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Chapter 3 

 

Size-biased new quasi Poisson-Lindley 

distribution 

 

 

3.1  Introduction 

 Size-biased distributions are a special case of weighted distributions. Fisher [37] 

introduced weighted distributions to model ascertainment biased and was later 

formalized by Rao [84]. It has been observed that in many situations the experimenter 

does not work with the random samples from the population in which they are 

interested. When an observation is recorded by nature according to certain stochastic 

model, the recorded observation will not have the original distribution unless every 

observation is given an equal chance of being recorded. Since the observations are 

recorded with unequal probability, the resulting sampled distribution does not follow 

the original distribution 

 If a random variable 𝑋 has distribution 𝑃0(𝑥;  𝜃) with unknown parameter 𝜃, 

then the corresponding weighted distribution is of the form  

𝑃(𝑥;  𝜃) =
𝑤(𝑥)𝑃0(𝑥; 𝜃)

𝐸[𝑤(𝑥)]
 ,  
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where, 𝑤(𝑥) is a non-negative function such that 𝐸[𝑤(𝑥)] exists. The weighted 

distribution with weight 𝑤(𝑥) = 𝑥 is known as size biased distribution having the 

form,  

𝑃∗(𝑥; 𝜃, 𝛼) =
𝑥𝑃0(𝑥; 𝜃,𝛼)

𝐸(𝑥)
 . 

In this chapter, a size-biased new quasi Poisson-Lindley (SBNQPL) distribution has 

been obtained in section 3.2 and has been compared with size-biased quasi Poisson-

Lindley (SBQPL) distribution. In section 3.3 graphical representations of SBNQPL 

distribution has been shown.  Statistical properties of the distribution have been 

studied in section 3.4. In Section 3.5, the methods of estimation of parameters of 

SBNQPL distribution have been discussed. Goodness of fit has been discussed in 

section 3.6. 

The two-parameter size-biased quasi Poisson-Lindley distribution obtained by 

Shanker and Mishra (2014) has the probability mass function (pmf) as, 

𝑃(𝑥;  𝜃, 𝛼) =
𝑥𝜃2(𝜃𝑥+𝜃𝛼+𝜃+𝛼)

(𝛼+2)(𝜃+1)𝑥+2 , 𝑥 = 1,2, … ;  𝜃 > 0, 𝛼 >  0. 

The 𝑟𝑡ℎ factorial moment has been obtained as, 

𝜇(𝑟)
′ =

Γ(𝑟+1)

(𝛼+2)𝜃𝑟
[(𝛼 + 𝑟 + 2)(𝑟 + 1) + 𝑟𝜃(𝛼 + 𝑟 + 1)] . 

The raw moments have been obtained from factorial moments as 

𝜇1
′ = 𝜇(1)

′ =
𝜃(𝛼+2)+2(𝛼+3)

𝜃(𝛼+2)
 ,  

𝜇2
′ = 𝜇1

′ + 𝜇(2)
′ =

𝜃2(𝛼+2)+6𝜃(𝛼+3)+6(𝛼+4)

𝜃2(𝛼+2)
 , 

𝜇3
′ = 𝜇1

′ + 3𝜇(2)
′ + 𝜇(3)

′ =
𝜃3(𝛼+2)+14𝜃2(𝛼+3)+36𝜃(𝛼+4)+24(𝛼+5)

𝜃3(𝛼+2)
 , 

𝜇4
′ = 𝜇1

′ + 7𝜇(2)
′ + 6𝜇(3)

′ + 𝜇(4)
′   

𝜇4
′ =

𝜃4(𝛼+2)+30𝜃3(𝛼+3)+126𝜃2(𝛼+4)+240𝜃(𝛼+5)+120(𝛼+6)

𝜃4(𝛼+2)
 . 
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The variance has been obtained as 

𝜇2 =
2{𝜃(𝛼2+5𝛼+6)+(𝛼2+6𝛼+6)}

𝜃2(𝛼+2)2
 . 

The probability generating function has been obtained as, 

𝑔(𝑡) =
𝜃2𝑡(1+𝜃)[(𝜃+𝛼+𝛼𝜃)(1+𝜃−𝑡)+2𝜃+𝜃2]

(𝛼+2)(1+𝜃−𝑡)3 , |𝑡| < 1. 

The recurrence relation for probabilities is 

𝑝𝑟+1 =
[{(1+𝜃)2+2(1+𝜃)𝑟}𝑝𝑟−(3+2𝜃−𝑟)𝑝𝑟−1−𝑝𝑟−2]

(1+𝜃)2(𝑟+1)
, 

where, 𝑝1 =
𝜃2(𝜃𝛼+2𝜃+𝛼)

(𝛼+2)(𝜃+1)3
 ,  

𝑝2 =
2𝜃2(𝜃𝛼+3𝜃+𝛼)

(𝛼+2)(𝜃+1)4  . 

3.2  Derivation of SBNQPL distribution 

 Let us consider 𝑋 to be a random variable following NQPL distribution having 

the probability mass function (pmf), 

𝑃0(𝑥;  𝜃, 𝛼) =
𝜃2

(1+𝜃)𝑥+2 (1 +
𝜃+𝛼𝑥

𝜃2+𝛼
) ;  𝑥 = 0,1,2 … , 𝜃 > 0, 𝛼 > 0.  

 Then, the probability mass function (pmf) of (SBNQPL) distribution may be obtained 

as, 

𝑃∗(𝑥; 𝜃, 𝛼) =
𝑥𝑃0(𝑥; 𝜃,𝛼)

𝜇
; 𝑥 = 1,2, … , 𝜃 > 0, 𝛼 > 0, 

where, 𝑃0(𝑥;  𝜃, 𝛼) is the pmf of NQPL distribution and 𝜇 =
𝜃2+2𝛼

𝜃(𝜃2+𝛼)
, is the mean of 

the NQPL distribution. 

Thus, the pmf of SBNQPL distribution has been obtained as, 

𝑃∗(𝑥; 𝜃, 𝛼) =
𝑥𝜃3(𝜃2+𝛼)

(𝜃2+2𝛼)
(

𝛼𝑥+𝜃2+𝛼+𝜃

(1+𝜃)𝑥+2(𝜃2+𝛼)
) , 
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=
𝑥𝜃3

(𝜃2+2𝛼)
(

𝛼𝑥+𝜃2+𝛼+𝜃

(1+𝜃)𝑥+2
) , 

=
𝑥𝜃3

(𝜃2+2𝛼)(1+𝜃)𝑥+1 [𝜃 +
𝛼(𝑥+1)

(1+𝜃)
] ;   𝑥 = 1,2, … , 𝜃 > 0, 𝛼 > 0.  

SBNQPL distribution may also be obtained from the size-biased Poisson distribution 

having the probability mass function (pmf) as, 

  𝑔(𝑥/𝜆) =
𝑒−𝜆𝜆𝑥−1

(𝑥−1)!
 ;  𝑥 = 1,2, … , 𝜆 > 0             (3.2.1) 

when the parameter 𝜆 of size-biased Poisson distribution follows the size-biased new 

quasi Lindley distribution having the density function, 

𝑓(𝜆;  𝜃, 𝛼) =
𝜆𝜃3

𝜃2+2𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆; 𝜆 > 0, 𝜃 > 0, 𝛼 > 0.                    (3.2.2) 

Then, the pmf of size-biased new quasi Poisson-Lindley distribution may be obtained 

from equation (3.2.1) and (3.2.2) by integrating the mixture model as, 

𝑃∗(𝑥; 𝜃, 𝛼) = ∫
𝑒−𝜆𝜆𝑥−1

(𝑥−1)!

∞

0

𝜆𝜃3

𝜃2+2𝛼
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆 , 

=
𝜃3

(𝜃2+2𝛼)(𝑥−1)!
∫ 𝑒−𝜆(1+𝜃)𝜆𝑥(𝜃 + 𝛼𝜆)

∞

0
𝑑𝜆,  

=
𝜃3

(𝜃2+2𝛼)(𝑥−1)!
(𝜃 ∫ 𝑒−𝜆(1+𝜃)𝜆𝑥𝑑𝜆 + 𝛼 ∫ 𝑒−𝜆(1+𝜃)𝜆𝑥+1𝑑𝜆

∞

0

∞

0
) , 

=
𝑥𝜃3

(𝜃2+2𝛼)(1+𝜃)𝑥+1 (𝜃 +
𝛼(𝑥+1)

1+𝜃
); 𝑥 = 1,2, … , 𝜃 > 0, 𝛼 > 0.   (3.2.3) 

It has been observed that when 𝛼 = 𝜃, SBNQPL distribution reduces to size-biased 

Poisson-Lindley (SBPL) distribution having the pmf 

𝑃∗∗(𝑥;  𝜃) =
𝜃3𝑥(𝑥+𝜃+2)

(𝜃+2)(𝜃+1)𝑥+2 ;  𝑥 = 1,2, … , 𝜃 > 0. 

3.3 Graphical representation of SBNQPL distribution 

 To study the behavior of SBNQPL distribution for different values of 

parameter 𝛼 and 𝜃, the probability for possible values of 𝑥 are computed using 

equation (3.2.3).  
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 Figure 3.1 represents the pmf plot of SBNQPL distribution for fixed 𝛼 i.e.  

𝛼 = 0.1 and 𝜃 = 1.5, 2.0 and 3.0 and Figure 3.2 represents the pmf plot of SBNQPL 

distribution for 𝛼 = 0.9 and 𝜃 = 1.5, 2.0 and 3.0 respectively. 

Figure 3.1 pmf plot of SBNQPL distribution for 𝛼 = 0.1 and 𝜃 = 1.5, 2.0, 3.0 

 

                     

Figure 3.2 pmf plot of SBNQPL distribution for 𝛼 = 0.9 and 𝜃 = 1.5, 2.0, 3.0 

    

              

 

         



33 
 

3.4 Statistical properties of SBNQPL distribution 

 Some properties of SBNQPL distribution have been studied in this section. 

3.4.1  Shape of the probability function 

We have, 

𝑃(𝑥+1; 𝜃,𝛼)

𝑃(𝑥; 𝜃,𝛼)
= (

1

1+𝜃
) (1 +

1

𝑥
) {1 +

𝛼

(1+𝜃)𝜃+𝛼(𝑥+1)
} which is a decreasing function 

in ′𝑥′ and hence SBNQPL distribution is log-concave. Thus, we may conclude that 

SBNQPL distribution is unimodal and has an increasing failure rate. [Johnson et al. 

[56]] 

𝟑.4.2 Moments and related measures 

The 𝑟𝑡ℎ factorial moment of SBNQPL distribution may be obtained as, 

𝜇(𝑟)
′ = 𝐸[𝐸(𝑋(𝑟)|𝜆)], where 𝑋(𝑟) = 𝑋(𝑋 − 1)(𝑋 − 2) … (𝑋 − 𝑟 + 1) 

= ∫ ∑ 𝑥(𝑟) 𝑒−𝜆𝜆𝑥

(𝑥−1)!

𝜆𝜃3

(𝜃2+2𝛼)
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆∞

𝑥=0
∞

0
 , 

= ∫ 𝜆𝑟−1 ∑ 𝑥
𝑒−𝜆𝜆𝑥−𝑟

(𝑥−𝑟)!

𝜆𝜃`3

(𝜃2+2𝛼)
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆∞

𝑥=𝑟
∞

0
 .  

Taking ′𝑥 + 𝑟′ in place of 𝑥, we get, 

𝜇(𝑟)
′ = ∫ 𝜆𝑟−1 {∑ (𝑥 + 𝑟)∞

𝑥=0
𝑒−𝜆𝜆𝑥

𝑥!
}

∞

0

𝜆𝜃3

(𝜃2+2𝛼)
(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆 . 

The expression in the bracket is (𝜆 + 𝑟) and hence we have, 

𝜇(𝑟)
′ =

𝜃3

(𝜃2+2𝛼)
∫ (𝜆 + 𝑟)𝜆𝑟(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
 . 

Hence the solution of the gamma integral will be, 

𝜇(𝑟)
′ =

𝜃3

(𝜃2+2𝛼)
∫ (𝜆𝑟+1 + 𝑟𝜆𝑟)(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
,  

=
Γ(𝑟+1)

𝜃𝑟(𝜃2+2𝛼)
[(𝑟 + 1)(𝜃2 + 𝛼𝑟 + 2𝛼 + 𝑟𝛼𝜃) + 𝑟𝜃3].         (3.4.1) 
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Thus from equation (3.4.1) the 𝑟𝑡ℎ factorial moments have been obtained by 

substituting 𝑟 = 1,2,3 and 4 as, 

𝜇(1)
′ =

𝜃3+2𝜃2+6𝛼+2𝛼𝜃

𝜃(𝜃2+2𝛼)
 , 

𝜇(2)
′ =

2(2𝜃3+3𝜃2+12𝛼+6𝛼𝜃)

𝜃2(𝜃2+2𝛼)
 , 

𝜇(3)
′ =

6(3𝜃3+4𝜃2+20𝛼+12𝛼𝜃)

𝜃3(𝜃2+2𝛼)
 , 

𝜇(4)
′ =

24(4𝜃3+5𝜃2+30𝛼+20𝛼𝜃)

𝜃4(𝜃2+2𝛼)
.   

Now, using the relationship between raw and factorial moments we have obtained the 

raw moments as, 

𝜇1
′ =

𝜃3+2𝜃2+6𝛼+2𝛼𝜃

𝜃(𝜃2+2𝛼)
 , 

𝜇2
′ =

𝜃4+6𝜃3+6𝜃2+18𝛼𝜃+2𝛼𝜃2+24𝛼

𝜃2(𝜃2+2𝛼)
 , 

𝜇3
′ =

𝜃5+14𝜃4+36𝜃3+24𝜃2+144𝛼𝜃+42𝛼𝜃2+2𝛼𝜃3+120𝛼

𝜃3(𝜃2+2𝛼)
 , 

The variance of SBNQPL distribution may be obtained as, 

𝜇2 = 𝜇2
′ − 𝜇1

′ 2
 , 

𝜇2 =
2𝜃5+10𝛼𝜃3+2𝜃4+12𝜃2𝛼+12𝛼2𝜃+12𝛼2

𝜃2(𝜃2+2𝛼)2  . 

3.4.3 Recurrence Relations for Probabilities of SBNQPL distribution   

 The probability generating function which is considered as a useful tool for 

dealing with discrete random variables has been used to generate the probabilities of 

the distribution.  

The probability generating function (pgf) of size biased new quasi Poisson- 

Lindley distribution may be obtained as, 

𝑔(𝑡) = 𝐸(𝑡𝑥) , 
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= ∑ 𝑡𝑥𝑃∗(𝑥)∞
𝑥=1  ,  

where, 𝑃∗(𝑥) is the pmf of SBNQPL distribution. 

= ∑ 𝑡𝑥 𝑥𝜃3

(𝜃2+2𝛼)(1+𝜃)𝑥+1
(𝜃 +

𝛼(𝑥+1)

1+𝜃
)∞

𝑥=1  , 

=
𝜃3

(𝜃2+2𝛼)
{∑ 𝑡𝑥 𝑥

(1+𝜃)𝑥+1 (𝜃 +
𝛼(𝑥+1)

1+𝜃
)∞

𝑥=1 },  

=
𝜃3{(𝜃(1+𝜃)+𝛼) ∑ 𝑥(

𝑡

1+𝜃
)

𝑥
+𝛼 ∑ 𝑥2(

𝑡

1+𝜃
)

𝑥
∞
𝑥=1

∞
𝑥=1 }

(𝜃2+2𝛼)(1+𝜃)2  , 

=
𝜃3𝑡[𝜃(𝜃+1−𝑡)+2𝛼]

(𝜃2+2𝛼)(1+𝜃−𝑡)3 , |𝑡| < 1  .                  (3.4.2) 

Equating the coefficient of ′𝑡𝑟′ on both sides of equation (3.4.2), the expression for 

recurrence relation for probabilities of SBNQPL distribution has been obtained as, 

𝑝𝑟 =
{3(𝜃+1)2 𝑝𝑟−1−3(𝜃+1)𝑝𝑟−2+𝑝𝑟−3}

(𝜃+1)3 , 𝑟 > 3 (()            (3.4.3) 

where   𝑝1 =
𝜃3(𝜃2+𝜃+2𝛼)

(1+𝜃)3 (𝜃2+2𝛼)
, 

𝑝2 =
2 𝜃3(𝜃2+𝜃+3𝛼)

(1+𝜃)4 (𝜃2+2𝛼)
 ,  

and,    𝑝3 =
3 𝜃3(𝜃2+𝜃+4𝛼)

(1+𝜃)5 (𝜃2+2𝛼)
.       

The higher probabilities may be obtained from equation (3.4.3) by substituting  

𝑟 = 4, 5, … etc. 

It has been observed that when 𝛼 = 𝜃 SBNQPL distribution reduces to SBPL 

distribution. 

The moment generating function may be written as 

𝑚(𝑡) =
𝜃3𝑒𝑡[𝜃(𝜃+1−𝑒𝑡)+2𝛼]

(𝜃2+2𝛼)(1+𝜃−𝑒𝑡)3   
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3.4.4 Recurrence relation for factorial moment generating function of 

SBNQPL distribution   

The factorial moment generating function (fmgf) of SBNQPL distribution may 

be obtained from the probability generating function (pgf) as, 

𝐺(𝑡) = 𝑔(1 + 𝑡) , 

𝐺(𝑡) =
𝜃3(1+𝑡)[𝜃(𝜃−𝑡)+2𝛼] 

(𝜃2+2𝛼)(𝜃−𝑡)3 .                 (3.4.3) 

Expanding equation (3.4.3) and then equating the co-efficient of 
𝑡𝑟

𝑟!
 we may obtain the 

recursive expression for factorial moment generating (fmgf) function as, 

𝜇(𝑟)
′ =

3𝑟𝜇(𝑟−1)
′ −3𝜃𝑟𝜇(𝑟−2)

′ +𝑟(𝑟−1)(𝑟−2)𝜇(𝑟−3)
′

𝜃3 , 𝑟 > 3  

where, 𝜇(1)
′ =

𝜃3+2𝜃2+6𝛼+2𝛼𝜃

𝜃(𝜃2+2𝛼)
 , 

 𝜇(2)
′ =

2(2𝜃3+3𝜃2+12𝛼+6𝛼𝜃)

𝜃2(𝜃2+2𝛼)
, 

𝜇(3)
′ =

6(3𝜃3+4𝜃2+20𝛼+12𝛼𝜃)

𝜃3(𝜃2+2𝛼)
 .  

It has been observed that the factorial moment generating function of SBNQPL 

distribution reduces to SBPL distribution when 𝛼 = 𝜃. 

3.4.5  Index of dispersion and coefficient of variation 

 The index of dispersion defined as the ratio of variance to mean is a measure to 

determine whether a distribution is over-dispersed, equi-dispersed or under-dispersed. 

It is denoted by 𝛾 and may be written as,  

I. D =
𝜎2

𝜇
=

2𝜃5+10𝛼𝜃3+2𝜃4+12𝜃2𝛼+12𝛼2𝜃+12𝛼2

𝜃(𝜃2+2𝛼)(𝜃3+2𝜃2+2𝛼𝜃+6𝛼)
.  
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Coefficient of variation denoted by CV may be defined as the ratio of standard 

deviation to mean. It is invariant of change of scale but not of origin and is given as, 

CV =
𝜎

𝜇
=

√2𝜃5+10𝛼𝜃3+2𝜃4+12𝜃2𝛼+12𝛼2𝜃+12𝛼2

(𝜃3+2𝜃2+2𝛼𝜃+6𝛼)
.  

3.5 Estimation of parameters of SBNQPL distribution 

3.5.1 Method of moments 

The first two moments are required to estimate the parameters by the method of 

moments. Thus we have, 

𝜇1
′ =

𝜃3+2𝜃2+6𝛼+2𝛼𝜃

𝜃(𝜃2+2𝛼)
,  

𝜇2
′ =

𝜃4+6𝜃3+6𝜃2+18𝛼𝜃+2𝛼𝜃2+24𝛼

𝜃2(𝜃2+2𝛼)
 . 

Now let,    
(𝜇2

′ −1)−3(𝜇1
′ −1)

(𝜇1
′ −1)2 =

3(𝜃2+4𝛼)(𝜃2+2𝛼)

2(𝜃2+3𝛼)2 = 𝑘 (say).          (3.5.1) 

Substituting 𝛼 = 𝑏𝜃2 in (3.5.1) a quadratic equation in b has  been obtained as 

(24 − 18𝑘)𝑏2 + 6(3 − 2𝑘)𝑏 + (3 − 2𝑘) = 0                       (3.5.2) 

Replacing the first two population moment by the respective sample moments in 

equation (3.5.1) the estimate of 𝑘 may be obtained. Substituting the estimate of 𝑘 in 

(3.5.2) the estimate 𝑏̂ can be obtained from the quadratic equation (3.5.2). 

The mean of SBNQPL distribution may be given as 𝑥̅ = 1 +
2(𝜃2+3𝛼)

𝜃(𝜃2+2𝛼)
.               (3.5.3) 

Substituting 𝛼 = 𝑏𝜃2, in the above expression (3.5.3) we have 

𝜃 =
2(1+3𝑏)

(1+2𝑏)(𝑥̅−1)
 ,  

and   𝛼̂ = 𝑏𝜃2 =
4𝑏̂(1+3𝑏̂)

2

(1+2𝑏̂)
2

(𝑥̅−1)2
 ,                                                      

where  𝑥̅ − 1 =
2(1+3𝑏)

𝜃(1+2𝑏)
 and 𝑏̂ may be obtained from equation (3.5.2). 
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3.5.2  Maximum Likelihood Estimates 

Let 𝑥1, 𝑥2, … … , 𝑥𝑛 be a random sample of size 𝑛 from the SBNQPL distribution 

and 𝑓𝑥 be the observed frequency corresponding to 𝑋 = 𝑥(𝑥 = 1,2, … 𝑘) such that 

∑ 𝑓𝑥 = 𝑛.𝑘
𝑥=1  

The Likelihood function 𝐿 for the vector of parameter Θ = (𝜃, 𝛼)𝑇of the size 

biased new quasi Poisson-Lindley distribution may be written as 

𝐿 = (
𝜃3

𝜃2+2𝛼
)

𝑛
1

(1+𝜃)∑ (𝑥+2)𝑓𝑥
𝑘
𝑥=1

∏ [𝛼𝑥2 + 𝑥(𝜃2 + 𝜃 + 𝛼)]𝑓𝑥𝑘
𝑥=1 .     

The log likelihood function becomes 

log 𝐿 = 𝑛log (
𝜃3

𝜃2+2𝛼
) − ∑ (𝑥 + 2)𝑓𝑥log (1 + 𝜃) +𝑘

𝑥=1 ∑ 𝑓𝑥log [𝛼𝑥2 + 𝑥(𝜃2 + 𝜃 + 𝛼)]𝑘
𝑥=1 . 

Then the log likelihood equations are obtained as 

𝜕log𝐿

𝜕𝛼
= −

𝑛

𝜃2+2𝛼
+ ∑

(𝑥2+𝑥)𝑓𝑥

[𝛼𝑥2+𝑥(𝜃2+𝜃+𝛼)]
= 0𝑘

𝑥=1  ,                                         

 and 

 
𝜕log𝐿

𝜕𝜃
=

3𝑛

𝜃
−

2𝑛𝜃

𝜃2+2𝛼
− ∑

(𝑥+2)𝑓𝑥

1+𝜃
+𝑘

𝑥=1 ∑
𝑥(2𝜃+1)

[𝛼𝑥2+𝑥(𝜃2+𝜃+𝛼)]
= 0𝑘

𝑥=1  .             

The above two equations could be solved using Fisher’s scoring method. We have 

𝜕2log 𝐿

𝜕𝛼2 =
𝑛

(𝜃2+2𝛼)2 − ∑
(𝑥2+𝑥)

2
𝑓𝑥

[𝛼𝑥2+(𝜃2+𝜃+𝛼)]2
𝑘
𝑥=1  , 

𝜕2log 𝐿

𝜕𝛼𝜕𝜃
=

2𝑛𝜃

(𝜃2+2𝛼)2 − ∑
𝑥(𝑥2+𝑥)(2𝜃+1)𝑓𝑥

[𝛼𝑥2+𝑥(𝜃2+𝜃+𝛼)]2
𝑘
𝑥=1  , 

𝜕2log 𝐿

𝜕𝜃2
= −

3𝑛

𝜃2
+

4𝑛𝜃

(𝜃2+2𝛼)2
+ ∑

(𝑥+2)𝑓𝑥

(1+𝜃)2
𝑛
𝑖=1  + ∑

(2𝛼𝑥2−2𝑥𝜃2−2𝜃𝑥+2𝛼𝑥−1)𝑓𝑥

[𝛼𝑥2+𝑥(𝜃2+𝜃+𝛼)]2
𝑛
𝑖=1   , 

The following equations can be solved for 𝜃 and 𝛼̂ iteratively till sufficiently close 

values of 𝜃 and  𝛼 are obtained. Thus we have, 
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[

𝜕2log 𝐿

𝜕𝛼2

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝜃2

] [
𝜃 − 𝜃0

𝛼̂ − 𝛼0
] = [

𝜕log𝐿

𝜕𝛼

  
𝜕log𝐿

𝜕𝜃

]

𝜃̂=𝜃0

𝛼̂=𝛼0

   .                                                      

where 𝜃0and 𝛼0 are the initials value of 𝜃 and 𝛼 respectively.  

3.6 Goodness of fit 

To illustrate the applications and to justify suitability of SBNQPL distribution, 

the SBNQPL distribution has been fitted to some published datasets for which various 

distributions were fitted earlier by different authors. In fitting of probability 

distribution, the estimation of parameters plays a very important role. The parameters 

of SBNQPL distribution has been estimated by the method of maximum likelihood. 

The parameters are then used to obtain the expected frequencies to calculate the 𝜒2 

value. The SBNQPL distribution is then compared with other distributions as 

measured by 𝜒2 criterion.  

Here, the SBNQPL distribution has been fitted to three data sets and the 

distribution has been compared with size-biased Poisson-Lindley and size-biased 

quasi Poisson-Lindley distributions. 
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Table 3.1: 

 

Observed and expected frequency of SBNQPL distribution for the 

counts of people in public places on a spring afternoon in Portland. 

[data from James [55]] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SBNQPL distribution has also been fitted to data reported by James [55] 

in Table 3.1 which is regarding the distribution for the Counts of people in public 

places on a spring afternoon in Portland. The parameters are obtained by the method 

of maximum likelihood as 𝛼̂ = 40.3068and 𝜃 = 5.3352. The derived distribution has 

been compared with SBPL and SBNQPL distributions.  

 

 

 

 

Size of group Observed   

frequencies 

Expected frequencies 

SBPL SBQPL SBNQPL 

1 

2 

3 

4 

5 

6 

1486 

694 

195 

37 

10 

1 

1532.5 

630.6 

191.9 

51.3 

12.8 

3.9 

1534.4 

625.1 

191.9 

52.1 

13.3 

3.5 

1517.9 

648.0 

193.4 

49.1 

11.3 

2.5 

Total 2423 2423 2423 2423 

 

Parameters 

𝜃 = 4.5082 

 

𝛼̂ = 24.4597 

𝜃 = 4.0458 

𝛼̂ = 40.3068 

𝜃 = 5.3352 

𝜒2 13.766 16.1 7.97 

d.f 4 3 3 

𝑝-value 0.01 0.871 0.899 
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Table 3.2: Observed and expected frequency of SBNQPL distribution for the counts 

of shopping Groups-Eugene, spring, Department Store and Public 

Market. [data from Coleman and James [24]] 

 

 

In Table 3.2 the SBNQPL distribution has been fitted to data reported by 

Coleman and James [24] for the Counts of Shopping Groups- Eugene, spring, 

Department Store and Public Market. From the data set we have obtained the expected 

frequency and 𝜒2 value for goodness of fit. 

 

 

 

 

 

Size of 

Groups 

Observed   

frequencies 

Expected frequencies 

SBPL SBQPL SBNQPL 

1 

2 

3 

4 

5 

316 

141 

44 

5 

4 

323.0 

132.5 

40.2 

10.7 

2.0 

323.8 

128 

40.1 

10.9 

2.8 

320.1 

136.8 

42.5 

10.3 

2.4 

Total 510 510 510 510 

 

              Parameters 

𝜃 = 4.5212 

 

𝛼̂ = 29.5164 

𝜃 = 4.0477  

𝛼̂ = 35.0710  

𝜃 = 5.3016  

𝜒2 3.021 5.49 4.03 

d.f 3 2 2 

                       𝑝 − value 0.40 0.72 0.96 
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Table 3.3:  

 

Observed and expected frequency of SBNQPL distribution for the 

counts of Play Groups-Eugene, Spring Public Playground D. [data from 

Sminoff [98]] 

 

Table 3.3 is regarding the sets of data reported by Simonoff [98] for counts of 

Play Groups-Eugene, Spring Public Playground D where there are six groups and the 

observed frequency corresponding to the groups are given. 

3.7 Conclusion: 

The observed frequencies and expected frequencies of SBPL, SBQPL and 

SBNQPL distribution for the three data sets have been shown in Table 3.1, Table 3.2 

and Table 3.3 respectively for its comparison. Comparing the observed and expected 

frequencies the 𝜒2 values and 𝑝-values have been calculated for testing the goodness 

of fit. 

 It has been observed that based on chi-square value and 𝑝-value from Table 

3.1, Table 3.2 and Table 3.3 the SBNQPL distribution provide a closer fit than SBPL 

and SBQPL distribution. 

Size of 

Groups 

Observed 

Frequency 

Expected frequency 

SBPL SBQPL SBNQPL 

1 

2 

3 

4 

5 

6 

305 

144 

50 

5 

2 

1 

314.4 

134.4 

42.5 

11.8 

3.1 

0.8 

314.19 

127.12 

42.8 

9.2 

1.9 

0.4 

310.97 

138.0 

43.0 

9.0 

2.7 

0.6 

Total 507 507 507 507 

 

Parameters 

𝜃= 4.3179 

 

𝜃 ̂= 3.9563 

𝛼̂ = 14.2299 

𝜃 ̂= 5.0189 

𝛼̂ = 30.7657 

𝜒2 6.415 6.5443 4.2595 

d.f 2 1 1 

𝑝-value 0.09 0.12 0.18 
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