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Chapter 4 

 

Generalized two-parameter Poisson-Lindley 

distribution 

 

 

4.1 Introduction 

In this chapter, generalized two-parameter Poisson-Lindley distribution has 

been studied. The negative-binomial distribution, Poisson-Lindley distribution and 

geometric distribution have been obtained as a particular case of generalized two-

parameter Poisson-Lindley (GTPL) distribution. Various properties of the distribution 

such as recurrence relations, moments, estimation of parameters etc. have been 

studied. In section 4.2, the derivation of the generalized two parameter Poisson-

Lindley (GTPL) distribution has been discussed. Graphical representation of the pmf 

of GTPL distribution has been discussed in section 4.3. Some properties of GTPL 

distribution has been derived in section 4.4, 4.5, 4.6 and 4.7. In section 4.8, size-

biased GTPL distribution has been obtained. Estimation method of GTPL distribution 

has been discussed in section 4.9. Goodness of fit and discussions have been included 

in section 4.10 and 4.11. 

Poisson-Lindley distribution introduced by Sankaran [85] has only one 

parameter so it does not provide enough flexibility for analyzing different types of life 

time data. Thus, Shanker and Mishra [93] in order to increase the flexibility obtained 

a two parameter Poisson-Lindley distribution.   
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4.2 Derivation of the generalized two-parameter Poisson-Lindley (GTPL) 

distribution 

Definition: Let 𝑋|𝜆 be a random variable following a Poisson distribution with 

parameter 𝜆 having the probability mass function 

𝑔(𝑥|𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
;  𝑥 = 0, 1, 2, … ;  𝜆 > 0  

then 𝑋 is said to be generalized two-parameter Poisson Lindley (GTPL) distribution if 

it follows the representation, 

 𝑋|𝜆 ~ Poisson (𝜆)  . 

𝜆|𝜃, 𝛼 ~ Two-parameter Lindley (TPL) distribution with parameter (𝜃, 𝛼) given by 

the density function,  

𝑓(𝜆;  𝜃, 𝛼) =
𝜃2

(𝛼𝜃+1)
(𝛼 + 𝜆)𝑒−𝜃𝜆;  𝜆 > 0, 𝜃 > 0, 𝛼 > 0 . 

Preposition: Let 𝑋 be a random variable following the GTPL (𝜃, 𝛼)distribution. 

Then, the pmf of 𝑋 is,   

   𝑃(𝑋 = 𝑥) =
𝜃2

(𝜃+1)𝑥+1(𝛼𝜃+1)
(𝛼 +

𝑥+1

𝜃+1
) ; 𝑥 = 0,1,2 … , 𝜃 > 0, 𝛼 > 0 .  

Proof:  Since 𝑋|𝜆 ~ Poisson (𝜆) distribution and   𝜆|𝜃, 𝛼 ~ TPL (𝜃, 𝛼) distribution 

Then, the marginal pmf of 𝑋 is given as, 

𝑃(𝑋 = 𝑥) = ∫ 𝑃(𝑥|𝜆)𝑓(𝜆;  𝜃, 𝛼)𝑑𝜆
∞

0
 , 

= ∫
𝑒−𝜆𝜆𝑥

𝑥!

∞

0

𝜃2

𝛼𝜃+1
(𝛼 + 𝜆)𝑒−𝜃𝜆𝑑𝜆 , 

=
𝜃2

(𝛼𝜃+1)𝑥!
(∫ 𝑒−𝜆(1+𝜃)𝜆𝑥𝑑𝜆

∞

0
+ 𝛼 ∫ 𝑒−𝜆(1+𝜃)𝜆𝑥+1𝑑𝜆

∞

0
) , 

=
𝜃2

(𝜃+1)𝑥+1(𝛼𝜃+1)
(𝛼 +

𝑥+1

𝜃+1
) ;  𝑥 = 0,1,2, … , 𝜃 > 0, 𝛼 > 0 . (4.2.1) 

The resultant distribution obtained in equation (4.2.1) is the pmf GTPL distribution 

obtained by Shanker and Mishra [93]. 
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Particular cases 

(i) For 𝛼 → 0, equation (4.2.1) reduces to negative binomial distribution with      

parameter 𝑟 = 2 and 𝑝 =
𝜃

𝜃+1
 . 

(ii) For 𝛼 = 1, it reduces to one parameter Poisson- Lindley distribution. 

(iii) For 𝛼 → ∞, it reduces to geometric distribution with parameter 𝑝 =
𝜃

𝜃+1
. 

Let us denote the density function of GTPL distribution by 𝑓(𝑥;  𝜃, 𝛼). The first and 

second derivatives of GTPL distribution may be obtained as, 

𝑓′(𝑥) =
−𝜃2

(𝛼𝜃+1)
{𝑙𝑜𝑔(𝜃 + 1)(𝛼𝜃 + 𝛼 + 𝑥 + 1) − 1} , 

and 𝑓′′(𝑥) =
𝜃2

(𝛼𝜃+1)(𝜃+1)𝑥+2
{𝑙𝑜𝑔(𝜃 + 1)(𝛼𝜃 + 𝛼 + 𝑥 + 1) − 2} . 

To determine the mode of GTPPL distribution we solve the equation, 

𝑓′(𝑥) = 0 . 

i.e. 
−𝜃2

(𝛼𝜃+1)
{𝑙𝑜𝑔(𝜃 + 1)(𝛼𝜃 + 𝛼 + 𝑥 + 1) − 1} = 0. 

which implies 𝑥̂ =
1

𝑙𝑜𝑔(𝜃+1)
− (𝛼 + 1 + 𝛼𝜃) , 

and,  𝑓′′(𝑥̂) =
−𝜃2(𝜃+1)

(𝛼𝜃+1)
(𝛼 + 𝛼𝜃 − 1 −

1

𝑙𝑜𝑔(𝜃+1)
) < 0. 

This implies that 𝑥̂ =
1

𝑙𝑜𝑔(𝜃+1)
− (𝛼 + 𝛼𝜃 + 1)is the unique critical point for          

𝑥̂ > 0, 𝜃, 𝛼 > 0    at which GTPPL distribution is maximum. 

Thus the mode of GTPPL distribution may be written as 

 Mode =
1

𝑙𝑜𝑔(𝜃+1)
− (𝛼 + 𝛼𝜃 + 1); 𝜃 > 0, 𝛼 > 0. 

4.3 Graphical representation of GTPL distribution 

For different values of 𝛼 and 𝜃, the nature and behavior of GTPL distribution 

are explained graphically in Figure 4.1 and Figure 4.2. In Figure 4.1 graphical 

representation of GTPPL distribution for 𝛼 = 0.01, 1.1 and  𝜃 =0.3, 0.7, 1.1 has been 

shown. Figure 4.2 represents graphical representation for 𝛼 =1.1 and  𝜃 =0.3, 0.7, 1.1 
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and graphical representation for 𝛼 =5.0, 9.0 and 𝜃 =0.3, 0.7, 1.1 has been represented 

in Figure 4.3 

It is clear from the graphs of the pmf below that GTPL distribution is 

monotonically decreasing for increasing values of the parameters 𝛼 and 𝜃. For 

increasing 𝛼 and constant 𝜃, the graph of pmf of generalized two- parameter Poisson-

Lindley (GTPL) distribution move upward and then decreases slowly as the value of 

𝑥 increases. For constant 𝛼 and increasing 𝜃, the graph of pmf decreases fast from 

higher values with increasing values of 𝑥. Thus, we may conclude that 𝜃 is the 

dominating parameter as the parameter 𝜃 makes a difference in the shape of the pmf 

of generalized two-parameter Poisson-Lindley distribution while changing its values. 

The change in parameter 𝛼 does not influence much on the shape of the pmf of 

generalized two-parameter Poisson-Lindley distribution.    

Figure 4.1 pmf plot of GTPL distribution for 𝛼 = 0.01 and 𝜃 = 0.3,0.7, 1.1 
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Figure 4.1: pmf plot of GTPL distribution for 𝛼 = 1.0 and 𝜃 = 0.3,0.7, 1.1 

 

 

 

Figure 4.2: pmf plot of GTPL for 𝛼 = 5.0 and 𝜃 = 0.3, 0.7, 1.1 
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4.4  Shape of the Probability Function 

Since, 

𝑃(0) =
𝜃2(𝛼𝜃+𝛼+1)

(1+𝜃)2(1+𝛼𝜃)
 , 

 
𝑃(𝑥+1)

𝑃(𝑥)
=

1

(1+𝜃)
{1 +

1

𝛼(𝜃+1)+𝑥+1
},  𝑥 = 1,2, …      .       

which is a decreasing function in 𝑥, GTPPL distribution is log-concave. Therefore, it 

has an increasing hazard rate and is unimodal, [Johnson et al. [56]]. 

4.5 Recursive expressions of GTPL distribution 

4.5.1 Probability generating function 

The probability generating function (pgf) of GTPL distribution has been 

obtained as 

   𝑔(𝑡) = 𝐸(𝑡𝑥) , 

= ∑ 𝑡𝑥∞
𝑥=0

𝜃2

(𝜃+1)𝑥+1(𝛼𝜃+1)
[𝛼 +

𝑥+1

𝜃+1
] , 

         =
𝜃2

(𝛼𝜃+1)(𝜃+1−𝑡)2
{𝛼(𝜃 + 1 − 𝑡) + 1}.           (4.5.1) 

Differentiating equation (4.5.1) w.r.t ′𝑡′ and expanding it we have obtained as, 

𝑔′(𝑡) =
2𝑔(𝑡)

(𝜃+1−𝑡)
−

𝛼𝜃2

(𝛼𝜃+1)(𝜃+1−𝑡)2 .                       (4.5.2) 

From equation (4.5.2) equating the coefficient of 𝑡𝑟, we have obtained the recurrence 

relation for probabilities as,                  

𝑝𝑟+1 =
[2(𝜃+2)𝑝𝑟−𝑝(𝑟−1)]

(𝜃+1)2 , 𝑟

Where  𝑝0 =
𝜃2

(𝜃+1)2(𝛼𝜃+1)
(𝛼 + 𝛼𝜃 + 1), 

and 𝑝1 =
𝜃2

(𝜃+1)3(𝛼𝜃+1)
(𝛼 + 𝛼𝜃 + 2),  

From equation (4.5.3) higher order probabilities may be obtained for 𝑟 = 2,3, … 
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4.5.2 Factorial moment generating function 

 The factorial moment generating function (fmgf) of GTPL distribution may be 

obtained as, 

𝐺(𝑡) = 𝑔(1 + 𝑡) , 

𝐺(𝑡) =
𝜃2

(𝛼𝜃+1)(𝜃−𝑡)2
{𝛼(𝜃 − 𝑡) + 1}.             (4.5.4) 

Differentiating equation (4.5.4) and equating the co-efficient of ′
𝑡𝑟

𝑟!
′ we obtain the 

recursive expression for factorial moments as, 

𝜇(𝑟+1)
′ =

𝜃(1 +2𝑟)𝜇 ( 𝑟)
′ −𝑟2𝜇(𝑟−1)

′

𝜃2
, 𝑟 > 1 ,           (4.5.5) 

where, 𝜇(1)
′ =

𝛼𝜃+2

𝜃(𝛼𝜃+1)
 , 

Higher factorial moments can be obtained from the recursive expression of equation 

(4.5.5) for 𝑟 = 2, 3 … etc. 

4.5.3 Moment generating function 

The moment generating function (mgf) of GTPL distribution may be obtained 

as, 

𝑚(𝑡) =
𝜃2

(𝛼𝜃+1)(𝜃+1−𝑒𝑡)2
{𝛼(𝜃 + 1 − 𝑒𝑡) + 1}, |𝑡| < 1 .                    (4.5.6) 

The recurrence relation for raw moments from equation (4.5.6) has been obtained as, 

𝜇𝑟+1
′ =

[𝛼𝐵{(𝜃+1)−2𝑟}+2𝐵+ ∑ 𝜇𝑗
′(

𝑟
𝑟+1−𝑗){3(𝜃 +1)2−3(𝜃+1)2𝑟+1−𝑗+3𝑟+1−𝑗}𝑟

𝑗=1 ]

𝜃3
, 𝑟 ≥ 1      (4.5.7) 

where  𝐵 =
𝜃2

(𝛼𝜃+1)
, 

and  𝜇1
′ =

𝛼𝜃+2

𝜃(𝛼𝜃+1)
. 
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4.5.4 Cumulant generating function 

 The cumulant generating function (cgf) of GTPL distribution may be obtained 

from moment generating function of equation (4.5.6) as, 

 𝐾(𝑡) = log 𝑚(𝑡) , 

𝐾(𝑡) = log {
𝜃2{𝛼(𝜃+1−𝑒𝑡)+1}

(𝛼𝜃+1)(𝜃+1−𝑒𝑡)2} .            (4.5.8) 

Expanding the equation of (4.5.8) we have, 

𝐾(𝑡) = log{𝜃2(𝛼(𝜃 + 1 − 𝑒𝑡) + 1)} − log(𝛼𝜃 + 1) − 2log(𝜃 + 1 − 𝑒𝑡) .        (4.5.9) 

Differentiating equation (4.5.9) w.r.t ′𝑡′ and equating the coefficient of ′
𝑡𝑟

𝑟!
′ the 

recurrence relation for cumulants has been obtained as 

𝑘𝑟+1 =
{𝛼(1+𝜃)+2−𝛼2𝑟}+∑ 𝐾𝑗(

𝑟
𝑟−𝑗+1){2𝛼𝜃−𝛼2𝑗+1}𝑟

𝑗=1

𝛼𝜃(𝜃+1)
, 𝑟

where,  𝑘1 =
𝛼𝜃+2

𝜃(𝛼𝜃+1)
 (Mean), 

 𝑘2 =
𝛼2𝜃3+3𝛼𝜃2+𝛼2𝜃2+2𝜃+4𝛼𝜃+2

𝜃2(𝛼𝜃+1)2   (Variance). 

4.6 Moments of GTPL distribution   

The factorial moment may be obtained from equation (4.5.4) as 

𝜇(1)
′ =

𝛼𝜃+2

𝜃(𝛼𝜃+1)
 , 

𝜇(2)
′ =

2(𝛼𝜃+3)

𝜃2(𝛼𝜃+1)
,  

𝜇(3)
′ =

6(𝛼𝜃+3)

𝜃2(𝛼𝜃+1)
+

6(𝛼𝜃+4)

𝜃3(𝛼𝜃+1)
 , 

𝜇(4)
′ =

14(𝛼𝜃+3)

𝜃2(𝛼𝜃+1)
+

36(𝛼𝜃+4)

𝜃3(𝛼𝜃+1)
+

24(𝛼𝜃+5)

𝜃4(𝛼𝜃+1)
 . 

From the factorial moments the raw moments may be obtained using the relationship 

between the raw and factorial moment. 
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The central moments 𝜇2, 𝜇3 and 𝜇4 have been obtained as        

𝜇2 = 𝜇2
′ − 𝜇1

′ 2


     𝜇2 =
𝛼2𝜃3+3𝛼𝜃2+𝛼2𝜃2+2𝜃+4𝛼𝜃+2

𝜃2(𝛼𝜃+1)2  , 

𝜇3 =
𝛼3𝜃5+𝜃4(4𝛼2+3𝛼3)+𝜃3(5𝛼+15𝛼2+2𝛼3)+𝜃2(2+18𝛼+2𝛼2)+𝜃(6+12𝛼)+4

𝜃3(𝛼𝜃+1)3
 , 

𝜇4 =

𝛼4𝜃7+𝜃6𝛼3(5+10𝛼)+𝜃5𝛼2(20𝛼2+60𝛼+9)+𝜃4𝛼( 7+116𝛼+120𝛼2+9𝛼4)

+𝜃3(2+92𝛼+240𝛼2+72𝛼3)+𝜃2(26+180𝛼+132𝛼2)+𝜃(48+168𝛼)+24

𝜃4(𝛼𝜃+1)4
 . 

4.7 Skewness and Kurtosis  

 Skewness gives an idea about symmetricity of the distribution. It tells whether a 

distribution is positively skewed or negatively skewed. It may be obtained as,  

𝛾 =
𝜇3

𝜇2
3 2⁄  =

𝛼3𝜃5+𝜃4(4𝛼2+3𝛼3)+𝜃3(5𝛼+15𝛼2+2𝛼3)+𝜃2(2+18𝛼+2𝛼2)+𝜃(6+12𝛼)+4

(𝛼2𝜃3+3𝛼𝜃2+𝛼2𝜃2+2𝜃+4𝛼𝜃+2)3 2⁄ .  

Kurtosis enables us to determine peakedness of a distribution. It may be defined as, 

𝛽2 =
𝜇4

𝜇2
2 =

𝛼4𝜃7+𝜃6𝛼3(5+10𝛼)+𝜃5𝛼2(20𝛼2+60𝛼+9)+𝜃4𝛼( 7+116𝛼+120𝛼2+9𝛼4)

+𝜃3(2+92𝛼+240𝛼2+72𝛼3)+𝜃2(26+180𝛼+132𝛼2)+𝜃(48+168𝛼)+24

((𝛼𝜃+2)(𝜃+1)(𝛼𝜃+1)+𝛼𝜃)
2  . 

4.8 Size biased generalized two-parameter Poisson-Lindley (SBGTPL) 

distribution 

As already mentioned in the previous chapter that size biased distribution arises 

when observations in a sample are recorded with unequal probability proportional to some 

measure of unit size. This distribution arises from the weighted distribution by replacing 

weight𝑤(𝑥) = 𝑥. The pmf of size biased distributions have the functional form 

𝑃𝑤(𝑥) =
𝑥𝑃(𝑥)

𝜇
 , 

where, 𝑃(𝑥): pmf of SBGTPL distribution, 

     𝜇: mean of SBGTPL distribution. 
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Then, the pmf of SBGTPL distribution may be obtained as 

𝑃𝑤(𝑥) =
𝑥𝜃3(𝛼(𝜃+1)+𝑥+1)

(𝜃+1)𝑥+2(𝛼𝜃+2)
, 𝑥 = 1,2, … ;  𝜃 > 0, 𝛼 > 0      (4.8.1) 

4.8.1 Probability generating function 

The probability generating function (pgf) of SBGTPL distribution has been obtained 

as 

𝑔(𝑡) = 𝐸(𝑡𝑥) , 

= ∑ 𝑡𝑥𝑃𝑤(𝑥)∞
𝑥=0  , 

where,  𝑃𝑤(𝑥) is  the  pmf  of  SBGTPL  distribution given in  equation   ( 4.8.1). 

= ∑ 𝑡𝑥 {
𝑥𝜃3(𝛼(𝜃+1)+𝑥+1)

(𝜃+1)𝑥+2(𝛼𝜃+2)
}∞

𝑥=0  , 

=
𝜃3𝑡(𝛼𝜃+𝛼+2−𝛼𝑡)

(1+𝜃−𝑡)3(𝛼𝜃+2)
, |𝑡| < 0.                       (4.8.2) 

Note: It has been observed that the probability generating function of SBGTPL 

distribution is same as size biased Poisson-Lindley (SBPL) distribution when 𝛼 = 1. 

Expanding equation (4.8.2)   and equating the co-efficient of  𝑡𝑟 we have the recurrence 

relation for probabilities has been obtained as 

𝑝𝑟+1 =
{(1+𝜃)2(3𝑟+1)𝑝𝑟−(1+𝜃)(3𝑟−1)𝑝𝑟−1+(𝑟−1)𝑝𝑟−2}

(1+𝜃)3(𝑟+1)
, 𝑟 ≥ 2                              (4.8.3)   

where, 𝑝1 =
𝜃3(𝛼(𝜃+1)+2)

(𝜃+1)3(𝛼𝜃+2)
, 

𝑝2 =
2𝜃3(𝛼(𝜃+1)+3)

(𝜃+1)4(𝛼𝜃+2)
,   

The higher order probabilities may be obtained from equation (4.8.3) for 𝑟 = 3, 4, …etc. 

4.8.2 Factorial moment generating function 

The factorial moment generating function may be obtained as, 

𝐺(𝑡) = 𝑔(1 + 𝑡) , 
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  𝐺(𝑡) =
𝜃3(1+𝑡)(𝛼𝜃+2−𝛼𝑡)

(𝜃−𝑡)3(𝛼𝜃+2)
.                          (4.8.4) 

The recurrence relation for factorial moments may be obtained as 

𝜇(𝑟)
′ =

[3𝜃2𝑟𝜇(𝑟−1)
′ −3𝜃𝑟(𝑟−1)𝜇(𝑟−2)

′ +3𝑟(𝑟−1)(𝑟−2)𝜇(𝑟−3)
′ ]

𝜃3 , 𝑟 > 2      (4.8.5) 

where,  𝜇(1)
′ =

𝛼𝜃(𝜃+2)+2(𝜃+3)

𝜃(𝜃𝛼+2)
, 

𝜇(2)
′ =

2[𝛼𝜃(2𝜃+3)+6(𝜃+2 )]

𝜃2(𝜃𝛼+2)
 . 

From equation (4.8.5) higher order factorial moments may be obtained for = 3, 4, … . 

4.9  Estimation of parameters of GTPL distribution 

The following methods are used to estimate the parameters of GTPL distribution. 

4.9.1  Method of Moments 

Suppose, considering a sample of size 𝑛,  say 𝑥1, 𝑥2, … … … , 𝑥𝑛 from equation 

(4.2.1), the moment estimates 𝜃 and 𝛼̂ of 𝜃 and 𝛼 can be obtained by solving the 

equations  

 𝑚1 =
𝛼𝜃+2

𝜃(𝛼𝜃+1)
 , 

and 𝑚2 =
𝜃(𝛼𝜃+2)+2(𝛼𝜃+3)

𝜃2(𝛼𝜃+1)
, 

where 𝑚1 and 𝑚2 denote the first and second raw moments. Solving the above two 

equations we have obtained

 𝛼̂ =
2−𝑚1𝜃

(𝑚1𝜃−1)𝜃
 .   

Substituting the value of 𝛼 in  𝑚2 we have obtained a quadratic equation of 𝜃 in terms 

of 𝑚1 and 𝑚2.  

Thus we have obtained 𝜃 as 𝜃 =
2𝑚1±√4𝑚1

2+2𝑚1−2𝑚2

(𝑚2−𝑚1)
. 

We have chosen 𝜃 =
2𝑚1+√4𝑚1

2+2𝑚1−2𝑚2

(𝑚2−𝑚1)
  as otherwise 𝜃 would be negative. 
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Theorem 4.9.1 The estimator 𝜃 of 𝜃 is positively biased, for fixed 𝛼, i.e. 𝐸(𝜃) > 𝜃. 

Proof: Let 𝜃 = 𝑔(𝑋̅) and 𝑔(𝑡) =
(𝛼−𝑡)+√𝑡2+6𝛼𝑡+𝛼2

2𝛼𝑡
 for 𝑡 > 0. 

Then,  𝑔′′(𝑡) =
1

𝑡3 [1 +
15𝛼𝑡2+9𝛼2𝑡+3𝑡3+𝛼3

(𝑡2+6𝛼𝑡+𝛼2)3 2⁄ ] > 0. 

Therefore, 𝑔(𝑡) is strictly convex. Thus, by Jensen’s inequality we have, 

 𝐸{𝑔(𝑋)} > 𝑔{𝐸(𝑋)}.  

Hence, we get 𝐸(𝜃) > 𝜃 since, 𝑔{𝐸(𝑋̅)} = 𝑔 (
𝛼𝜃+2

𝜃(𝛼𝜃+1)
) = 𝜃.  

Theorem 4.9.2: The moment estimate 𝜃 of 𝜃 is consistent and asymptotically 

normal, for fixed values 𝛼, and is distributed as, 

√𝑛(𝜃 − 𝜃)
𝑑
→  𝑁(0, 𝜈2(𝜃)), 

where,  𝜈2(𝜃) =
𝜃2(𝛼𝜃+1)2{(𝜃+1)(𝛼2𝜃2+3𝛼𝜃+2)+𝛼𝜃}

(4𝛼𝜃+𝛼2𝜃2+2)2 . 

4.9.2 Maximum Likelihood Estimation 

Suppose 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛 are random sample of size 𝑛 from GTPL 

distribution and let 𝑓𝑥 be the observed frequency in the sample corresponding to 𝑋 =

𝑥(𝑥 = 1, 2, … , 𝑘) such that ∑ 𝑓𝑥
𝑘
𝑥=1 = 𝑛 where 𝑘 is the largest observed value having 

non-zero frequency. 

Then the likelihood function may be written as, 

𝐿 = (
𝜃2

(𝛼𝜃+1)
)

𝑛

∏ [
1

(𝜃+1)𝑥+1 (𝛼 +
𝑥+1

𝜃+1
)]

𝑓𝑥
𝑘
𝑥=1      

The log likelihood function is 

log 𝐿 = 2𝑛logθ- ∑ (𝑥 + 1)𝑓𝑥log(1 + 𝜃) − 𝑛log(𝛼𝜃 + 1) + ∑ 𝑓𝑥log (1 +
𝑥+1

𝜃+1
)𝑘

𝑥=1
𝑘
𝑥=1 . 

Differentiating log L w.r.t 𝜃 and 𝛼 we get,  

𝜕logL

𝜕𝜃
=

2𝑛

𝜃
−

∑ 𝑥𝑓𝑥
𝑘
𝑥=1

1+𝜃
−

𝑛𝛼

𝛼𝜃+1
− ∑

(𝑥+1)𝑓𝑥

{1+𝜃+(𝑥+1)}(1+𝜃)
𝑘
𝑥=1                      
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𝜕logL

𝜕𝛼
= −

𝑛𝜃

𝛼𝜃+1
                                                                      

The second derivatives are, 

    
𝜕2logL

𝜕2𝜃
=

𝑛𝛼2

(𝛼𝜃+1)2 −
2𝑛

𝜃2 +
∑ 𝑥𝑓𝑥

𝑘
𝑥=1

(1+𝜃)2 + ∑
(𝑥+1)(3+𝜃+𝑥)𝑓𝑥

(1+𝜃)2(2+𝜃+𝑥)2
𝑘
𝑥=1                       

         
𝜕2logL

𝜕𝜃𝜕𝛼
=

−𝑛(2𝛼+1)

(𝛼𝜃+1)2   

         
∂2logL

𝜕2𝛼
=

𝑛𝜃2

(𝛼𝜃+1)2  

The following equations for 𝜃 and 𝛼̂ can be solved 

[

𝜕2logL

𝜕2𝜃
      

𝜕2logL

𝜕𝜃𝜕𝛼

𝜕2logL

𝜕𝜃𝜕𝛼
    

𝜕2logL

𝜕2𝛼

]

𝜃̂=𝜃0

𝛼̂=𝛼0

[
𝜃 − 𝜃0

𝛼̂ − 𝛼0
] = [

𝜕logL

𝜕𝜃
𝜕logL

𝜕𝛼

]

𝜃̂=𝜃0

𝛼̂=𝛼0

  

where 𝜃0 and 𝛼0 are the initial values of 𝜃 and 𝛼 respectively. These equations are 

solved iteratively till sufficiently closed values of 𝜃 and 𝛼̂ can be obtained. 

4.10  Applications 

The estimation of parameters plays an important role in fitting of probability 

distribution. The method of moment is the simplest procedure for estimating the 

parameters out of all the procedure. The method of maximum likelihood despite of 

being considered to be more accurate for fitting a probability distribution has been 

used very rarely due to its complications in calculation. Therefore, the parameters of 

GTPL distribution has been estimated by the method of moment. The first two sample 

moments are used to estimate the parameters. 

The GTPL distribution has been fitted to two data sets and found that it provides 

much closer fit than Poisson-Lindley distribution by Sankaran [85]. The fitted 

frequencies of Poisson-Lindley distribution and GTPL distribution are shown in Table 

4.1 and Table 4.2.   
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Table 4.1:  

 

Observed and expected frequency of PL and GTPL distribution which is    

regarding mistakes in copying groups of random digits. [data from 

Kemp and Kemp [62]] 

 

 

 

 

 

 

 

 

 

 

 

In Table 4.1, we have considered data set due to Kemp and Kemp [62] which 

is regarding the distribution of mistakes in copying groups of random digits. The 

expected frequencies are computed from the recursive expression for probabilities and 

the 𝜒2 goodness of fit has been calculated. The GTPL distribution has been compared 

with PL distribution based on the value of 𝜒2.  

 

 

 

 

 

No. of errors       

per group 

Observed   

frequencies 

Expected frequencies 

PL GTPL 

0 

1 

2 

3 

4 

35 

11 

8 

4 

2 

33.1 

15.3 

6.8 

2.9 

1.2 

32.4 

15.9 

7.0 

3.0 

1.2 

Total 60 60 60 

 

      Parameter estimates     

𝜃 =1.743 

 

𝜃 =5.2308 

𝛼̂ =2.6154 

𝜒2 2.20 2.5118 

d.f 1 1 

𝑝-value 0.14 0.11 
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Table 4.2: 

 

Observed and expected frequency of PL and GTPL distribution which is 

regarding the distribution of Pyrausta nublilalis. [data from Beall [7]] 

 

 

 

 

 

 

 

 

 

 

 

The data set in Table 4.2 is due to Beall [7] regarding the distribution of 

Pyrausta nublilalis in 1937. The parameters are estimated by the method of moment 

and the 𝜒2 goodness of fit has been obtained from the observed and expected 

frequencies. 

4.11 Conclusion: 

The comparison of observed and expected frequencies of the fitted distribution 

are given in Table 4.1 and Table 4.2 for comparison of observed and expected 

frequencies and the 𝜒2 values is used to test the goodness of fit. It has been observed 

from the values of 𝜒2 of GTPL distribution obtained in Table 4.1 and Table 4.2 that 

GTPL distribution gives a better fit as compared with Poisson-Lindley (PL) 

distribution. So, we may conclude that the derived distribution fits the data well. 

No. of 

insects 

Observed   

frequencies 

Expected frequencies 

PL GTPL 

0 

1 

2 

3 

4 

5 

33 

12 

6 

3 

1 

1 

31.5 

14.2 

6.1 

2.5 

1.0 

0.7 

31.90 

13.80 

6.00 

2.53 

1.07 

0.45 

Total 56      56          56 

 

       Parameter estimate  

      𝜃   =1.8081 

 

             𝜃   = 0.3920 

      𝛼̂ = 0.2569 

𝜒2 0.53 0.3527 

d.f 1 1 

𝑝-value 0.42 0.6123 
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