resulting in the total scattered 

radiation [9, 10]. 

2.3.1 Short theoretical background of DDA 

The preliminary idea of DDA (also called dipole method or CDM) was introduced by 

DeVoe in 1964 [11, 12]. But in its current widely used form, DDA was first proposed by 

Purcell and Pennypacker [9]. DDA replaces the particle scatterer by point dipoles. These 

dipoles interact with each other and also with the incident field, giving rise to a system of 

linear equations. These equations can be solved in order to obtain dipole polarizations for 

the scattering system. After going through rigorous mathematical treatment all the 

scattering parameters can be obtained as functions of the dipole polarizations. The 

theoretical framework of DDA was first reviewed extensively and modified by Draine and 

Goodman [13] and later by Draine and Flatau [14]. Since the discrete dipole approximation 

can also be obtained from the volume integral equation, the mathematical analysis put 

forwarded by Lakhtakia and Mulholland is most widely used for the solution [8, 15]. 

The mathematical expressions of DDA can be derived from the Clausius-Mossotti 

(or Lorentz-Lorenz) relation which relates the dielectric properties of a material to the 
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polarizability of the primary elements or atoms. It is based on the theoretical assumption 

that the atoms are located on a cubic lattice [16].  

It is possible to obtain exact solutions to all the sets of mathematical equations 

relating to the scattering problem associated with point dipoles. The approximation part of 

the DDA theory is the N-point dipoles which gives a set of N linear equations. It is 

important to properly specify the positions (location jr  of the dipoles, j = 1, ... ,N) and the 

dipole polarizabilities jα of the associated dipoles. 

2.3.2. Mathematical formalism of DDA 

The basic assumption for obtaining solutions to DDA scattering equations is that all the 

point dipoles must represent dipole polarizabilities of a small volume element within the 

continuum target particle. In the final version of the approximation, the whole volume of 

the target must be taken into account in terms of shape and size. 

A specific target geometry can be treated as follows [14], 

For simplification the target orientations are assumed to be fixed with respect to a 

specific coordinate system zyx ˆ,ˆ,ˆ . 

1. A primary lattice is generated with lattice spacing d. And initial space coordinates of an 

arbitrary point situated near origin is taken as  000 ,, zyx . 

2. As for the approximation, dipole arrays are used to represent the entire volume V of the 

target particle. 

3. The lattice spacing d and the position of primary lattice  000 ,, zyx  are changed to achieve 

a relatively accurate approximation of the target volume and dipole positions.  

Each of the dipoles are assigned lattice sites as j = 1, ... ,N, with each occupied sites 

having a cubic subvolume d3. The entire dipole array is rescaled in a way that the lattice 

spacing   3
1

N
Vd  and total volume of all the occupied sites Nd3 is equal to the volume V 

of the target material. 

4. A dipole polarizability j is assigned to all the occupied lattice sites specified by j. 

For measuring the dipole polarizabilities, Clausius-Mossotti relation are used [5], 
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2

1

4

3 3






j

j

j







dCM
        2.36  

where j  is the dielectric function of the scatterer at a particular location jr with respect 

to the origin.  

Draine and Goodman derived the lattice dispersion relations (LDR) using Clausius-

Mossotti relations, as in equation 2.36 and introduced two correction terms ])[( 3kdO  and 

])[( 2kdO [13, 17]. A new concept has been introduced, that an infinite lattice of polarizable 

points with dipole polarizability    can be defined by the dispersion relations of a 

material with a continuous refractive index  m .  

In the long-wavelength limit i.e. 1kd , it is possible to obtain a solution to 

dispersion relations.  

The dipole polarizabilities for each of the lattice points    is expanded in series in 

powers of kd  and 2m as [10], 

        32

3

2

2

2

13 )(3/21 kdikdbmbmb
d

CM

CM
LDR




S


   2.37 

where the values of constants b1, b2 and b3 are determined as follows, 

891531.11 b , 1648469.02 b  and 7700004.13 b  

Also the term S  can be defined as, 

 
23

1

ˆˆ



j

jjeaS          2.38 

where jâ and jê are unit vectors for direction and polarization of incident wave. 

For validity of DDA two conditions must strictly be fulfilled [14], 

1. The first one is the kdm  condition i.e.  

1kdm         2.39 

which states that lattice spacing d must be small compared to incident wavelength within 

the target. 

2. ‘d’ must be small compared to any structural lengths within the target geometry for 

e.g. atomic spacing. 
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The total volume of solid material excluding vacant spaces within the target material 

is considered as V. 

The total volume for an array of N dipoles with lattice spacing d  can be written as, 

3NdV           2.40 

which is also the volume of the whole target material. 

Now a term is introduced to specify the geometrical size of the target as “effective radius 

( effa )”,  

  3
1

43 Vaeff          2.41 

The effective radius of a material target can be defined as the radius of a sphere 

with equal volume as that of the target. Also any specific scattering problem could be 

defined by quantity named “size parameter”, 

 effeff akax 2  effkax        2.42 

This important expressions takes into account all physical parameters that influence a 

scattering event including incident wavelength.  

Now for the first criterion (equation 2.39) to be adequately satisfied for number of dipoles 

N, we require that,  

N 33
)

3
4( xm         2.43 

It is evident that materials with large values of m and effka , require extremely large 

number of dipoles to satisfy the criterion. But a practical limit constraints the dipoles that 

can be employed in a system based on the memory requirements and Random Access 

Memory (RAM) capabilities of a scientific workstation. This limit is 610N . So, DDA is 

not very effective for larger size parameters and refractive index (m) values [18]. 

2.3.3 Calculation of scattering parameters, efficiencies and cross sections 

The calculation of scattering parameters, scattering, absorption and extinction efficiencies 

and cross-sections requires extensive solutions of the electromagnetic scattering equations 

involving the incident and scattered radiation fields associated with the target particles. The 

DDA formalism considers each point dipole as an independent source of secondary 

radiation or scattered wave. 
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Now considering the total number of dipoles j = 1, ... ,N at specific positions jr

and with polarizabilities jα , the polarization jP  for each of the individual dipoles can be 

written as, 

jjj α EP           2.44.1   

where jE is the electric field at jr  due to the incident electromagnetic radiation. 

The incident electric field can be written as, 

 tii jinc,j  rkEE exp0        2.44.2 

where 0E is the amplitude of the incident beam and contribution of each of the mutually 

interacting 1N dipoles to the incident field on a specific dipole is given by,  





jk

kjkinc,jj PAEE        2.45 

where kjk- PA is the electric field at the position jr due to the contribution of the adjacent 

dipole at kr with polarization kP (including retardation effects). 

Each element of jkA is in the form of a 33 matrix with 9 elements, which is called the 

Mueller Matrix. Also the expression for jkA is given by [14], 

 
    ,rr

r

ikr
rrk

r

ikr
jkjk

jk

jk

jkjk

jk

jk

jk

















 323

2 ˆˆ3
1

ˆˆ
exp

IIA ,kj    2.46 

where 


2
k , kjjkr rr   

 
jk

kj
jk r

r
rr 

ˆ and 3I is a 33  identity matrix. 

To simplify the complex scattering problem jjA is defined as
1

 jjj αA .  

With this modification, the only problem now is to find the polarization 
jP

satisfying a system of 3N complex linear equations. For a monochromatic incident wave 

the self-consistent solution for all the oscillating dipole moments 
jP  can be calculated from 

these polarization equations.  The extinction, absorption and scattering cross sections can 

also be calculated from these equations as complex functions of polarization [9, 10]. The 

solutions to these equations gives the amplitude scattering matrix which can be used to 

calculate the Mueller Matrix elements. 
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The solution to the set of linear equations is given by, 

inc,j

N

k

kjk EPA 
1

        2.47    

After solving these equations for all the 
jP values the cross section values can be 

calculated. Now we require the expressions of optical theorem to derive the extinction cross 

section ( extC ) values, 

 incinc

inc

ext EE
E

k
C 


 *

2
Im

4
       2.48.1 

Now the rate of energy attenuation of the incident beam is, 

])(Im[
2

)Im(
2

1 **

inc

ext

*α
ω

E
ω

dt

dE
PPP








     2.48.2 

Hence we can write equation 2.48.1 as, 

  





N

j

jinc,jext

kπ
C

1
2

0

Im
4

PE
E

       2.48.3   

Taking ‘ω’ as the angular frequency of the incident light and the expression for energy 

absorbed as: 

**

abs

k*α
ω

dt

dE
PPPP 







  31

3

2
])({Im[

2
     2.48.4 

Here the additional term k3 is a contribution of the radiative reactions. 

The expression for absorption cross section ( absC ) becomes, 

  













N

j

jjjjabs kα
E

kπ
C

1

2
31

2

0
3

2
Im

4
PPP     2.49 

Once these cross sections are known it is possible to obtain the scattering cross 

section (
scaC ) by using the expression, 

absextsca CCC          2.50.1 
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The scattering cross section can be computed using the power radiated by the 

oscillating dipoles. Now since the power radiated by the oscillating dipole is, 

*

sca c

ω

dt

dE
PP 








3

4

3
        2.50.2 

Therefore, 

 



N

j

jjj

inc

sca rik)(dΩ
E

k
C

1
2

4

)ˆexp(]ˆˆ[ nPnnP     2.50.3 

Also the expression for asymmetry parameter ‘g’ can be written as, 





N

j

jjj

incsca

rik)(PdΩ
EC

k
θg

1
2

3

)ˆexp(]ˆˆ[ˆcos nPnnkn   2.51 

Again, in the far field the scattered electric field can be written as, 

     j

N

j

jsca rrrik
r

ikrk
PIrE 3

1

2

ˆˆˆexp
exp

 


    2.52 

A complex scattering matrix was introduced by Draine to compute the light 

scattering properties of targets approximated by dipole arrays [10] as, 

 ssml ,φθf          2.53 

where index l = 1,2 represents orthogonal incident polarization states 01ê and 02ê with 

01002
ˆˆˆ eke   while m = 1,2 denotes the scattered polarization states ssee ̂ˆˆ

||1  and 

sSee ̂ˆˆ
2   , also 

s and s  denotes the polar and azimuthal directions of scattering plane 

respectively.  

The scattering matrix mlf can be related to the polarization states as follows, 

The scattering field equations need to be solved for the two orthogonal polarization states 

01ê and 02ê .  

Therefore, an incident electric field takes the form, 

 tikie jlinc,j  rkEE 00
ˆexpˆ       2.54 

‘ lê ’ being the incident wave polarization state, and where k is the wave vector. 
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Assuming 
l

jP  to be the polarization for jth dipole, a new term can be defined as,

  l

j

-l

j ti PEp exp1

0         2.55 

The scattering properties of any arbitrary target can be fully characterized by a 22

complex matrix  kkfml
ˆ,ˆ

0  where 0k̂ and k̂ represents the incident and scattered directions 

[10]. The expression for this matrix can be written in terms of polarization as, 

   j

N

j

m

l

jml kiekk,kf rkp  




0

1

3

0
ˆexpˆˆ       2.56 

where mê is the polarization state of the scattered wave. 

For an arbitrary incident wave the field equation is:  

 tikiinc  rkEE 00
ˆexp  

          =   



2

1

000
ˆˆexp

l

lleatiki rkE      2.57 

where   2
1

00

 EEE  and  l

-

l ea 00

1

0
ˆEE  

Similarly the scattered wave can now be written as, 

  



2

1

2

1

0
0 ˆˆexp

l

lml

m

msca afetiki
r

rk
k

E
E      2.58 

The scattered and the incident wave at the origin (  0incE ) can now be related as,  

   
  
















































02

01

2221

1211

ˆ0

ˆ0exp

ˆ

ˆ

e

e

ff

ff

r

ri

φ

θ

inc

incsca

ssca

ssca

E

E

k

k

E

E
    2.59.1 

However since the most general form of the amplitude scattering matrix [3] is given 

as, 










14

32

SS

SS
 in literature, equation 2.59.1 may also be expressed as, 

   
  








































iinc

i||incsca

ssca

ssca

e

e

SS

SS

r-i

ri

φ-

θ

ˆ0

ˆ0exp

ˆ

ˆ

14

32

E

E

k

k

E

E
    2.59.2 

where ||
ˆ

ie and iê represents the parallel and perpendicular polarization directions. 

||0
ˆˆˆ

ii eke  . 
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So, we may also write, 

 
 

 
  




















































 02

01

2221

1211

14

32

ˆ0

ˆ0

ˆ0

ˆ0

e

e

ff

ff
i

e

e

SS

SS

inc

inc

iinc

i||inc

E

E

E

E
   2.59.3 

Now the scattering matrix elements can be calculated from mlf , 

211 iSf           2.59.4 

312 iSf           2.59.5 

421 iSf           2.59.6 

122 iSf           2.59.7 

2.3.4 Mueller Matrix or Scattering Matrix 

The scattering properties of a finite target is fully described by the Stokes parameters 

 iiii VUQI ,,,  of an incident wave and  SSSS VUQI ,,,  of the scattered wave. Stokes vector 

‘I’ is the total light intensity, ‘Q’ is the difference of light intensities polarized at 0⁰ and 90⁰ 

respectively, ‘U’ is the difference between intensities polarized at angles +45⁰ and -45⁰ 

respectively and finally ‘V’ is the difference in intensities polarized at right and left circular 

polarization directions. 

The scattered and incident waves can be related as [19], 











































i

i

i

i

S

S

S

S

V

U

Q

I

F
Rk

V

U

Q

I

22

1
        2.60 

where F is the 16 element matrix or 44  Mueller matrix or scattering matrix of the target 

particle, k is the wave vector and R is the distance between the scatterer and the detector. 

These stokes parameters are related to the Mueller Matrix in the form of a matrix equation 

given as, 















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













































i

i

i

i

S

S

S

S

V

U

Q

I

FFFF

FFFF

FFFF

FFFF

Rk

V

U

Q

I

44434241

34333231

24232221

14131211

22

1
     2.61 
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For randomly oriented spherical or nonspherical particle systems the Mueller matrix 

‘F’ reduces to a matrix with 8 non – zero and independent elements.  

And can be written in a simple form considering matrix elements and their mirror 

components due to symmetry [4, 5, 20-22], 

 

      2.62 

 

 

Finally the Mueller Matrix elements can be theoretically computed from the amplitude 

scattering matrix elements as follows [3], 

  2/
2

4

2

3

2

2

2

111 SSSSF   

  2/
2

3

2

4

2

1

2

212 SSSSF   

   413213 Re SSSSF  

   413214 Re SSSSF  

  2/
2

4

2

3

2

1

2

221 SSSSF   

  2/
2

4

2

3

2

2

2

122 SSSSF         

   413223 Re SSSSF  

   413224 Im SSSSF  

   314231 Re SSSSF  

   413232 Re SSSSF  

   432133 Re SSSSF  

   341234 Im SSSSF  

   312441 Im SSSSF  

   312442 Im SSSSF  

   432143 Im SSSSF  

   432144 Re SSSSF  






















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Now the differential scattering cross sections are measured from the Mueller matrix 

elements as [18] follows, 

Since the scattered intensity is given by, 

inc

incsca

sca

sca I
d

d

r
I

,

2

1










        2.63.1 

And since for unpolarised incident light the Stokes vector can be written in the form,

)0,0,0,1(ISi          2.63.2 

Therefore when the scattered light ES is polarized parallel to the scattering plane (XY), that 

is when XYES || , then, 

   21112

2

3

2

22 2

1

2

1
FF

k
SS

kd

dCsca 


     2.64 

and when XYES  , 

   21112

2

4

2

12 2

1

2

1
FF

k
SS

kd

dCsca 


     2.65 

So the total intensity of scattered light (using equation 2.64 and 2.65) is given as,

  112

2

4

2

3

2

2

2

12

1

2

1
F

k
SSSS

kd

dCsca 


    2.66 

where 11F is the first Mueller matrix element and for unpolarized incident light it is often 

termed as the phase function or scattering function. 

Another important expression from the Mueller matrix is that for the polarization 

‘P’ defined as, 

11

2
1

2

31

2

21 )(

F

FF
P


         2.67 

For incident unpolarised light it is often termed as degree of linear polarization and given 

as, 

11

12

F

F
P           2.68 
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2.4 Size and shape averaging of the scattering parameters 

The Mueller matrix has 16 elements or scattering parameters ijF where i, j = 1 to 4. These 

matrix elements depends on the scattering angle (θ), wavelength (λ) and effective size (

effa ) of the unknown scatterer. The most important element for any scattering event is the 

first element F11 phase function [4, 23-25]. 

 Following the properties of Stokes vector where the scattering fields are additive or 

total field is a simple vector sum of the individual fields, we can conclude that for the 

scattering matrix elements the detected scattered field can be calculated by combining the 

intensities scattered by all the particles in the system [23, 24]. For a complex system of 

nonspherical particles distributed over wide ranges of shapes and size distribution, 

averaging over both constituting shapes and sizes is necessary to arrive at any meaningful 

conclusion. Averaging over the light scattering properties of individual particles gives the 

scattering matrix elements in the final form  ,ijF . The size averaged scattering matrix 

elements for an incident wavelength of λ, at any scattering angle  for a particular shape is 

of the form [26, 27], 

      drrnrFFF

r

r

ij

size

ij

shape

ijN 
max

min

,,,,       2.69

  

 

Now suppose N is any arbitrary number such that N = 1,2,3…… and the total value of N 

signifies the number of random shapes present in the scattering volume for a particular 

scattering system. Again  ,,rFij  is any arbitrary light scattering matrix element for a 

single scattering particle of  volume equivalent sphere radius r at any scattering angle θ, 

and n(r)dr is the number of particles having radii between r and r + dr, also maxr and minr

are the volume equivalent sphere radii of the largest and smallest member of the particle 

size distribution. 

Hence the total scattering matrix element considering both shape and size dispersed 

systems can be obtained by averaging their values over the total number of shapes (which 

are already size averaged for each shape) as, 



Theory of light scattering and Discrete Dipole Approximation

  Chapter II 

  
 

 

 49 
Optical characterization of particulate matter using indigenous computational and experimental techniques  
   
 
 
 


N

shape

ijN

shape

sizeij FF
1

,,         2.70 

Letting, 

      drrnrFFF

r

r

ijsizeij

shape

ijN 
max

min

,,       2.71.1 

where   
N

shape

ijN

shape

sizeij FF
1

,  

    drrnrCCC

r

r

scasizesca

shape

scaN 
max

min

,
    2.71.2 

where 
N

shape

scaN

shape

sizesca CC
1

,  

    drrnrCCC

r

r

extsizeext

shape

extN 
max

min

,
    2.71.3 

where 
N

shape

extN

shape

sizeext CC
1

,  

    drrnrCCC

r

r

abssizeabs

shape

absN 
max

min

,
    2.71.4  

where 
N

shape

absN

shape

sizeabs CC
1

,  

and where i, j = 1 to 4. All the size and shape averaged values of scattering parameters are 

of the form given by equations 2.71.1 to 2.71.4 [26, 27], 

The distribution function n(r) can be normalized as, 

  1
max

min

 drrn

r

r

         2.72 

In case of averaging, it is necessary to find out the volume scattering function (VSF) 

denoted by   . This quantity gives the combined scattered fields due to the contributions 

of all the shape and size averaged intensities.  

For a randomly oriented axially symmetric system    is represented as [24 - 28], 

     drrnrF
k

r

r

ijsize ,
1 max

min

2
        2.73 
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or,     shapes

size          2.74  

where the units of   is per steradians per centimetre (sr-1 cm-1).  

Now degree of linear polarization is written as [5], 

 
 

  shaoe

size

shape

size

S

S
P






11

12
  such that   1P      2.75 

These two components    and )(P  are the most important components in case of light 

scattering studies with unpolarized incident light which is evident in case of studies of 

terrestrial and extra-terrestrial dust particles and atmospheric aerosols as applicable in this 

thesis work. 
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