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Chapter 2 

 

New quasi Poisson-Lindley distribution: 

Properties and Applications 

 

 

2.1 Introduction 

A new quasi Poisson-Lindley (NQPL) distribution has been studied in this 

chapter of which the Poisson-Lindley (PL) distribution introduced by Sankaran [82] 

to model count data has been obtained as a particular case. As Poisson-Lindley 

distribution has one parameter so it does not provide enough flexibility for analysing 

different types of lifetime data. It will be better if we consider further alternatives to 

this distribution so as to increase the flexibility for modelling purposes. 

 In this chapter, a new quasi Poisson-Lindley (NQP) distribution has been 

proposed by mixing Poisson distribution and new quasi-Lindley distribution [87]. 

Section 2.2 deals with the derivation of NQPL distribution. In section 2.3, the 

graphical representation of NQPL distribution to study the behavior of PL distribution 

for different values of the parameters has been discussed. Certain properties of the 

distribution have been studied in section 2.4. Zero modified QPL distribution along 

with its generating function has been obtained in section 2.5. In section 2.6 and 2.7, 

the method of estimation of parameters and goodness of fit has been discussed.  
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2.2 New Quasi Poisson–Lindley (NQPL) distribution 

Suppose, the parameter 𝜆 of the Poisson distribution having the probability 

mass function (pmf) 

𝑔(𝑥|𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 0,1, … ;  𝜆 > 0  

follows the new quasi-Lindley distribution obtained by Shanker and Ghebretsadik 

[87] with probability density function (pdf) given as, 

𝑓(𝑥) =  
𝜃2(𝜃+𝛼𝑥)

𝜃2+𝛼
𝑒−𝜃𝑥;    𝑥 > 0,  𝜃 > 0,  𝛼 > 0.      

Then, the probability mass function (pmf) of NQPL distribution may be obtained as, 

 𝑃(𝑋 = 𝑥) = ∫
𝑒−𝜆𝜆𝑥

𝑥!

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆∞

0
𝑑𝜆 , 

=
𝜃2

(𝜃2+𝛼)𝑥!
∫ 𝑒−𝜆(1+𝜃)𝜆𝑥(𝜃 + 𝛼𝜆)𝑑𝜆

∞

0
 , 

 =
𝜃2

(𝜃2+𝛼)𝑥!
(𝜃 ∫ 𝜆𝑥∞

0
𝑒−𝜆(1+𝜃)𝑑𝜆 + 𝛼 ∫ 𝜆𝑥+1𝑒−𝜆(1+𝜃)𝑑𝜆

∞

0
), 

 =
𝜃2

(𝜃2+𝛼)𝑥!
(𝜃

Γ(𝑥 +1)

(1+𝜃)𝑥+1 + 𝛼
Γ(𝑥+2)

(1+𝜃)𝑥+2) , 

 =
𝜃2

(1+𝜃)𝑥+2
(1 +

𝜃+𝛼𝑥

𝜃2+𝛼
) , 𝑥 = 0,1, …, 𝜃 > 0 and 𝛼 > 0 .    (2.2.1) 

The compounded distribution that is obtained in equation (2.2.1) is the new quasi 

Poisson-Lindley (NQPL) distribution. 

Particular Cases 

(i)  For 𝛼 = 𝜃, (2.2.1) reduces to one-parameter Poisson-Lindley distribution. 

(ii)  For  𝛼 → 0, (2.2.1) reduces to geometric distribution with probability 
𝜃

1+𝜃
. 
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2.3.  Graphical representation of NQPL distribution  

 The pmf has been shown graphically to study the behavior of NQPL distribution 

using equation (2.2.1) for different values of parameter (𝛼, 𝜃) and possible values 

of  𝑥. From the figure 2.1, figure 2.2 and figure 2.3 it has been clearly observed that 

the behavior of NQPL distribution is monotonically decreasing for fixed α and 

different values of 𝜃.  

Figure 2.1 pmf plot of NQPL distribution for 𝛼 = 0.5 and 𝜃 = 0.5, 1.5 and 2.0 

 

 

 

 

Figure 2.2 pmf plot of NQPL distribution for 𝛼 = 1.0 and 𝜃 = 0.3, 2.0 and 3.5 
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Figure 2.3 pmf plot of NQPL distribution for 𝛼 = 1.5 and 𝜃 = 1.0, 2.0 and 3.0 

 

            

 

2.4  Distributional properties 

    In this section certain statistical properties of NQPL distribution has been 

studied specifically the shape of the probability function, moments, recurrence 

relation for probability.  

2.4.1 Shape of the probability function 

To obtain the shape of the NQPL distribution, the ratio of the probability mass 

function at the point "𝑥 + 1" and "𝑥" has been obtained.It can be seen that 

           
𝑃(𝑥+1; 𝜃,𝛼)

𝑃(𝑥; 𝜃,𝛼)
=

1

1+𝜃
{1 +

𝛼

𝜃2+𝜃+𝛼+𝛼𝑥
},          

which is clearly a decreasing function in 𝑥. Therefore, 𝑃(𝑥; 𝜃, 𝛼) is log-concave. 

Therefore, the NQPL distribution (4.2.1) distribution is unimodal. [Johnson et al. 

[56]]. 

2.4.2  Moments of NQPL distribution 

 The 𝑟𝑡ℎ  factorial moment may be obtained as  

𝜇′(𝑟) = 𝐸[𝐸(𝑋(𝑟)|𝜆)] , 
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  where, 𝑋(𝑟) = 𝑋(𝑋 − 1) … … . (𝑋 − 𝑟 + 1) is the descending factorial. 

Then, 

 𝜇′(𝑟) = ∫ {∑ 𝑥(𝑟) 𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 }

∞

0

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆 , 

  𝜇′(𝑟) = ∫ 𝜆𝑟∞

0
{∑

𝑒−𝜆𝜆𝑥−𝑟

(𝑥−𝑟)!
∞
𝑥=𝑟 }

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆.                    (2.4.1) 

Taking (𝑥 + 𝑟) = 𝑥  in (2.4.1), we have 

 𝜇′(𝑟) = ∫ 𝜆𝑟∞

0
{∑

𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 }

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆.                     (2.4.2) 

The expression within the second bracket in equation (2.4.2) is equal to unity as it is 

the sum of pmf of Poisson distribution. 

Thus, from equation (2.4.2) we have obtained, 

 𝜇′(𝑟) =
𝜃2

𝜃2+𝛼
∫ 𝜆𝑟∞

0
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆 , 

which is a gamma integral and on simplification we get the 𝑟𝑡ℎ factorial moment as 

𝜇′(𝑟) =
Γ(𝑟+1){𝜃2+𝛼(𝑟+1)}

𝜃𝑟(𝜃2+𝛼)
, 𝑟 = 1,2, … . 

The 𝑟𝑡ℎ moment about the origin may be obtained as, 

 𝜇′𝑟 = 𝐸[𝐸(𝑋𝑟|𝜆)] , 

 𝜇′𝑟 = ∫ {∑ 𝑥𝑟 𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 }

∞

0

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆,         (2.4.3) 

The expression within the bracket in equation (2.4.3) is the 𝑟𝑡ℎ moment about the 

origin of the Poisson distribution. Taking 𝑟 = 1, in equation (2.4.3) and using the 

mean i.e. the first raw moment of Poisson distribution we can get the first raw 

moment (mean) of new quasi Poisson Lindley (NQPL) distribution as 

𝜇1
′ = ∫ 𝜆

∞

0

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆 , 
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𝜇1
′ =

𝜃2+2𝛼

𝜃(𝜃2+𝛼)
 . 

Taking 𝑟 = 2, in equation (2.4.3) and using the second raw moment of the Poisson 

distribution we can get the second moment about origin of NQPL distribution as, 

  𝜇2
′ = ∫ (𝜆2 + 𝜆)

∞

0

𝜃2

𝜃2+𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆, 

  𝜇2
′ =

𝜃2+2𝛼

𝜃(𝜃2+𝛼)
+

2(𝜃2+3𝛼)

𝜃2(𝜃2+𝛼)
 . 

Taking 𝑟 = 3, 4 in equation (2.4.3) and using the third and fourth raw moments of 

Poisson distribution we can get the third and fourth moment of NQPL distribution as 

  𝜇3
′ =

𝜃2+2𝛼

𝜃(𝜃2+𝛼)
+

6(𝜃2+3𝛼)

𝜃2(𝜃2+𝛼)
+

6(𝜃2+4𝛼)

𝜃3(𝜃2+𝛼)
, 

𝜇4
′ =

𝜃2+2𝛼

𝜃(𝜃2+𝛼)
+

14(𝜃2+3𝛼)

𝜃2(𝜃2+𝛼)
+

36(𝜃2+4𝛼)

𝜃3(𝜃2+𝛼)
+

24(𝜃2+5𝛼)

𝜃4(𝜃2+𝛼)
. 

From the raw moments using the identity,  

  𝜇𝑟 = 𝐸(𝑋 − 𝜇)𝑟 = ∑ (𝑟
𝑘

)𝜇′
𝑘

(−𝜇′
1

)
𝑟−𝑘𝑟

𝑘=0 ,  

the central moment 𝜇2, 𝜇3and 𝜇4 has been obtained as follows: 

 𝜇2 = 𝜎2 =
𝜃5+𝜃4+3𝜃3𝛼+4𝜃2𝛼+2𝜃𝛼2+2𝛼2

𝜃2(𝜃2+𝛼)2  , 

 𝜇3 =
[2𝛼3(𝜃+1)(𝜃+2)+𝛼2(5𝜃4+18𝜃3+12𝜃2)+𝛼(4𝜃6+15𝜃5+12𝜃4)+𝜃6(𝜃+1)(𝜃+2)]

𝜃3(𝜃2+𝛼)3
 , 

𝜇4 =

[

𝛼4(2𝜃3+4𝜃2+48𝜃+216)+𝛼3(7𝜃5+40𝜃4+180𝜃3+624𝜃2)+

    𝛼2(9𝜃7+4𝜃6+240𝜃5+476𝜃4+336𝜃2)+𝛼(5𝜃9+126𝜃7+264𝜃6+72𝜃4+96𝜃2)

+(𝜃11+18𝜃9+33𝜃8+24𝜃4)

]

𝜃4(𝜃2+𝛼)4  . 

Some other indices of the shape of the NQPL distribution are skewness, kurtosis, 

index of dispersion and coefficient of variation respectively.  

2.4.3 Co-efficient of Skewness and Kurtosis 

 The co-efficient of skewness denoted by √𝛽1 may be written as, 
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Skewness (√𝛽1) =
𝜇3

(𝜇2)
3
2

 

Hence,  (√𝛽1) =
(𝜃+1)(𝜃+2){2𝛼3+𝜃6}+𝛼2(5𝜃4+18𝜃3+12𝜃2)+𝛼(4𝜃6+15𝜃5+12𝜃4)

(𝜃5+𝜃4+3𝜃3𝛼+4𝜃2𝛼+2𝛼2(𝜃+1))
3/2  . 

The co-efficient of kurtosis may be written as, 

Kurtosis (𝛽2) =
𝜇4

𝜎4 =
𝐴𝛼4+𝐵𝛼3+𝐶𝛼2+𝐷𝛼+𝐸

(𝜃5+𝜃4+3𝜃3𝛼+4𝜃2𝛼+2𝜃𝛼2+2𝛼2)2, 

  where, 𝐴 = 2𝜃3 + 26𝜃2 + 48𝜃 + 24 , 

  𝐵 = 7𝜃5 + 92𝜃4 + 180𝜃3 + 96𝜃2 , 

   𝐶 = 9𝜃7 + 116𝜃6 + 240𝜃5 + 132𝜃4 , 

    𝐷 = 5𝜃9 + 60𝜃8 + 126𝜃7 + 72𝜃6 , 

      𝐸 = 𝜃11 + 10𝜃10 + 18𝜃9 + 9𝜃8. 

2.4.4  Index of Dispersion (ID) and Coefficient of Variation (CV) 

The index of dispersion (ID) (Johnson et al. [56]) is defined as the ratio of 

variance and mean is useful in determining whether a distribution is over dispersed or 

under dispersed for ID > (<) 1. 

The index of dispersion is given as, 

 I. D =
𝜎2

𝜇
= 1 +

𝜃4+4𝜃2𝛼+2𝛼2

𝜃(𝜃2+𝛼)(𝜃2+2𝛼)
> 1,  

for 𝜃 > 0 and fixed 𝛼. Therefore we may conclude that the NQPL(𝛼, 𝜃) distribution is 

over-dispersed. 

 Coefficient of variation may be defined as the ratio of standard deviation to 

mean and is used to compare variability. With higher level of co-efficient of variation, 

the level of dispersion around the mean increases. The coefficient of variation may be 

written as, 

 𝐶. 𝑉 =
𝜎

𝜇
=

√2𝛼2(𝜃+1)+𝛼(3𝜃3+4𝜃2)+𝜃5+𝜃4

𝜃2+2𝛼
 . 
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2.4.5  Probability recurrence relation 

 The probability generating function (pgf) of NQPL distribution derived from 

equation (2.2.1) may be written as 

𝑔(𝑡) = 𝐸(𝑡𝑥), |𝑡| < 1  

Thus,  𝑔(𝑡) = ∑ 𝑡𝑥𝑃(𝑥)∞
𝑡=0 , where 𝑃(𝑥) is the pmf of NQPL distribution. 

𝑔(𝑡) =
𝜃2

(𝜃2+𝛼)(𝜃+1−𝑡)2
{𝜃(𝜃 + 1 − 𝑡) + 𝛼}. ,           (2.4.4) 

Differentiating equation (2.4.4) w.r.t “t” we get, 

𝑔′(𝑡) =
𝜃2(𝜃2+𝜃−𝜃𝑡+2𝛼)

(𝜃2+𝛼)(𝜃+1−𝑡)3  . 

Therefore, 𝑔′(𝑡)(𝜃 + 1 − 𝑡)3 = 𝐺(𝑡)(𝜃 + 1 − 𝑡)2 +
𝛼𝜃2

𝜃2+𝛼
,          (2.4.5) 

Equating the co-efficient of "𝑡𝑟"on both sides of equation (2.4.5), the recurrence 

relation may be obtained as, 

𝑝𝑟+1 =
(𝜃+1)2(3𝑟+1)𝑝𝑟−(𝜃+1)(3𝑟−1)𝑝𝑟−1+(𝑟−1)𝑝𝑟−2

(𝜃+1)3(𝑟+1)
, 𝑟 ≥ 2         (2.4.6) 

where,  𝑝0 = (
𝜃

𝜃+1
)

2

{
𝜃(𝜃+1)+𝛼

𝜃2+𝛼
}, 

𝑝1 =
𝜃2

(𝜃+1)3 {
𝜃(𝜃+1)+2𝛼

𝜃2+𝛼
} , 

𝑝2 =
𝜃2

(𝜃+1)4
{

𝜃(𝜃+1)+3𝛼

𝜃2+𝛼
} . 

Putting 𝑟 = 2, 3, … in equation (2.4.6) higher order probabilities may be obtained as 

𝑝3 =
(𝜃+1)2(3𝑟+1)𝑝2−(𝜃+1)(3𝑟−1)𝑝1+(𝑟−1)𝑝0

(𝜃+1)3(𝑟+1)
 , 

𝑝4 =
(𝜃+1)2(3𝑟+1)𝑝3−(𝜃+1)(3𝑟−1)𝑝3+(𝑟−1)𝑝1

(𝜃+1)3(𝑟+1)
 etc. 
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The 𝑟𝑡ℎ probability of NQPL distribution may be written as,    

𝑃𝑟 =
𝜃2

(1+𝜃)𝑟+2
{

𝜃(𝜃+1)+𝑟𝛼

𝜃2+𝛼
}.  

2.4.6  Expression for factorial moment 

The factorial moment generating function (fmgf) may be written as, 

𝐺(𝑡) = 𝑔(1 + 𝑡).  

Therefore, 𝐺(𝑡) =
𝜃2

(𝜃2+𝛼)(𝜃−𝑡)2
{𝜃(𝜃 − 𝑡) + 𝛼}.           (2.4.7) 

Expanding equation (2.4.7) and equating the co-efficient of "
𝑡𝑟

𝑟!
" we have obtained 

 𝜇(𝑟)
′ =

𝑟

𝜃2 {2𝜃𝜇(𝑟−1)
′ − (𝑟 − 1)𝜇(𝑟−2)

′ }, 𝑟 > 1 

where  𝜇′(1) =
{𝜃2+2𝛼}

𝜃(𝜃2+𝛼)
, 

𝜇′(2) =
2{𝜃2+3𝛼}

𝜃3(𝜃2+𝛼)
.  

2.5 Zero-modified new quasi Poisson-Lindley (ZMNQPL) distribution 

 It has been observed that in many real-life situations that the number of zeros 

shown up in the count data with a greater tendency than is expected. Zero modified 

distribution has been used as many distributions obtained in the course of 

experimental investigation often have an excess frequency of observed event at Zero 

Point. 

Zero-modified distribution has been obtained by combining the pmf of the 

original distribution together with the probabilities of degenerate distribution 

concentrated at zero. The pmf of the zero-modified distribution has been given as 

𝑃[𝑋 = 0] = 𝑤 + (1 − 𝑤)𝑃0 ,             (2.5.1) 

and 𝑃[𝑋 = 𝑥] = (1 − 𝑤)𝑃𝑥; 𝑥 ≥ 1 .            (2.5.2) 
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In equations (2.5.1) and (2.5.2), 𝑤 is the parameter assuming an arbitrary value in the 

interval 0 < 𝑤 < 1. It may also be possible that 𝑤 < 0 provided 𝑤 + (1 − 𝑤)𝑃0 ≥ 0 

[ Johnson et al. [56]]. 𝑃0 is the probability at zero of the original distribution and 𝑃𝑥 is 

the pmf of the original distribution. 

Then, the pmf of zero-modified NQPL distribution may be obtained as  

𝑃[𝑋 = 0] = 𝑤 + (1 − 𝑤)
𝜃2

(1+𝜃)2 (
𝜃2+𝛼+𝜃

𝜃2+𝛼
), 

and 𝑃[𝑋 = 𝑥] = (1 − 𝑤)
𝜃2

(1+𝜃)𝑥+2
(

𝜃2+𝛼+𝛼𝑥+𝜃

𝜃2+𝛼
) ; 𝑥 ≥ 1.  

where, 𝑃0 is the probability at zero of NQPL distribution and 𝑃𝑥 is the pmf of NQPL 

distribution. 

2.5.1 Recurrence relation for probabilities 

The probability generating function (pgf) of ZMNQPL distribution may be 

obtained as, 

𝑔(𝑡) = 𝑤 + (1 − 𝑤)𝑔1(𝑡), 

where, 𝑔1(𝑡)  is the pgf of NQPL distribution given in equation (2.2.1). 

Thus,  𝑔(𝑡) = 𝑤 + (1 − 𝑤)
𝜃2

(𝜃2+𝛼)(𝜃+1−𝑡)2
{𝜃(𝜃 + 1 − 𝑡) + 𝛼}.         (2.5.1)   

Now, differentiating equation (2.5.1) w.r.t ′𝑡′ and equating the coefficient of ′𝑡𝑟′ we 

get, 

𝑝𝑟+1 = [3(1+𝜃)2𝑟𝑝𝑟−3(1+𝜃)(𝑟−1)𝑝𝑟−1+3(𝑟−2)𝑝𝑟−2]

(1+𝜃)3(𝑟+1)
, 𝑟 > 1  

2.5.2 Recurrence relation for factorial moment generating function (fmgf) 

 The factorial moment generating function (fmgf) of ZMNQPL distribution may 

be obtained as, 

𝐺(𝑡) = 𝑔(1 + 𝑡),  
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𝐺(𝑡) = 𝑤 +
𝜃2{𝜃(𝜃−𝑡)+𝛼}(1−𝑤)

(𝜃2+𝛼)(𝜃−𝑡)2
 .                  (2.5.2) 

Now from equation (2.5.2) on differentiating 𝐺(𝑡) and equating the co-efficient of 
𝑡𝑟

𝑟!
 

we have obtained the recursive expression for fmgf as, 

𝜇(𝑟+1)
′ =

[3𝜃2𝜇(𝑟)
′ −3𝜇(𝑟−1)

′ +𝜇(𝑟−2)
′ ]

𝜃3  . 

2.6 Estimation of Parameters of NQPL distribution 

 The following methods have been used for estimating the parameters of NQPL 

distribution. 

2.6.1 Method of Moments 

The first two moment’s i.e. 𝜇1
′  and 𝜇2

′  are required to estimate the parameters 

of NQPL distribution by the method of moments. 

 
𝜇′2−𝜇′1

𝜇′1
2 =

2(𝜃2+3𝛼)(𝜃2+𝛼)

(𝜃2+2𝛼)2 = 𝑘 (𝑠𝑎𝑦)    .                   (2.6.1)   

Substituting 𝛼 = 𝑏𝜃2, in (2.6.1) a quadratic equation in ‘b’ is obtained as 

(6 − 4𝑘)𝑏2 + 4(2 − 𝑘)𝑏 + (2 − 𝑘) = 0.                 (2.6.2) 

Replacing the first two population moment by the respective sample moments in 

(2.6.1) the estimate of 𝑘 may be obtained. Substituting the estimate of 𝑘 in (2.6.2.) the 

estimate 𝑏̂ can be obtained from the quadratic equation (2.6.2). 

 We have, 

𝑥̅ =
𝜃2+2𝛼

𝜃(𝜃2+𝛼)
.                                                           (2.6.3) 

 Substituting 𝛼 = 𝑏𝜃2 in the expression (2.6.3) we have, 

     𝑥̅ =
1+2𝑏̂

𝜃(1+𝑏)
. 

Hence,    𝜃 = (
1+2𝑏̂

1+𝑏̂
)

1

𝑥̅
,  



22 
 

 and  𝛼̂ = 𝑏𝜃2 =
𝑏̂(1+2𝑏̂)

2

(1+𝑏̂)
2

(𝑥̅)2
, where 𝑏̂ can be obtained from equation (2.6.2).                    

2.6.2 Maximum Likelihood Estimates 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n from the NQPL distribution 

(2.2.1) and let 𝑓𝑥 be the observed frequency in the sample corresponding to 𝑋 =

𝑥 (𝑥 = 1, 2, … , 𝑘) such that ∑ 𝑓𝑥 = 𝑛 𝑘
𝑥=1 . 

The likelihood function 𝐿 of NQPL distribution may be written as, 

𝐿 = (
𝜃2

𝜃2+𝛼
)

𝑛
1

(1+𝜃)∑ (𝑥+2)𝑓𝑥
𝑘
𝑥=1

∏ [𝜃(𝜃 + 1) + 𝛼(𝑥 + 1)]𝑓𝑥𝑘
𝑥=1 .            

The log likelihood function becomes 

log 𝐿 = 𝑛log (
𝜃2

𝜃2+𝛼
) − ∑ (𝑥 + 2)𝑓𝑥log (1 + 𝜃) +𝑘

𝑥=1 ∑ 𝑓𝑥log [𝜃(𝜃 + 1) + 𝛼(𝑥 + 1)]𝑘
𝑥=1  . 

Then the derivatives of log likelihood equations are obtained as, 

𝜕log𝐿

𝜕𝛼
= −

𝑛

𝜃2+𝛼
+ ∑

(𝑥+1)𝑓𝑥

[𝜃(𝜃+1)+𝛼(𝑥+1)]
= 0𝑘

𝑥=1  ,        

 and 

  
𝜕log𝐿

𝜕𝜃
=

2𝑛

𝜃
−

2𝑛

𝜃2+𝛼
− ∑

(𝑥+2)𝑓𝑥

1+𝜃
+𝑘

𝑥=1 ∑
(2𝜃+1)𝑓𝑥

[𝜃(𝜃+1)+𝛼(𝑥+1)]
= 0𝑘

𝑥=1  .         

The above two equations could be solved using Fisher’s scoring method. We have, 

𝜕2log 𝐿

𝜕𝛼2 =
𝑛

(𝜃2+𝛼)2 − ∑
(𝑥+1)2𝑓𝑥

[𝜃(𝜃+1)+𝛼(𝑥+1)]2
𝑘
𝑥=1  , 

𝜕2log 𝐿

𝜕𝛼𝜕𝜃
=

2𝑛𝜃

(𝜃2+𝛼)2
− ∑

(𝑥+1)(2𝜃+1)𝑓𝑥

[𝜃(𝜃+1)+𝛼(𝑥+1)]2
𝑘
𝑥=1  , 

𝜕2log 𝐿

𝜕𝜃2 = −
2𝑛

𝜃2 +
4𝑛𝜃

(𝜃2+𝛼)2 + ∑
(𝑥+2)𝑓𝑥

(1+𝜃)2
𝑘
𝑥=1  + ∑

(2𝜃2+2𝜃+1−2𝛼(𝑥+1))𝑓𝑥

[𝜃(𝜃+1)+𝛼(𝑥+1)]2
𝑘
𝑥=1  .     

The following system of equations can be solved using any numerical method for  𝜃 

and 𝛼̂ iteratively until close values of 𝜃 and  𝛼̂ are obtained, where 𝜃0and 𝛼0 are the 

initial values of 𝜃 and 𝛼 respectively.  
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      [

𝜕2log 𝐿

𝜕𝛼2

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝜃2

] [
𝜃 − 𝜃0

𝛼̂ − 𝛼0
] = [

𝜕log𝐿

𝜕𝛼

  
𝜕log𝐿

𝜕𝜃

]

𝜃̂=𝜃0

𝛼̂=𝛼0

.  

 2.7 Goodness of fit              

            The NQPL distribution has been fitted to some reported data and it is believed 

that these distribution gives a reasonably close fit to some numerical data for which 

various distributions were fitted earlier viz. Poisson-Lindley (PL), two-parameter 

Poisson-Lindley (TPPL), discrete gamma and negative binomial (NB) distribution. 

The parameter 𝜃 and 𝛼 of NQPL distribution have been estimated by the method of 

moment because of the complexity of maximum likelihood method of estimation. 

Three sets of data have been considered to see the suitability and applicability of 

NQPL distribution and have obtained the expected frequency to calculate the 𝜒2 

goodness of fit. This distribution is then compared with other distributions as 

measured by 𝜒2 criterion. 
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Table 2.1: 

 

 

Observed and expected frequency of Poisson-Lindley (PL), two-

parameter Poisson-Lindley (TPPL) and new quasi Poisson-Lindley 

(NQPL) distribution on Pyrausta nublilalis in 1937. [data from Beall 

[7]]. 

 

No. of 

Insects 

Observed      

frequencies 

Expected frequencies 

PL  TPPL  NQPL   

0 

1 

2 

3 

4 

     ≥5 

33 

12 

6 

3 

1 

1 

31.49 

14.16 

6.09 

2.54 

1.04 

0.42 

31.9 

13.8 

5.9 

2.5 

1.1 

0.8 

31.90 

13.80 

5.92 

2.73 

1.09 

0.56 

Total 56 56 56 56 

 

Parameters 

𝜃 = 1.8082 

 

 𝛼̂ = 0.2573 

𝜃 = 0.39249 

𝛼̂ = 0.3920 

𝜃 = 1.5255 

𝜒2 4.82 0.36 0.3203 

d.f 2 1 1 

𝑝-value 0.0898 0.5485 0.5714 

 

In Table 2.1, we have considered the data by Beall [7] on the Pyrausta 

nublilalis, to which PL and TPPL distribution were fitted earlier by Shanker and 

Mishra (2014). It has been observed that sample mean 𝑥̅ = 0.75 and sample 

variance 𝜇2
′ = 1.8571. Using the method of moment we have estimated the 

parameters from the data set for NQPL distribution as 𝛼̂ = 0.3920 and 𝜃 = 1.5255.  
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Table 2.2: 

 

 

 

Observed and expected frequency of discrete gamma (𝑑𝛾), negative-

binomial (NB) distribution and new quasi Poisson-Lindley (NQPL) 

distribution of number of European red mites on apple leaves. [data from 

Bliss et al. [11]] 

 

European red 

Mites 

Observed   

frequencies 

Expected frequencies 

𝑑𝛾(𝑘, 𝜃) NBD(𝑟, 𝑝) NQPL (𝜃, 𝛼) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

70 

38 

17 

10 

9 

3 

2 

1 

0 

69.67 

37.49 

20.02 

10.67 

5.69 

3.03 

1.61 

.86 

.96 

69.49 

37.6 

20.1 

10.7 

5.69 

3.02 

1.6 

0.85 

0.95 

67.75 

38.51 

20.99 

11.11 

5.77 

3.14 

1.68 

.84 

.30 

Total 150 150 150 150 

 

Parameters 

𝑘̂ = 1.0078 

𝜃 = 1.5830 

𝑟̂ = 1.0245 

𝑝̂ = 0.5281 

𝛼̂ = 0.9121 

𝜃 = 1.2076 

𝜒2 2.89 2.91 2.7592 

d.f 4 4 4 

𝑝-value 0.5901 0.5730 0.5981 

 

 

In Table 2.2 we have considered the distribution of number of European red mites on 

apple leaves (Bliss et al. [11]) for which discrete gamma (𝑑𝛾) distribution and 

negative binomial (NB) distribution have been fitted earlier by Chakraborty and 

Chakravarty (2012). From the data set the sample mean and sample variance have 

been obtained as 𝑥̅ = 1.1467 and 𝜇2
′ = 3.5733. From the mean and sample variance 

the parameters of NQPL distribution for the data on number of European red mite’s 

apple leaves have been obtained as 𝛼̂ = 0.9121 and 𝜃 = 1.2076. 
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Table: 2.3: 

 

 

 

Observed and expected frequencies of Poisson-Lindley, two-parameter    

Poisson-Lindley and new quasi Poisson-Lindley distributions for the      

mistakes in copying groups of random digits. [data from Kemp and     

Kemp [62]]. 

 

No. of errors 

per group 

Observed 

frequencies 

Expected frequencies 

PL TPPL NQPL 

0 

1 

2 

3 

4 

35 

11 

8 

4 

2 

33.1 

15.3 

6.8 

2.9 

1.2 

32.4 

15.8 

7.0 

2.9 

1.9 

33 

15.8 

7.1 

3.0 

1.2 

Total 60 60 60 60 

 

Parameters 

𝜃 =1.7434 

 

𝜃 =1.9997 

𝛼̂ =0.3829 

𝜃 =2.1008 

𝛼̂ =0.3829 

𝜒2 2.20 2.11 2.08 

d.f 1 1 1 

𝑝-value 0.14 0.15 0.15 

 

In Table 2.3, in order to examine the flexibility of NQPL distribution we have 

considered data by Kemp and Kemp [62] regarding mistakes in copying groups of 

random digits for which PL and TPPL distributions have been fitted earlier by 

Sankaran [85]. Based on the data of mistakes in copying groups of random digits the 

parameters of NQPL distribution estimated by the method of moments have been 

obtained as 𝜃 = 2.1008 and 𝛼̂ = 0.3829. 
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2.8  Conclusion: 

In Table 2.1, Table 2.2 and Table 2.3 the values of 𝜒2 have been estimated 

from the observed and expected frequencies of NQPL distribution. Then, comparing 

the values of 𝜒2  and 𝑝-value it has been observed that for all the three data sets the 

NQPL distribution gives a closer fit than PL, TPPL, 𝑑𝛾 and NB distributions. Thus 

we may conclude that the NQPL distribution fits the data well. 
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