LIST OF TABLES

TABLE NO.	TABLE CAPTION	PAGE NO.
CHAPTER 1		
Table 1.1	Milestones in the history of Tuberculosis	3
Table 1.2	Chemotherapy for the treatment of Active TB	8
Table 1.3	Categories of antituberculosis drugs	9
Table 1.4	Mechanism of action and resistance of anti- TB drugs	10-11
Chapter 2		
Table 2.1	The table summarizes all the plasmid vectors used as a part of the study.	41
Table 2.2	The table summarizes all the primers used for Polymerase Chain Reactions (PCR) in the present study.	41-42
Table 2.3	The table summarizes the components of the PCR reaction mixtures.	44
Table 2.4	The table summarizes the parameters for thermal cycling reactions in the PCR.	44
Table 2.5	The table summarizes the expected phenotypes of the different mutants and the wild type.	61
Chapter 3		
Table 3.1	List of primers used in the complementation study	73

LIST OF FIGURES

FIGURE NO. CHAPTER 1	FIGURE CAPTION	PAGE NO
Figure 1.1	Percentage of new and relapse TB cases in 2016.	5
Figure 1.2	Cell wall structure of <i>Mycobacterium sp.</i>	12
Figure 1.3	The five ESX T7SS loci present in <i>M.</i> tuberculosis	16
Figure 1.4	A model for ESX-1 mediated secretion in Mycobacteria	17
CHAPTER 2		
Figure 2.1	A schematic representation of all the steps involved in the construction of the recombination cassette for the disruption of <i>eccD3</i> in <i>M. smegmatis</i> using kan^r (aph) gene.	43
Figure 2.2	A schematic representation of the PCRs used for genotypic verification of the <i>eccD3</i> deleted clone in <i>M. smegmatis</i>	49
Figure 2.3	Schematic representation of the esx-3 loci from <i>M. tuberculosis</i> and <i>M. smegmatis</i>	50
Figure 2.4	Sequence alignment of MSMEG_0622 and Rv0290	51
Figure 2.5	0.8% agarose gel showing the results of PCR amplification of 1 kb upstream region of <i>eccD3</i>	52
Figure 2.6	cloning in pGGEMT7f(+) vector 0.8% agarose gel showing the results of restriction digestion of the plasmids isolated	52
Figure 2.7	from the putative clones. Chromatogram of the upstream fragment of <i>eccD3</i> gene viewed in the Chromas software.	53

Figure 2.8	Sequence alignment of the upstream gene cloned in pGEMT7Zf(+) and <i>M. smegmatis</i>	54
	MSMEG_0622.	
Figure 2.9	0.8% agarose gel showing the results of PCR	55
	amplification of 1kb region downstream of	
	eccD3 gene and cloning in pD3UP vector	
Figure 2.10	1% agarose gel showing the results of insert	55
	specific digestions of pD3UPDN.	
Figure 2.11	Chromatogram of the downstream fragment	56
	(MSMEG_0624) of eccD3 gene cloned in	
	pD3UP as viewed in the Chromas software	
Figure 2.12	Sequence alignment of the downstream gene	57
	cloned in pD3UP and M. smegmatis	
	MSMEG_0624	
Figure 2.13	0.8 % agarose gel showing the cloning of kan ^r	58
	in pD3UPDN vector	
Figure 2.14	Vector map of pPR27, suicide vector	59
Figure 2.15	1% agarose gel showing the results of PCR	59
	amplification of 3.3 kb region from	
	pD3UPDNkan corresponding to the	
	recombination cassette and cloning in the	
	pPR27 vector.	
Figure 2.16	1% agarose gel showing the results of	59
	restriction digestion of putative clones of	
	pD3UPDNkan	
Figure 2.17	Strategies used to generate the M. smegmatis	60
	eccD3 deletion mutant	
Figure 2.18	Putative colonies being checked for kanamycin	61
	resistance at 39°C in 7H9 media supplemented	
	with 10% ADC, 15% sucrose, 0.2% glucose	
	and kanamycin	
Figure 2.19	Checking for gentamycin sensitivity of the	61

	same ciones as in Figure 2.18	
Figure 2.20	0.8% agarose gel showing the products of PCR	62
	amplification with set 1 primers	
Figure 2.21	0.8% agarose gel showing the products of PCR	63
	amplification with set 2 primers	
Figure 2.22	0.8% agarose gel showing the products of PCR	63
	amplification with set 3 primers	
CHAPTER 3		
Figure 3.1	0.8% agarose gel showing the results of PCR	75
	amplification of 1428bp region of eccD3	
Figure 3.2 [A]	Vector map of pMV261	75
Figure 3.2 [B]	0.8 % agarose gel showing the band shift of the	75
	rpMV261hyg plasmid	
Figure 3.3	Sequence alignment of the eccD3 gene cloned	76
	in pMV261hyg and M. smegmatis	
	MSMEG_0623	
Figure 3.4	1% agarose gel showing RNA isolated from the	77
	wild type mc ² 155, mutant, Ms0622 and the	
	complemented strain Ms622/pEccD3	
Figure 3.5	Expression profile of eccD3 in Wild type	78
	(WT), Mutant (Ms0622), and Complement	
	(Ms0622/pEccD3) detected by semi-	
	quantitative RT-PCR	
Figure 3.6	Expression profile of <i>mycP3</i> in Wild type	78-79
	(mc2155), Mutant (Ms0622), and Complement	
	(Ms0622/pEccD3) detected by semi- quantitative RT-PCR	
CHAPTER 4		
Figure 4.1	Effect of eccD3 deletion on colony morphology	91
	of (A) mc ² 155, wild type: (C) Ms06622, eccD3	

	eccD3 complemented strain	
Figure 4.2	Effect of <i>eccD3</i> deletion on formation of	92
1 15u1c 4.2	pellicle)2
Figure 4.3	Macroscopic spreading analysis on the surface	92
115010 1.5	of a motility agar plate) <u></u>
Figure 4.4	Effect of <i>eccD3</i> deletion on growth kinetics of	93
115010 1.1	the wild type M. smegmatis mc ² 155; eccD3	75
	mutant, Ms0622 and complemented strain	
	Ms0622/pEccD3	
Figure 4.5	Effect of <i>eccD3</i> deletion on biofilm formation.	94
Figure 4.6	Biofilm formation assayed in the wild type M .	95
	smegmatis, mc^2155 in the presence of $0\mu M$ and	
	$5\mu M$ iron in the biofilm growth media.	
Figure 4.7	Growth of mycobacterial biofilm in presence of	96
	increasing concentration (0, 0.5, 1, 2 and $5\mu M$)	
	of iron	
Figure 4.8	Increased sensitivity of the eccD3 mutant to	97
	H_2O_2	
Figure 4.9	Sensitivity of the eccD3 M. smegmatis mutant	98
	to various environmental stress	
Figure 4.10	Effect of SDS treatment on bacterial survival	99
Figure 4.11	Deletion of eccD3 in M. smegmatis results in	100
	decreased cell wall permeability	
Figure 4.12	Antibiotic susceptibility of eccD3 mutant by	101
	disk diffusion assays	
CHAPTER 5		
Figure 5.1	Reactions involved in the FAS I system in the	117
	formation of precursor fatty acid (C20) for the	
	FAS II system	

Figure 5.2	Mycolic acid subspecies of M. smegmatis	118
Figure 5.3	Mycolic acid subspecies of M. tuberculosis	119
Figure 5.4	Confocal microscopy of the wild-type mc ² 155	124
	and the eccD3 deleted strain, Ms0622 of M.	
	smegmatis	
Figure 5.5	Scanning electron micrographs of the wild-	124
	type, mc ² 155; mutant Ms0622, and	
	complemented strain, Ms0622/pEccD3	
Figure 5.6	TLC analysis of mycolic acid methyl esters	125
	(MAMES) of the wild type mc ² 155 and the	
	eccD3 deleted Ms0622 strain of M. smegmatis.	
Figure 5.7	Differential scanning calorimetry of (A) cell	126-127
	wall and (B) purified mycolic acids from Wild	
	type M. smegmatis mc ² 155, and eccD3 deleted	
	strain, Ms0622.	
Figure 5.8	GC of the isolated FAMES from the (A) wild	128
	type M. smegmatis mc ² 155 and (B) deleted	
	eccD3 M. smegmatis, Ms0622.	
Figure 5.9	Pyrolytic cleavage of TMS derivatized mycolic	129
	acid methyl esters at C2-C3 and C3-C4 atom	
	yields [B]+ ion and the α-unit	
Figure 5.10	GC of α unit of the isolated α subspecies of	130
	mycolic acid from the wild type M. smegmatis	
	mc^2155 .	
Figure 5.11	Mass spectra of trimethylsilyl ether derivatives	130-131
	of α -unit of the isolated α subspecies of	
	mycolic acid methyl esters from the wild type	
	$M.$ smegmatis mc^2155	
Figure 5.12	GC of the isolated α subspecies of mycolic acid	131
	from the eccD3 deleted M. smegmatis,	
	Ms0622.	
Figure 5.13	Mass spectra of trimethylsilyl ether derivatives	132

	of α -unit of the isolated α subspecies of	
	mycolic acid from the $eccD3$ deleted M .	
	smegmatis, Ms0622	
Figure 5.14	NMR spectra of the α mycolic acid of A) Wild	134
	type, mc ² 155 and B) eccD3 mutant, Ms0622	
Figure 5.15	NMR spectra of the epoxy mycolic acid of A)	135
	Wild type, mc ² 155 and B) eccD3 mutant,	
	Ms0622	

⁰C Degree Celcius

μg Microgram

μM Micro Molar

¹HNMR Proton Nuclear Magnetic Resonance

A Adenine

AIDS Acquired immunodeficiency syndrome

BCG Bacille of Calmette and Guerin

bp Base pair

C Cytosine

DMSO Dimethyl sulfoxide

DSC Density Scanning Calorimetry

ETH Ethambutol

FAME Fatty Acid Methyl Ester

FASI Fatty Acid Synthase I

FASII Fatty Acid Synthase II

G Guanine

GC-MS Gas Chromatography—Mass Spectrometry

H₂O₂ Hydrogen peroxide

hr/s Hour/s

HCl Hydrochloric Acid

Ph.D Thesis xxv

HIV Human immunodeficiency virus

INH Isoniazid

kDa kilodalton

KH₂PO₄ Potassium Dihydrogen Phosphate

lit Litre

M Molar

M Mycobacterium

mA Milli ampere

mAGP Mycolyl- arabinogalactane- peptidoglycan

MDR-TB Multi Drug Resistant Tuberculosis

mg Milligram

mins Minutes

ml Milliliter

mM Milli Molar

Na₂HPO₄ Disodium Hydrogen Phosphate

NaOH Sodium Hydroxide

OADC Oleic Acid – Albumin- Dextrose- Catalyst

PBS Phosphate Buffer Saline

RIF Rifampicin

rpm Revolution per minute

Ph.D Thesis xxvi

rRNA Ribosomal Ribonucleic Acid

RT-PCR Reverse transcriptase polymerase chain reaction

S Svedberg Unit

SE Standard Error

SEM Scanning Electron Microscope

Sp. Species

TB Tuberculosis

TMS Tri Methyl Silane

WHO World Health Organization

XDR-TB Extensively Drug Resistant Tuberculosis

Ph.D Thesis xxvii