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REVIEW OF LITERATURE 

2.1. CO2 emission a global problem: 

Over the last century the atmosphere and biosphere of the earth has been experiencing 

remarkable changes in climate [1, 2, 3] caused by the anthropogenic emissions of 

greenhouse gases. Agricultural activities have also contributed by about 20% to the 

present GHG concentration in the atmosphere [4]. As per the measurements of Mauna 

Loa observatory, atmospheric CO2 concentration has crossed 400 ppm which has 

increased by about 24% since 1950 [5, 6]. As predicted by Intergovernmental panel on 

climate change (IPCC) the atmospheric concentration might get doubled towards the end 

of the next century [7, 8]. 

 After the disclosure of increasing trend of CO2 concentrations in the atmosphere 

[9], the analysis on global warming process through greenhouse effect has received 

attention of the world community. The role of human activities on causing this global 

climate change is undisputable [10]. Although the measurements indicating rise of 

atmospheric CO2 concentration per year are very precise and reliable [11, 12, 13] but 

those estimates cannot be used for global level comparison due to unavailability of the 

quantified uptake rate of land and ocean [14, 12, 15]. Estimation of natural sinks with 

high precession and accuracy is necessary to understand the process which is causing the 

difference between anthropogenic CO2 emission and atmospheric CO2 concentration 

level [12]. The Kyoto protocol has given importance on identification and accurate 

quantification of sources and sinks of atmospheric CO2 [16]. It is very much essential to 

picturize the variation and distribution of terrestrial carbon cycle to address the “missing 

sink” in global carbon cycle [17, 18, 19].  

2.2. CO2 as greenhouse gas:  

The major greenhouse gases whose increasing concentrations are considered to 

be the major threat to the earth’s atmosphere are carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O). Over the last 100 years the estimated global warming potential 

of CH4 and N2O relative to CO2 are 28 and 298 respectively [8]. CO2 contributes about 

77% to the total anthropogenic greenhouse gas emission and is reported to have the 

highest contribution on climate change [3, 7].The causes of increasing CO2 concentration 

in the atmosphere are well known now, among which burning of fuels to power 
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advanced industrial economics and clearing of forest cover and woodlands are being 

often discussed [10, 20]. About half of the anthropogenic CO2 emitted remains in the 

atmosphere and the rest amount is absorbed by natural sinks like terrestrial biosphere and 

ocean [14, 15, 21]. 

2.3. Greenhouse gases and climate change:  

Increasing concentration of greenhouse gases in the atmosphere is a matter of concern 

for global scientific community and the policy makers because of the ability of 

greenhouse gases to trap the outgoing longwave radiation which increases earth’s surface 

temperature [22, 23]. Some of the potential major consequences of increasing 

atmospheric CO2 concentration are earth’s surface warming, polar ice caps melting, 

rising of the sea level and change in physiological activity of plant and ecosystem [24, 

25, 26, 27]. Over the years oceanic warming was reported to be one of the key 

consequences of anthropogenic climate change [28]. Observational efforts are essential 

to understand the response of ecosystems to the warming process [29]. 

2.4. Sources and sinks of CO2:  

The global carbon cycle is the combination of three major components [30] which 

includes (i) Land (vegetation, soil and geological objects) (ii) Atmosphere and (iii) 

Ocean. 

2.4.1. Emission of CO2 from fossil fuels and Industry:  

Combustion of fossil fuels has been considered as one of the major anthropogenic 

sources responsible for increase in atmospheric CO2 concentration [31]. Globally CO2 

emission from fossil fuel and industry can be divided in to following sources: fossil fuel 

combustion at national level, gas flaring from industry and wells, production of cement, 

oxidation process of hydrocarbons and fuels used by international bunkers [7, 32]. 

Emissions of CO2 from fossil fuel and industry are about 90% of total CO2 emitted from 

human activity [33]. In city area, CO2 emission is contributed by fossil fuel burning for 

transportation, to fulfill the house hold energy demand as well as in different industries.  

In the fastest growing transport sector, burning of gasoline or diesel fuels can result in 

direct emission of CO2 to the atmosphere. The rate of production and uses of cement is 

growing every year [34], which is a significant source of CO2 emission by carbonate 

decomposition. Production process of one ton of cement could release 900 kg of CO2 to 
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the atmosphere [35]. Production of cement releases CO2 to the atmosphere by two ways, 

first by the chemical reaction in production of the necessary components, which could 

contribute about 5% of the anthropogenic CO2 emission [36]. Large amount of CO2 is 

also released in the combustion process of fossil fuels in energy generation for heating 

the raw ingredients during cement production [37]. Thus, cement industry can contribute 

about 8 % of global carbon dioxide emission [38].    

2.4.2. Emission of CO2 from land use change:  

CO2 emission from land use change can be considered as second largest source of 

anthropogenic CO2 emissions. Land use change contributes to increasing atmospheric 

CO2 concentration by changing the structure of terrestrial ecosystems and by soil CO2 

emission [39]. The processes like deforestation, burning of biomass, conversion of any 

natural ecosystem to agricultural ecosystem and soil cultivation can lead to increase in 

atmospheric CO2 level [40]. Along with the land use change both the vegetation type and 

management practices gets altered [41], which in turn can change above ground biomass, 

microbial properties of soil, organic matter present in soil and microenvironment 

responsible for plant growth [42]. The CO2 added to the atmosphere due to the change of 

land use and land cover is the most uncertain flux in the global carbon budget because of 

uncertainties in deforestation or afforestation rates and due to uncertainties in carbon 

densities of lands undergoing change [43]. It was reported that 1.6–1.7 Pg C/year was 

emitted in to the atmosphere due to deforestation and conversion of tropical rain forests 

to agricultural ecosystems [44]. On annual basis an amount of 1.3 ± 0.7 Pg C year
-1 

has 

been estimated due to tropical land use change [21]. In a study Wang et al., [45] reported 

about the increase in annual soil respiration by 3-22% after the transformation of a 

grassland ecosystem to woodland. It was reported that in tropical zone the deforestation 

process is getting lower than earlier which contributed about 10 % to the total 

anthropogenic CO2 emission [46]. The CO2 emissions due to land use change are getting 

lower as a result of strict legal action taken against deforestation in different parts of the 

country [47].        

2.4.3. Soil as a source of CO2:  

The role of soil in global carbon cycle is very important as it can absorb and release CO2 

[48, 49]. Carbon dioxide can be released to the atmosphere by the process of soil 

respiration. Soil respiration is mainly combination of two processes heterotrophic 
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respiration and autotrophic respiration [50]. Soil respiration depends on temperature and 

moisture content of soil [51]. On annual basis approximately 70 Gt of carbon was 

reported to be respired back to the atmosphere by soil which is nine times greater than 

the global annual fossil fuel emissions [52, 53]. Accurate estimation of soil respiration in 

different ecosystems is very important for forecasting future CO2 concentration in the 

atmosphere [54]. Soils of agricultural ecosystem can also act as source of CO2 depending 

on management, climate and C saturation [55]. A small change in soil respiration may 

have a large impact on the carbon cycle of the forest and a carbon sink may turn in to 

source [56]. 

2.4.4. Ocean as a sink of CO2:  

Significant amount carbon released from anthropogenic activities can be absorbed by the 

ocean. Ocean absorbs about one third of the CO2 released from fossil fuel burning and 

deforestation activities [57]. It was reported that from year 1800 to 1994 approximately 

118 ± 19 Pg C had been removed from the atmosphere by ocean [58], this value is nearly 

equal to 50% of the CO2 emitted to the atmosphere by fossil fuel burning [59, 60].Ocean 

has the higher CO2 storage capacity than the terrestrial ecosystems [61]. Ocean contains 

nearly 38000 Gt of Carbon and it absorbs around 1.7 ± 0.5 Gt of carbon from the 

atmosphere annually [62].  

2.4.5. Terrestrial biosphere as a sink of CO2:  

One of the important strategies to mitigate the ongoing human induced climate change is 

the carbon sequestration in terrestrial biosphere which includes the management process 

to increase the carbon stock in biomass and soil [63]. The estimated carbon sequestration 

potential of the terrestrial system is 5-10 Gt C year
-1

 [62]. In a study of European carbon 

cycle, Janssens et al., [64] reported that about 7-12 % of industrial carbon emission was 

sequestered by terrestrial ecosystems. Since 1960s terrestrial ecosystems has sequestered 

about 30% of CO2 emitted to the atmosphere due to anthropogenic activities [53].  

2.4.5.1. Forest ecosystem:  

Forests are considered as important component of global carbon cycle due to its capacity 

of storing large amount of carbon in forest biomass [65, 66]. The amount of carbon 

stored in forest ecosystem is twice than the atmosphere [67]. Globally, around 25 % of 

the land surface is covered by forests [68]. In Northern hemisphere about 2 × 10
7

 km
2
 of 
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area are covered by boreal and temperate forests and they are acting as carbon sink by 

sequestering 0.6 -0.7 PgC per year [69]. Globally, the carbon stock of tropical forest is 

approximately one fourth of the total forest carbon stock [21, 70]. In an earlier 

publication forest ecosystem is reported to sequester 359 billion tons of carbon [71]. Old 

growth forests are also acting as significant sinks of carbon dioxide [72, 73]. In a study 

Luyssaert et al., [74] reported that forests of age between 15 to 800 years show positive 

net ecosystem productivity. The carbon sequestration potential of forest ecosystems 

might get affected by increasing global surface temperature, changes in rainfall pattern 

and nitrogen deposition [75]. Thus, the change in climate can affect the forest carbon 

dynamics and may have influence on global carbon cycle. In a study conducted over 23 

different forest ecosystems of Europe and USA between 1995 to 2011 by Fernandez-

Martinez et al., [76] 1 % increase in annual gross primary production and net primary 

production has been reported.    

2.4.5.2. Soil as sink of CO2: 

 Out of all terrestrial ecosystems only soil can store carbon for a long period of time [77]. 

Soil carbon sequestration intensifies the pool of soil organic matter and secondary 

carbonates of the soil [78]. Globally soil carbon pool has been reported to contain 2500 

Gt of carbon including both soil organic and inorganic carbon [79]. The soil carbon pool 

is 3.3 times bigger than the atmospheric pool and 4.5 times greater than the biotic pool 

[79]. Soil can store 1500-2000 Gt of organic carbon [80] and the carbon storage capacity 

of the soils boreal and temperate forest is 33% more than the total carbon stored in 

tropical forests [81]. The average carbon sequestration potential of the soils of United 

States was estimated as 288 Tg C yr
-1 

[78]. 

2.5. CO2 flux measurement by eddy covariance:  

Earlier CO2 fluxes were measured and reported by various researchers [82, 83, 84, 85] 

over forest ecosystems using the flux gradient technique, but flux gradient techniques 

have certain disadvantages and encountered from various practical difficulties. Although 

CO2, H2O and energy fluxes were being measured since late 1950s and early part of 

1960’s, the development of new technology (eddy covariance) for continuous 

measurement of the above parameters is very recent [86]. The micrometeorological eddy 

covariance method computes the rate of CO2 exchange between the interface of canopy 

and surrounding atmosphere. Earlier this method was used for short time periods to 
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measure the flux in agricultural fields under ideal measurement conditions. During the 

last decade eddy covariance has become a standard tool for monitoring the exchange to 

CO2 and water vapor between ecosystem and atmosphere in time scales starting from 

hours to year after year [86, 87, 88].    

 Fluxnet is a global network and its goal is to measure CO2, water vapor and 

energy fluxes between biosphere and atmosphere continuously. Under the umbrella of 

Fluxnet, fluxes over diverse of vegetation and ecosystem [1] are being measured viz., 

broadleaved forest, temperate forest, boreal and tropical forest ecosystem, grasslands, 

agricultural ecosystem, wetlands, tundra etc. There are several regional networks under 

Fluxnet with more than 400 towers are in operation around the globe such as 

CarboEuroflux, Ameriflux, Ozflux, Asiflux etc. Routine EC measurement has been 

started after 1980s along with the availability and development of sonic anemometer, 

infrared spectroscopy and digital computers [1]. 

2.6. Global CO2 flux studies:  

 Initially, Verma et al., [89] reported about the computed CO2 fluxes over 

deciduous forest on Oak Ridge, Tennessee using eddy correlation technique. From early 

part of 1990s, EC technique and instrumentation developed further and became more 

efficient for long term use in the field. First long term measurement of CO2 fluxes using 

eddy correlation technique was reported by Wofsy et al., [90] in a mid-latitude deciduous 

forest of central Massachusetts. The net annual uptake by the forest as reported by them 

was around 3.7 metric tons of C ha
-1

 yr
-1

. In Netherlands Vermetten et al., [91] made a 

comparative study between the results of observational flux and model estimated results 

and reported good agreement between the two techniques during summer months. 

 In a study over Harvard forest of northeastern United States Goulden et al., [92] 

reported about aggregated carbon sequestration of 2.1 t C ha
-1

 yr
-1

 in the year 1994. In 

New England, CO2 uptake of a deciduous forest was reported to be in the range (1.4 -2.8) 

metric tons of carbon per hectare between1991 – 1995 by Goulden et al., [93]. 

After the above pioneering efforts the process of establishment of more and more 

flux tower was started. In a study over a deciduous forest of Oak Ridge, TN Greco and 

Baldocchi [94] reported net annual CO2 flux of -525 g C m
-2 

yr
-1

 using EC data from the 

period April 1993 to April 1994. In a beech forest ecosystem of Italy, Valentini et al., 
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[95] monitored the seasonal variation of CO2 fluxes and reported about the net annual 

productivity of 472 g C m
-2

 yr
-1

. In a study over a temperate forest of Japan Yamamoto et 

al., [96] reported the results of seasonal and inter annual variation of CO2 exchanges 

using three years (1993-1996) flux data. They reported large inter annual variability in 

CO2 uptake rate, the net annual CO2 uptake by the forest was reported to be 1.8 t C ha
-1

 

yr
-1

 which indicated substantial sink capacity of the temperate forest.   

 Berbigier et al., [97] used two years EC data under the Euro flux over a maritime 

pine plantation site and recorded average carbon sequestration of about 11.5 t C ha
-1

 yr
-1

. 

Two years CO2 flux data were used by Granier et al., [98] under Euro flux network over 

a young beech forest of France. The annual net ecosystem exchange of the forest were 

reported to be -218 g C m
-2

 in 1996 and -257 g C m
-2

 in 1997 [98]. In a comparison of 

two years eddy covariance data by Pilegaard et al., [99] over a beech forest of Denmark 

under Euro flux network observed contrasting results between two years of observation. 

Annual sums of ecosystem CO2 exchange were 223g C m
-2

 in 1996-1997 and144g C m
-2

 

in 1997-1998 respectively. 

 In Canada Lee et al., [100] monitored CO2 exchange between atmosphere and 

temperate deciduous forest ecosystem and reported net ecosystem productivity of -1 t C 

ha
-1

 yr
-1

 to - 2.8 t C ha
-1

 yr
-1

 during the period 1995 to 1997.  In a comparative analysis of 

net annual CO2 exchange of 15 European forest site during 1996 to 1998, Valentini et al., 

[101] reported net uptake and release as 6.6 t C ha
-1

 yr
-1

 and 1 t C ha
-1

 yr
-1

 respectively. 

Their analysis indicated that the most of the European forests are substantial carbon sink 

with large variability between the forests. Increment in the CO2 uptake by the 

ecosystems with decreasing latitude was a significant finding reported by these authors.  

Micrometeorological eddy covariance method also used for quantification of CO2 

fluxes over a tropical rain forest of central Amazonia by Malhi et al., [102] for a 

complete year cycle. Their results depicted active day time photosynthesis rate between 

24 -28 µmol m
-2 

sec
-1

 and respiration between 6-8 µmol m
-2 

sec
-1

. In central Sweden 

Lindroth et al., [103] measured CO2 fluxes over a boreal forest ecosystem and revealed 

that the forest acted as a source of CO2 from June, 1994 to May, 1996. The accumulated 

CO2 flux was reported to be in the range 480 g m
-2 

to 1600 g m
-2

 for the full two years of 

measurements. From 1997-1999, EC flux measurements were carried out over a scots 

pine forest in southern Finland and the results were reported by Markkanen et al., [104]. 



26 

 

Their estimated annual net ecosystem exchange for 3 consecutive years from 1997 to 

1999 ranged between -262 g C m
-2

 yr
-1

 to -191 g C m
-2

 yr
-1

. In Maine of USA, CO2 and 

energy fluxes were measured over a boreal forest dominated by spruce, the forest was 

found to be a carbon sink [105] which stored about 2.1 t C ha
-1

 in 1996. Eddy covariance 

technique was used above a ponderosa pine forest of central Oregon. The net carbon 

gained by the forest as reported by Anthoni et al., [106] for the years 1996 and 1997 

were 320 g C m
-2

 year
-1

 and 270 g C m
-2

 year
-1

 respectively. Eddy covariance technique 

was used by the researchers [107] of Southern Africa over semi-arid deciduous mopane 

woodland and found strong influence of seasons on CO2 fluxes. During their period of 

observation from 1999 to 2000, the woodland was nearly carbon neutral with net annual 

carbon uptake of 1 mol C m
-2

 year
-1

. A comparative study of CO2 exchanges between an 

old growth forest and a mature forest has been done by Desai et al., [108] in Midwest 

(upper) of USA. They reported that the carbon sink strength of the mature forest was 

significantly higher than the old growth forest. In southwestern China, EC measurements 

were conducted over a tropical rain forest and the results were compared with biometric 

measurements [29]. The findings reported by them revealed that the rain forest acted as a 

sink with annual uptake of 1.19 Mg C ha
-1

 year
-1

. In a study of CO2 flux over a Scots 

pine forest of Brasschaat using 8 years EC data , Gielen et al., [109] found annual uptake 

of 2.4 t C ha
-1

year 
-1

. The range of day time CO2 uptake of a mangrove forest ecosystem 

of coastal Florida Everglades were found between -20 to -25 µmol CO2 m
-2

 sec
-1

 [110]. 

2.7. Indian study on CO2 flux:   

Terrestrial ecosystems of India are expected to depict vast spatial and temporal variation 

on carbon cycle due its monsoon based climate, mixed land use and land cover pattern 

[111]. 

In India for the first time a network to monitor CO2 and energy fluxes over 

terrestrial, coastal and oceanic ecosystems was proposed by Sundareshwar et al., [112]. 

Only few literatures are available from Indian subcontinent quantifying the net CO2 

exchange of forest or manmade ecosystem. In Betul district of Madhya Pradesh, Jha et 

al., [113] measured CO2, water vapour and energy fluxes over a teak mixed deciduous 

forest for summer and winter seasons with the help of Eddy covariance method. They 

reported strong influence of changing leaf phenology on CO2 and energy fluxes due to 

presence of deciduous vegetation around the study area. Peak CO2 (monthly average of -
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25 µmol m
-2 

sec
-1

) was found to be sequestered during winter months ,whereas very less 

amount monthly average of -2 µmol m
-2

 sec
-1

 was sequestered during summer season 

[113]. After that, monthly variation of CO2 and water vapour fluxes are reported by 

Watham et al., [114] over a mixed forest plantation located in Nainital district of 

Uttarakhand. They observed that the ecosystem was a source of CO2 during the leafless 

period and it turned in to a sink from the beginning of leaf onset up to growing period. 

They recorded maximum uptake and release of CO2 by the ecosystem in the month of 

July. Maximum uptake of -29.5 µmol m
-2

 sec
-1

 by the ecosystem from the atmosphere 

are reported [114].  In a recent study variation of CO2 and water vapor fluxes over Indian 

tropical Mangroves in Sundarbans, India are reported by Rodda et al., [115]. They 

observed that half hourly CO2 flux varied in the range between -6 µmol m
-2

 sec
-1

 to -10 

µmol m
-2

 sec
-1

. The high point of the study is that the Mangrove ecosystem acted as a net 

carbon sink over an annual cycle.  

2.8. Different factors affecting the CO2 flux:  

The seasonal and inter annual variation in the carbon cycles of the terrestrial ecosystem 

is the interplay between climate and ecosystem variables [116]. Climate can control the 

carbon cycles of terrestrial ecosystems by regulating the physiological activity of plants 

and its phenology [117]. The carbon uptake capacity and the period of carbon uptake of 

any ecosystem can be affected by climate [118].    

2.8.1. Heat fluxes and energy balance:  

The absorbed net radiation by any ecosystem gets converted to Latent heat, sensible heat 

and soil heat fluxes. In energy partitioning analysis over an Indian tick mixed deciduous 

forest of Madhya Pradesh more energy was reported to be partitioned in to latent heat 

(LE) during winter whereas in summer inverse partitioning was reported [113]. They 

observed diurnal peak values of sensible and latent heat fluxes during 1200 to 1300 

hours. In Sundarbans over a tropical Indian mangrove forest ecosystem a linear 

relationship between net radiation and heat fluxes (sensible heat and latent heat) was 

observed by Rodda et al., [115]. The average annual evapotranspiration over a tropical 

Indian mangrove forest ecosystem was estimated as 1.96 ± 0.33 mm day
-1

 [115]. 

The quality check of Eddy covariance data can be done by calculating surface 

energy balance closure [119, 120].  Most of the sites running under FLUXNET 
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individually reported and accepted the energy balance closure of their site as a standard 

measure to access the quality of their EC data [105, 106, 121, 122, 123, 124]. The total 

of net radiation (Rn) received by any ecosystem for each half hour should be nearly 

balanced by sum of latent and sensible heat flux (LE+H), soil heat flux (G) and canopy 

heat storage (Cs) [123]. 

 A comprehensive study of energy balance across 22 different FLUXNET sites 

indicated lack of energy balance closure at almost all the sites [125]. They reported 

average imbalance between available net radiation and surface fluxes of around 20 %, 

which is basically the violation of first law of thermodynamics [126]. Many researchers 

reported energy imbalance even from the sites which were considered ideal for eddy 

covariance measurement (homogeneous and flat terrain) and the ecosystems having only 

small vegetation [120, 127,128, 129].  From Saskatchewan of Canada Barr et al., [130] 

reported about the energy balance closure of three boreal forest ecosystems. Energy 

imbalance of 11%, 14% and 15% are reported over aspen, jack pine and black spruce 

forest respectively [130]. In Japan Saigusa et al., [131] made a comparative study of 

energy balance closure calculated from half hourly fluxes and daily averaged fluxes over 

a cool temperate forest. They reported better energy balance closure using daily averaged 

fluxes of the parameters. 

 Eder et al., [132] reported that the observed energy imbalance on the eddy 

covariance sites was mainly caused by the underestimation of latent heat and sensible 

heat fluxes. The energy imbalance in the sites having sloping terrain is explained as the 

net radiation measured by the radiometer does not represent the radiative energy 

experienced by the surface [133, 134]. To get some new ideas on energy imbalance of 

eddy covariance sites, Sanchez et al., [135] analyzed eddy covariance data of a boreal 

forest in Finland. They reported that the closure improved by 6 % after including the heat 

storage term in the energy balance equation. Exclusion of storage term in the energy 

balance equation is the major cause of energy imbalance of flux stations [136, 137]. 

Many of the sites reported that the energy balance closure improved with the 

increase in friction velocity [125, 135, 138]. Energy balance closure is reported to 

improve after considering the data of only unstable conditions [135]. 
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2.8.2. Net radiation: 

Forests ecosystems are known to be optically dark compared to other short vegetation as 

a result it can trap more solar energy which can enhance evaporation process and 

primary productivity [139, 140, 141]. Several researchers have reported that day time 

CO2 uptake between biosphere and atmosphere are regulated by solar radiation [142, 

143, 144, 145, 146]. Using data from 20 FLUXNET sites Niu et al., [147] reported 

radiation as the one of the main drivers responsible for seasonal variation in CO2 flux.   

2.8.3. Photosynthetically active radiation (PAR): 

PAR is the incident photosynthetically active radiation and its wave length lies between 

400 nm- 700nm [148], plants use this energy for photosynthesis [149]. In Uttarakhand of 

India, Watham et al., [114] reported daily mean of PAR in the range 302.78 µmol m
-2

 

sec
-1 

to 492.16 µmol m
-2

 sec
-1

. It was reported in previous studies that CO2 uptake rate 

increases along with the increase in incident light intensity until it reached a saturation 

point [150]. In a study on tropical forest of south-west Amazonia Grace et al., [151] tried 

to work out a relationship between PAR and CO2 flux and found that CO2 uptake rate of 

the ecosystem had a hyperbolic relationship with PAR, several other researchers also 

reported rectangular hyperbola to be the best fit between the two parameters [115, 

144,152, 153, 154]. 

2.8.4. Leaf area index:  

Leaf area index is defined as the ratio between areas of one side of the leaf to ground 

surface area [155, 156]. Leaf area index is a quantitative indicator of the present leaf 

amount and it determines the biological productivity of plants [157]. Leaf area index of 

plants determines photosynthate assimilation ability and stomatal density [158]. The 

seasonal phenology of LAI in interpreting the fluxes of the carbon, water vapor and 

energy between biosphere and atmosphere is basic and crucial [159, 160, 161]. Increase 

in LAI also increases the carbon uptake ability of plants from the atmosphere [162]. The 

leaf area of canopy plays the most vital role in photosynthesis, transpiration, exchange of 

energy with the atmosphere and in many other ecosystem processes [162,163, 164]. 

Change in LAI affects the light capturing ability and the nitrogen supply to the plants 

which can affect net photosynthesis of any ecosystem [165]. The ecosystem productivity 

of a forest was reported to be modulated by the timing of leaf emergence and senescence 
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[131, 160, 166]. Studies over deciduous boreal and temperate forests ecosystem showed 

strong correlations between leaf phenology and CO2 uptake [167, 168, 169]. 

2.8.5. Air temperature:   

The plant metabolism rate and phenology depends on temperature, which in turn affects 

the photosynthesis of the plants [166, 170, 171]. Increasing air temperature may raise the 

vapour pressure deficit of the air which may regulate stomatal openings responsible for 

the exchange of CO2 and water between biosphere and atmosphere [170]. The 

relationship between air temperature and photosynthesis in different ecosystems was 

found to be nonlinear [172]. In a study of CO2 exchange in Japan between temperate 

forest ecosystem and atmosphere Yamamoto et al., [96] observed that inter annual 

variability of annual CO2 uptake was a function of summer air temperature. Studies over 

tropical rain forest by Grace et al., [151], boreal forest ecosystems by Lindroth et al., 

[103] and temperate deciduous forest by Goulden et al., [93] indicated high sensitiveness 

of ecosystem CO2 flux with temperature. According to Lindroth et al., [103] boreal forest 

ecosystem could change to a net source of CO2 with the change of temperature. The 

carbon cycle of savanna ecosystem in China is reported to be strongly affected by the 

increase in air temperature [173].   

2.8.6. Rainfall:  

Rainfall plays an important role in controlling seasonal variations in terrestrial carbon 

cycle [174, 175, 176]. In the years having higher rainfall, the ecosystems receive low 

radiation which might decrease the photosynthesis rate [177]. Precipitation rate can 

regulate soil water content and thus influences the carbon gaining capacity of plants 

[147, 178]. Precipitation played a significant role in carbon exchange processes of boreal 

and temperate ecosystems [116]. Precipitation controls the status of root zone soil water, 

which in turn effects the productivity of plants and thus effects the CO2 fluxes [179, 

180]. Soil in wet condition can release more CO2 to the atmosphere [81, 181] due the 

higher microbial activities [182]. Over a broad-leaved savanna woodland ecosystem in 

Southern Africa Veenendaal et al., [107] reported the occurrence of CO2 release events 

after rainfall. The carbon dynamics of the ecosystems in Mediterranean climate is mostly 

affected by the amount of rainfall received during the growing season than the total 

annual rainfall [183].  
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2.8.7. Vapour pressure deficit:  

The deficit between the vapour pressure at saturated stage and the real vapour pressure 

can be termed as vapour pressure deficit (VPD). VPD controls the interaction 

mechanisms between biosphere and atmosphere through stomata [113, 184]. It was 

reported that in sunny conditions the rate of photosynthesis in leaves depends on the 

amount of moisture present in the atmosphere [185, 186]. In a study of net ecosystem 

exchange (NEE) over a mixed temperate forest of Belgian, the authors reported about the 

better correlation of net CO2 flux with vapour pressure deficit than the air temperature 

[167]. 

2.8.8. Soil carbon dynamics:  

The role of forest soil in global carbon cycle is very critical as forest soil covers a large 

area of the earth [187, 188]. Both plant biomass and soil is responsible for carbon capture 

and storage. The determination of carbon storage capacity of forest soils is a very 

important research activity. It is very much essential to understand biological principles 

involved in carbon exchange process between land surface and atmosphere [189]. 

Literatures related to soil carbon dynamics are reviewed below. 

2.8.8.1. CO2 efflux: 

Soil carbon has been reported to be the largest organic carbon stocks in terrestrial 

ecosystems [190] which is about two-thirds of terrestrial C [191] out of which 75 Pg C 

year
-1

 is respired back to atmosphere [192]. Minor changes in CO2 efflux from soil can 

have significant impact on increasing atmospheric CO2 concentration and temperature 

[192, 193]. The release of CO2 (efflux) from soil is a complex process which includes 

respiration from roots of the plants, soil fauna and microorganisms as well as soil organic 

matter decomposition [194, 195]. The CO2 efflux is a result of the oxidation process of 

soil organic matter during the litter decomposition by heterotrophic microorganisms and 

respiration from roots [196]. Bacteria to fungi ratio in soil and their community 

composition can be altered by the precipitation and changes in soil moisture [197, 198]. 

Hence, the population of soil microorganisms in soil along with abiotic factors related to 

soil like temperature, moisture and soil organic matter etc. plays a vital role in emissions 

of CO2 from soil [199, 200]. Soil CO2 efflux is also contributed by photo degradation 

[201] or carbonate weathering [202] in some ecosystems. Sometimes magnitude and 
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direction of net ecosystem exchange (NEE) may vary with the variability in soil 

respiration [101, 203]. Although soil respiration is a common process of all the 

ecosystems but its magnitude and speed may vary considerably among various 

ecosystems depending upon geographical location, climate and vegetation and soil 

characteristics [204]. In a study conducted over various forests of China reveled that soil 

respiration is highly sensitive to temperature in forests of high latitude and altitude [205]. 

Significant impact of soil temperature and precipitation on controlling the microbial 

populations in the natural Oak forest in the northeastern Himalayan region of Manipur, 

India are reported by Pandey et al., [196]. Presence of fungal population as main driver 

of soil CO2 flux in the natural Oak forest has been highlighted in the above study. In a 

recent study by Jeong et al., [204] over a temperate deciduous forest of Korea the annual 

average of soil respiration was estimated as 405.1 mg CO2 m
-2 

h
-1

. The relative 

contributions of soil, stem and leaves on CO2 efflux is reported to be about 56, 8 and 

36% respectively in a mediterranean beech forest of Italy [206].  

2.8.8.2. Soil organic carbon (SOC): 

 A portion of the total carbon fixed by the ecosystems through the process of 

photosynthesis is generally transferred below ground and can stay for long period of time 

in the soil organic carbon pool [207]. The SOC sequestration mainly depends on the 

amount of carbon input, stabilization process in the soil, and inputs from the roots and 

rhizosphere [208]. The depth wise distribution of SOC inside the soil varies depending 

on climate, vegetation and soil types [209]. Soil organic carbon is the largest terrestrial 

reservoir of carbon which plays an important role in carbon cycle and is an important 

part of global climate models [210, 211, 212].  The SOC pool is about 50 % of the total 

forest carbon pool and in boreal and temperate forests the SOC pool is greater than the 

carbon content in the forest biomass [63]. The role of SOC is very important in 

controlling the biological productivity of soil [213]. It is very much essential to 

understand the variation of SOC and its feedback to the atmosphere in different 

ecosystems as well as its natural controls in different time frames and different zones 

[214]. Significant variation of SOC pools in space and time was observed as it depends 

on the net available carbon resulted from the balance between primary production and 

respiration due to organic matter decomposition, respiration from roots, leaching of 

dissolved soil carbon and soil erosion [215]. The estimation of SOC pool is generally 

done with the help of total organic carbon content, bulk density of soil, rock content and 
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the depth of soil [208]. Soil microbes are very important organisms in ongoing global 

climate research, due to their important role in controlling soil carbon dynamics [208]. 

Also abiotic factors can regulate gaseous diffusion process as well as metabolic activity 

of soil microorganisms which in turn can control the metabolic activity of 

microorganism within the sites [216]. The rate of decomposition of SOC mainly depends 

on its chemical composition [217]. Small change in decomposition rate of SOC might 

have significant influence on the atmospheric CO2 concentration [218]. In Austrian pine 

forest, Sevgi and Tecimen [219] found higher soil organic carbon in the natural forest 

ecosystem as compared to other ecosystems which indicates the presence and 

decomposition of higher amount of litter in natural ecosystems. In Uttrakhand, India, 

Salim et al., [220] conducted a comparative study among different ecosystems to observe 

the seasonal change in soil nutrients and SOC and reported presence of   higher organic 

carbon in winter as compared to other seasons. Negative correlation between SOC and 

soil CO2 emission has been observed by Dutta et al., [221] in a paddy filed of Northeast 

India. SOC accounted for about 55 to 70 % of total ecosystem carbon among different 

temperate forest types of Northern China [222].  

2.8.8.3. Bulk density of Soil: 

 Bulk density (BD) is one of the most essential parameters which can be used along with 

soil organic carbon (SOC) and soil organic matter (SOM) for estimation of soil carbon 

pools [223, 224, 225]. BD is the ratio between the total mass of the material and its total 

volume, considering the mass of both air and water [226]. The change in BD of soil can 

alter the dielectric properties of both wet and dry soils [227]. Bulk density of soil can 

influence nutrient storage, gas exchange rate and water holding capacity [228]. Several 

researchers reported about the negative correlations between SOC and BD [229, 230]. 

2.8.8.4. Soil C/N ratio: 

The biological productivity of soil depends on the status of carbon and nitrogen in soil 

[213]. The atmospheric concentration of C and N can be regulated by the amount of 

carbon and nitrogen present in the soil [231, 232]. Soil is a major reservoir of terrestrial 

nitrogen, which can store approx.133–140 Pg N in top layer [233].  Thus a small change 

in soil nitrogen can cause significant changes in global biogeochemical cycle [234]. The 

amount of carbon and nitrogen present in soil is an indicator of soil fertility which can 

have profound impact on global climate change [235]. The understory vegetation of any 
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ecosystem plays a significant role in the regulation of the carbon and nitrogen status of 

soil [236]. Understory vegetation of any ecosystem can also regulate soil moisture and 

temperature status of soil [237], microbial properties [238, 239] and C/N ratio [240, 

241].  In a study over Eucalyptus plantations in south China Wu et al., [242] reported 

that removal of understory vegetation decreased the root biomass and organic matter 

input to the soil which together altered the structure of microbial community. Both 

carbon and nitrogen content of soil are modulated by the change of seasons, hence it is 

very important to understand the seasonal variation of the carbon cycle with respect to 

the changes in soil carbon and nitrogen for accurate prediction of future climate change 

[243]. Xie et al., [244] reported strong influence of seasons on soil carbon and nitrogen 

status in a temperate forest ecosystem.    

2.8.8.5. Soil temperature: 

Soil temperature is an important abiotic factor which controls the variation of soil 

respiration [245]. Positive correlations between soil respiration and temperature is 

reported from a Taiwanese forest plantation [246].  Using global dataset, Hursh et al., 

[247] also reported that soil temperature along with soil water content to be the most 

important drivers of the CO2 emissions from the soil. Increase of temperature can 

stimulate the process of soil respiration by accelerating autotrophic respiration and by 

rapid heterotrophic decomposition of soil organic matter [248]. In some studies neutral 

or in fact negative impact of soil temperature on respiration has been observed which 

indicated the existence of multiple drives of soil respiration other than soil temperature, 

such as soil moisture [249, 250], change in microbial composition of soil [251, 252], C 

substrate availability and nutrient status [253]. The temperature dependence of 

respiration varies significantly in different ranges of temperature, in very warm condition 

the temperature sensitivity of soil respiration was found to be low [254]. Thus, still there 

are lots of prevailing uncertainties on the response of soil respiration with the ongoing 

climate warming [255, 256].    

2.9. Partitioning of net ecosystem exchange (NEE):  

Net ecosystem exchange is a terrestrial flux which represents the net exchange of CO2 

between atmosphere and biosphere [257]. The net CO2 flux measured over an ecosystem 

is primarily the interplay between gross CO2 uptake by an ecosystem (GPP) for 

photosynthesis and the ecosystem respiration (Re) [258]. The direct measurement of net 
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CO2 flux over any ecosystem is possible with the help of eddy covariance method or it 

can be assessed from repeated inventories and can be estimated with the help of different 

models [259]. It is impossible to directly partition NEE in to GPP and Re as during 

daytime both the fluxes mask each other in net CO2 flux [260]. Therefore, many indirect 

methods has evolved for partitioning of NEE, out of which the flux partitioning 

algorithms proposed by Lasslop et al., [258] and Reichstein et al., [261] are the most 

common method and being used by global FLUXNET community.  

2.9.1. Gross primary production:  

Gross primary production (GPP) is the basic and most important parameter which 

determines the amount of CO2 assimilated by an ecosystem from the atmosphere through 

the process of photosynthesis [262]. Ecosystem researchers highlighted terrestrial GPP as 

the largest global CO2 flux and its approximate magnitude has been reported as 123±8 

Pg C year
-1

. In recent study by Ma et al., [263] the global annual GPP of the forests is 

estimated as 53.71± 4.83 Pg C yr
-1

. The GPP of forest ecosystems is higher compared to 

other ecosystems [264]. Therefore, accurate GPP estimation of forest ecosystems is 

necessary for accurate prediction of atmospheric CO2 concentration [265]. The influence 

of terrestrial GPP on the atmospheric CO2 concentration level has been documented by 

some researchers [266, 267]. The available photosynthetically active radiation and leaf 

area index of the canopy influences the gross primary productivity of a forest ecosystem 

[268]. GPP is primarily a function of irradiation during the growing season along with 

presence of suitable temperature for plant growth [167]. Water availability in the 

ecosystems was also reported as one of the key drivers of the GPP [174]. Inter annual 

variations in climate parameters can cause significant changes in the gross primary 

productivity of forest ecosystems [269]. In the year 2003, the GPP over Europe was 

reported to reduce by about 30% as an effect of the heat wave occurred in that year 

[270]. In East Asia annual GPP values were reported to be modulated by average air 

temperature [271]. The productivity of temperate forest was reported to be positively 

affected by moderate increase of temperature [272]. In a study by Janssens et al., [273] 

over 18 European forest ecosystems reported mean annual gross primary productivity 

(GPP) of 1380 ± 330 g C m
-2

 year
-1

. A distinct seasonal relationship between GPP and 

absorbed photosynthetically active radiation (APAR) over a cool temperate deciduous 

forest of Japan is reported by [131]. 
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2.9.2. Ecosystem respiration:  

The amount of CO2 released to the atmosphere by ecosystems is considered as the 

second largest flux after the ecosystem gross primary production [8]. Ecosystem 

respiration is about 70 to 85 % of annual GPP [274]. Ecosystem respiration is the key 

flux which controls the variation of net ecosystem exchange in forest ecosystems [101].  

The accurate understanding of carbon dynamics of any ecosystem is possible only after 

identification of the biotic and abiotic processes which controls the CO2 efflux of an 

ecosystem [275]. Respiration from soil is the principal component of total ecosystem 

respiration [167].  The total ecosystem respiration is the combination of soil respiration 

and aboveground autotrophic respiration [276]. The amount of CO2 absorbed by the 

plants during photosynthesis stays inside the plants only for a small period of time and 

about 25-70 % of the captured carbon is immediately returned to the atmosphere by the 

process of autotrophic respiration [277]. Soil respiration or CO2 efflux is the combination 

of belowground autotrophic respiration and heterotrophic respiration [50, 81]. The 

increase of total ecosystem respiration with temperature can give positive feedback to the 

global warming [217]. Ecosystem respiration of any forest ecosystem was reported to be 

a function of temperatures of soil and air [167, 278]. Many researchers found 

temperature and moisture conditions to be the major driver of soil and ecosystem 

respiration [279, 280, 281]. Studies from East Asia have revealed an existence of a clear 

exponential relation between mean annual air temperature and annual ecosystem 

respiration [271]. Carbon loss from an ecosystem can occur throughout the year and soil 

respiration is the dominating component [273]. Some studies revealed a close 

relationship between ecosystem respiration and gross primary production [273, 282]. In 

European forest ecosystems net ecosystem exchange of CO2 is primarily determined by 

ecosystem respiration [101]. Sink strengths of different ecosystem are modulated by 

ecosystem respiration [108]. In Northern hemisphere the carbon cycle during the winter 

season is reported to be regulated by the ecosystem respiration [228]. Guidolotti et al., 

[206] carried out a study on carbon balance of Mediterranean beech forest of Italy and 

reported about strong seasonal variability of ecosystem respiration. They also reported 

about significant reduction in ecosystem respiration during summer drought.  
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2.9.3. Net ecosystem productivity:  

Net ecosystem productivity (NEP) is the difference between gross primary productivity 

(GPP) and ecosystem respiration (Re) [283]. In an ecosystem for short time period NEP 

is approximately equal to negative of net ecosystem exchange(NEP= -NEE) [115]. The 

seasonal variation in the amplitude and phase of the net carbon flux of an ecosystem is 

determined by the interplay between assimilation and respiration [167]. Conventionally 

positive NEP represents carbon gain by an ecosystem whereas negative NEP is an 

indicator of carbon loss by the ecosystem [115]. The role of forest ecosystems in the 

regulation of global and regional carbon dynamics is very important due to its large 

carbon storage capacity and higher productivity [284]. Climatic impact, length of the 

growing season, species composition and age might change a forest from a carbon sink 

to carbon source [74, 285, 286]. In a comparative analysis of annual NEP among 

different forest ecosystems of East Asia, Yamamoto et al., [287] reported annual NEP in 

the range 2 to 8 t C ha
-1

 yr
-1

. According to Yamamoto et al., [287] the difference in 

annual NEP among different forests was caused by variation in mean annual temperature 

and tree species. In southern England Thomas et al., [288] estimated cumulative NEP 

over broadleaved deciduous woodland and reported as 1.2 Mg C ha
-1

 year
-1

. Ross et al., 

[289] reported that change in rainfall pattern could lead to the change in productivity of 

the forest ecosystems of northern hemisphere.  In a study over 26 different forests of 

Canada , Coursolle et al., [290] found that NEP of matured forests were mainly 

controlled by climate whereas in young forests NEP was  a function of canopy leaf area 

index and climate. They also reported that mature forests act as nearly carbon neutral. 

The inter annual variability of NEP was reported to be influenced by various factors such 

as amount of rainfall during spring season [291], phenology of the land surface [292], 

temperature of air [293], drought during summer season [294], various disturbances in 

the forest [285] and variability in CO2 flux phenology in autumn [295]. In Canada Zha et 

al., [296] made a study over 18 different temperate and boreal forests stands to study and 

interpret the variations of NEP among different forest types. They found strong influence 

of species on the net productivity of the ecosystems. The annual net productivity of 

boreal forests were approximately half as compared to temperate stands and NEP is 

reported to be controlled by absorbed photosynthetically active radiation, LAI, soil 

nitrogen, annual air temperature and annual rainfall amount [296]. Highest NEP of 328 g 

C m
-2

 yr
-1

 by a Korean pine plantation ecosystem followed by   311.9 g C m
-2

 yr
-1

   by an 
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old growth forest ecosystem has been observed by Cai et al., [222] in a study of NEP 

among different temperate forest types of Northern China. In a recent study over tropical 

Indian Mangrove forest, annual NEP of   249±20 g C m
-2

 year
-1

 is reported by Rodda et 

al., [115].  
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