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INTRODUCTION 

Climate change is a major threat to the humans and other living organisms on the earth. 

The increasing atmospheric concentrations of greenhouse gases (CO2, CH4 and N2O) are 

the main contributors to the global warming [1]. The strong relationship between 

increasing CO2 concentration and global warming is the most discussed environmental 

issue among the scientists, policy makers, politicians and common people over the past 

century [2]. In response to this serious issue in the year 2015, an agreement was signed at 

Paris among 195 representatives of different nations to maintain the global average rise 

of temperature below 2°C above pre-industrial levels [3]. Accordingly, the nations 

targeted to limit the increase of global temperature 1.5°C above the preindustrial levels 

[3]. The atmospheric characteristics of the earth have been influenced by the rapid 

change in atmospheric CO2 concentration [4]. Anthropogenic activity is reported to be 

responsible for addition of 10 billion tonnes of carbon per year to the atmosphere [5]. 

Fortunately, out of this total emitted carbon only half of this stays in the atmosphere and 

the remaining half is believed to be absorbed by terrestrial sinks like forests and oceans 

[6, 7]. The terrestrial carbon sink has been estimated as 2.6 PgC in the year 2010 by [8]. 

By regulating the use of fossil fuels it is possible to control the emission of CO2 but it 

will have serious impact on the economic growth [9, 10]. Forests are considered as one 

of the most important and major terrestrial carbon sinks of the global carbon cycle [11, 

12] as they can assimilate and store carbon for a longer duration compared to other 

ecosystems [13]. The carbon content of the forest ecosystem is much higher than the 

atmosphere [14]. The role of forests across the globe is very critical because of its gross 

primary productivity (GPP) is near about half of the total GPP of the terrestrial 

ecosystems [8]. Terrestrial ecosystems and oceans are therefore considered as major 

ecosystem services as without them the rate of climate change will become twice [5].The 

large carbon storage capacity of the tropical forests is well known to all but still there are 

prevailing uncertainties on the net carbon balance of the terrestrial systems [15].  The 

change of land use and land cover pattern are expected to release carbon in the range 

0.81 to 1.14 PgC yr
-1

[16, 17, 18] while the potential sink strengths of the forests were 

estimated in the same range [13, 19]. The tropical forests across the world are reported as 

net carbon source to the atmosphere with net emission of 425.2 ± 92 Tg C yr
-1

 [15]. But 

still there are lots of prevailing uncertainties over the spatial and temporal variations of 

these terrestrial sinks/source due to lack of measurement campaigns over the regions 
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such as south Asia [20, 21]. Thus in the formation of annual carbon budget reliable and 

long term CO2 flux data from different terrestrial ecosystem is very essential. 

The natural forest cover across the globe is decreasing day by day to full fill the 

need and livelihood of increasing human population. Many of the natural forest 

ecosystems have also been converted to manmade plantation forests to full fill the need 

of growing human population such as timber products [22]. With the rise of temperature 

due to global warming, the functioning of plants and ecosystem are also expected to 

change which will ultimately influence the carbon assimilation capacity of the terrestrial 

ecosystems [23]. The Kyoto protocol has given importance on demand of proper 

quantification of carbon reservoirs in parallel to making policies for lowering the 

emission [24].  

Most of the published literatures on net carbon balance studies used satellite 

based methods [25, 26, 27] and advanced remote sensing techniques [28, 29, 30] but they 

were always constrained due to geography and topography of the sites, spatial resolution 

and unavailability of data. Eddy covariance method is the standard and most reliable tool 

for the quantification of gas and energy fluxes between ecosystem and atmosphere. The 

flux estimated by eddy covariance technique is the measured covariance between 

fluctuations in concentration of a gas and vertical component of wind in high frequency. 

Eddy covariance method can be used for different spectrum of time (hour to years) and it 

can measure fluxes coming from wider area [31]. Due to the proficiency and reliability 

of the EC method ecosystem scientists around the globe have been using it since 1990’s 

till date continuously for long duration of time [32] under the global network 

“FLUXNET”. 

The climate and ecosystems of India are very peculiar and diverse due to 

different climatic and soil conditions [33]. India stands on 8
th

 position amongst the 

leading 10 biodiverse countries [34]. In India, out of the total area, 21.05 % of areas are 

occupied by forests and trees [35]. Therefore, it is very important to understand the 

carbon dynamics of Indian forests ecosystems. Although, Indian forests are reported as 

substantial sink of carbon [36] but the variability of the carbon sink strength of different 

forest ecosystems are not well documented. Carbon studies in Indian forest ecosystems 

are quite challenging on account of varying localities and difficulties in accessibility 

[12]. Systematic data on forest carbon of different region and types of forest of India are 
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inadequate. Although the direct flux computation with the help of Eddy covariance 

method was being carried out over diverse forest ecosystems across the globe, the 

concept is still new in India. Such kind of measurement efforts covering various forest 

and agricultural ecosystems are very rare in Indian subcontinent which is extremely 

important for accurate prediction of future climate change over the globe [37, 38]. 

The seasonal and annual variation of CO2 flux is a function of many biophysical 

factors [39]. The seasonal and inter annual variability of carbon assimilation is mainly 

driven by the variations of clouds and rainfall which controls the primary drivers like 

radiation, temperatures of soil and air, humidity and soil moisture [40, 41]. Wet and dry 

conditions of any ecosystem might decrease or increase the photosynthesis rate and thus 

affecting the carbon assimilation rate [42]. The stomates of leaves play an important role 

in controlling the exchange process of CO2 and water vapour between biosphere and 

atmosphere [43, 44]. The process of stomatal opening and closure in plants is generally 

determined by humidity of the atmosphere and soil moisture content [45, 46]. On the 

other hand the correlation between photosynthesis and atmospheric temperature is 

reported to be nonlinear [47].   

 Carbon stocks of the terrestrial ecosystems are reported to be around 86 % 

including different forest types in different zones [48]. Soil is an important component of 

each terrestrial ecosystem. Soil organic carbon is a major component of global carbon 

cycle as it is the largest terrestrial reservoir of carbon [49]. Among all the terrestrial 

ecosystems forest has the capacity to store higher amount of SOC [50]. The amount of 

carbon available in terrestrial plant and soil are about 650 Pg C and 2300 Pg C 

respectively [51]. Globally the soil organic carbon stocks in top 1 metre of soil was 

estimated in the range 1460 to 1550 Gt [52, 53]. The carbon sequestration potential of 

the forest ecosystems of Northeast India are reported to be high [54]. The sink strength 

of soils is also regulated by various natural and anthropogenic sources [11]. 

The microbes present in the soil decompose SOC and parallely the CO2 is 

released to the atmosphere by the process of heterotrophic respiration. Soil CO2 efflux is 

the sum of heterotrophic respiration and root respiration [55, 56].  Soil CO2 efflux is the 

largest outgoing flux of a terrestrial ecosystem. The abiotic factors like temperatures and 

moistures of soil are the major driver which controls the variation in CO2 efflux [57]. 

The heterotrophic respiration is highly sensitive to changes in temperature, thus small 
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increase in temperature can trigger the decomposition rate of SOC which in turn might 

change a net carbon sink to a source [58]. Since, soil respiration is an important flux 

from soil to atmosphere, without the clear understanding of ecosystem processes related 

to soil respiration in different region and climatic condition, it is not possible to predict 

future CO2 concentrations of the atmosphere [59]. The net primary productivity of the 

forests of Asia is very high due to the monsoonal impact as a result they can gather 

ample quantity of SOC [60, 61]. Hence, due to global warming the heterotrophic 

respiration component might play a crucial role on climate change [62, 63, 64].   

Partitioning of net CO2 flux in to its component fluxes gross primary productivity 

(GPP) and ecosystem respiration (Re) is very essential to understand the biophysical 

processes which controls the variation of net carbon exchange [65].  

The aggregate photosynthesis of all the leaves of an ecosystem is the Gross 

primary production [66, 67]. Terrestrial gross primary production (GPP) is considered as 

the largest terrestrial flux between ecosystem and atmosphere. Terrestrial GPP of an 

ecosystem provides the capacity of absorbing CO2 from the atmosphere and hence it 

plays a pivotal role in land carbon sequestration [68, 69]. The gross primary production 

of the forest primarily depends on leaf area index and photosynthetically active radiation 

[70]. GPP of any ecosystem is also sensitive towards the anomalies in weather, climate 

and nutrient availability [71, 72]. GPP cannot be measured directly due unavailability of 

direct measurement techniques at proper spatial resolution [73]. The presently used GPP 

measurement technique using leaf level photosynthesis measurement has some 

limitations due to environmental conditions [74]. However, it is possible to estimate GPP 

in an ecosystem scale from net ecosystem exchange computed with the help of eddy 

covariance method [75, 76].  

After GPP the ecosystem respiration is considered as the second largest terrestrial 

carbon flux from ecosystem to the atmosphere [1]. Thus a small change in ecosystem 

respiration might significantly affect the CO2 concentration level of the atmosphere [77]. 

Increase in ecosystem respiration with rise of temperature might have a positive 

feedback on global climate and warming process [78, 79]. In total ecosystem respiration 

30-90 % contribution comes from soil respiration [80, 81], which has two components 

autotrophic respiration and heterotrophic respiration. Ecosystem respiration depends on 

temperatures of soil and air [82, 83]. Leaf respiration is one of the principal components 
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of ecosystem respiration and its role in terrestrial GPP estimation is very important [84, 

85]. Ecosystem respiration is major contributor of net CO2 flux during the night time in 

deciduous forest sites [86]. Therefore it is very important to study the behaviour and 

magnitude of ecosystem respiration and its relation to different biotic and abiotic factors 

in the unique forest ecosystem of Northeast India for accurate documentation of regional 

and global carbon budgets. 

Tropical forests of this earth has the highest net primary productivity among the 

all other terrestrial ecosystems [13, 87]. Net primary productivity is the function of 

different environmental factors, soil properties and CO2 concentrations of the atmosphere 

[88, 89]. Net ecosystem productivity (NEP) is the difference between GPP and 

ecosystem respiration [90]. In long scale ecosystem carbon research the role of NEP in 

interpreting the carbon cycle is of great consequence [91]. NEP of any ecosystem is an 

indicator of potential sink/source strength of the respective ecosystem on annual scale.  

The North-eastern region of India is very unique due to its unusual climate and 

geographical location. The forests of Northeast India are rich in biodiversity and 

relatively undisturbed due to different factors like ruggedness and remote location [22]. 

Northeast India ranked among top 25 biodiversity hotspots around the globe [92, 93]. 

There are several reports on carbon stock estimation of forest ecosystem of India but 

reports from Northeast Indian forest ecosystem are very few. Kaziranga National Park 

(KNP) located in Assam is a world heritage site with in Asian monsoon zone which 

receives very heavy rainfall during pre-monsoon, summer monsoon and during summer 

to autumn transition period. The frequent occurrence of flood episodes makes the forest 

inaccessible during monsoon. Therefore, to understand the seasonal and inter annual 

variability of CO2, water vapour and energy fluxes of this unique semi evergreen forest 

of North-eastern India the present study was initiated during 2014. Due to extensive 

forest cover, rivers and mosaic of ecosystems present inside the forest, KNP can be 

considered as a good representative of North-eastern forests. To our best of knowledge 

there are hardly any literatures available on the meteorology and carbon dynamics from 

this kind of semi evergreen deciduous forest in Indian subcontinent using real time high 

frequency data. Therefore, the estimated NEP of the unexplored semi evergreen forest of 

KNP will give very important and valuable informations related to the regional carbon 

cycle.   
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Considering the above background we designed a study to address the prevailing 

scientific gap on the forest carbon cycle of Northeast India. This study was carried out 

over the semi evergreen forest Kaziranga national park (KNP) with the following 

research questions and objectives. 

Research question 1: How the carbon sequestered by a terrestrial ecosystem is affected 

by changing season of tropical climate in a forest ecosystem with particular reference to 

Kaziranga national park. 

Objective 1: To study the seasonal and annual variation of CO2 flux and changes in 

atmospheric CO2 concentration. 

Research question 2: How the rate of CO2 uptake and respiration of a terrestrial 

ecosystem varies during different stages of its growth and how these processes are 

influenced by changing climate parameters. 

Objective 2: Investigation and analysis of the factors regulating the seasonal and diurnal 

variations of CO2 concentrations and fluxes. 

Research question 3: How much of atmospheric carbon is fixed by the plants in an 

ecosystem is portioned to biological carbon contributing to growth of the ecosystem. The 

Carbon released from an ecosystem and carbon fixed by the ecosystem may largely 

influence the net CO2 flux. The gross carbon uptake is also expected to regulate by leaf 

phenology and incident PAR.  To address these questions objective 3 have been 

designed.   

Objective 3: To study the effect of photosynthetically active radiation on ecosystem 

gross primary productivity and net ecosystem exchange. 

Research question 4: Soil organic carbon (SOC) provides a potential sink for 

atmospheric CO2. Understanding the interactions between plant and SOC pools provides 

a key to managing the processes controlling C fluxes between plant, soil and atmosphere. 

As such how soil organic carbon of the forest ecosystem of KNP influence the net flux of 

CO2. 

Objective 4: To study the relationship of annual and seasonal variation of CO2 flux with 

soil carbon dynamics. 
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