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Chapter 5 

 

A comparative study on some zero-truncated 

distributions 

 

 

5.1 Introduction 

In probability theory, zero-truncated distributions may be defined as discrete 

distributions which supports the set of positive integers. Zero truncated distributions 

arise when the data to be modeled originate from a mechanism which generates data 

that excludes zero counts. 

Suppose, 𝑃(𝑥;  𝜃, 𝛼) =
𝑃0(𝑥; 𝜃,𝛼)

1−𝑃0(0; 𝜃,𝛼)
, where 𝑃0(𝑥;  𝜃, 𝛼) is the pmf of the original 

distribution.  

In this chapter, we have studied on zero-truncated Poisson-Lindley (ZTPL) 

distribution, zero-truncated new generalized Poisson-Lindley (ZTNGPL) distribution 

and zero-truncated generalized two-parameter Poisson-Lindley (ZTGTPL) 

distribution. Various properties of the distributions have been studied. Lastly, 

methods of estimation of parameters have been discussed.  
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5.2 Zero-truncated Poisson-Lindley (ZTPL) distribution 

The Poisson-Lindley (PL) distribution having the probability mass function 

(pmf) given as, 

𝑃(𝑥;  𝜃, 𝛼 ) =
𝜃2(𝑥+𝜃+2)

(1+𝜃)𝑥+3 ,   𝑥 = 0,1,2, … , 𝜃 > 0.                     (5.2.1) 

has been obtained by Sankaran[85] by compounding Poisson distribution with the 

Lindley distribution.  

The pmf of ZTPL distribution has been obtained by considering its zero-truncated 

form as, 

𝑃(𝑋 = 𝑥) = 𝑝(𝑥) =
𝑃0(𝑥; 𝜃,𝛼)

1−𝑃0(0; 𝜃,𝛼)
 ,      

where,  𝑃0(𝑥;  𝜃, 𝛼) is the p.m.f of PL distribution in equation (5.2.1) 

and 𝑃0(0;  𝜃, 𝛼) =
𝜃2(𝜃+2)

(1+𝜃)3  is the pmf of PL distribution at point 𝑥 = 0. 

Thus, the pmf of ZTPL distribution has been obtained as 

𝑃(𝑋 = 𝑥) = 𝑝(𝑥) =
𝜃2(𝑥+𝜃+2)

(1+𝜃)𝑥(𝜃2+3𝜃+1)
;    𝑥 = 1, 2, 3, … , 𝜃 > 0 .        (5.2.2) 

The resultant distribution that is obtained in equation (5.2.2) is the zero truncated 

version of PL distribution obtained by Ghitany et al. [41]. 

5.2.1  Recursive expression for probabilities 

  If 𝑋 follows ZTPL distribution then the probability generating function of 𝑋 is 

𝑔(𝑡) = 𝐸(𝑡𝑥) , 

= ∑ 𝑡𝑥∞
𝑥=1 𝑝(𝑥),  

where 𝑝(𝑥) is the pmf of zero truncated Poisson Lindley distribution as given in 

equation (5.2.2). 
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Thus, 𝑔(𝑡) = ∑ 𝑡𝑥 𝜃2(𝑥+𝜃+2)

(1+𝜃)𝑥(𝜃2+3𝜃+1)
∞
𝑥=1  ,  

=
𝜃2𝑡

(𝜃2+3𝜃+1)
{

(𝜃+3)(𝜃+1)−𝑡(𝜃+2)

(1+𝜃−𝑡)2
} .           (5.2.3) 

Expanding equation (5.2.3) and equating the co-efficient of 𝑡𝑟 we have obtained the 

recursive expression for probability as 

𝑝𝑟 =
{2(1+𝜃)𝑝𝑟−1−𝑝𝑟−2}

(𝜃+1)2
 ,                           (5.2.4) 

where, 𝑝1 =
𝜃2(𝜃+3)

(1+𝜃)(𝜃2+3𝜃+1)
 , 

𝑝2 =
𝜃2(𝜃+4)

(1+𝜃)2(𝜃2+3𝜃+1)
 . 

The higher probabilities may be obtained from equation (5.2.4) putting 𝑟 = 3,4, … . 

5.2.2 Recursive expression for moments  

 The moment generating function of ZTPL distribution may be obtained as 

𝑚(𝑡) =
𝜃2𝑒𝑡

(𝜃2+3𝜃+1)
{

(𝜃+3)(𝜃+1)−𝑒𝑡(𝜃+2)

(1+𝜃−𝑒𝑡)2 } , 

The recurrence relation for moment generating function of ZTPL distribution has 

been obtained as, 

𝜇𝑟+1
′ = 𝐴{2𝑟(3𝜃 + 7) + (𝜃 + 3)(𝜃 + 1)} + 3{(1 + 𝜃)2 − 2𝑟−𝑗+1 + 3𝑟−𝑗} ∑ (

𝑟
𝑟 − 𝑗 + 1) 𝜇𝑗

′𝑟
𝑗=1 , 𝑟 > 1, 

where, 𝐴 =
(𝜃+1)

𝜃(𝜃2+3𝜃+1)
 , 

𝜇1
′ =

(𝜃+1)2(𝜃+2)

𝜃(𝜃2+3𝜃+1)
,  

𝜇2
′ =

(𝜃+1)2(𝜃2+4𝜃+6)

𝜃2(𝜃2+3𝜃+1)
 . 

5.2.3 Recursive expression for factorial moment generating function (fmgf) 

The fmgf may be been obtained as 

𝐺(𝑡) = 𝑔(1 + 𝑡), 
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=
𝜃2(1+𝑡)

(𝜃2+3𝜃+1)
{

(𝜃2+3𝜃+1)−𝑡(𝜃+2)

(𝜃−𝑡)2
} .            (5.2.5) 

The recursive expression for factorial moment generating function may be written as, 

𝜇(𝑟)
′ =

1

𝜃2 {2𝜃𝑟𝜇(𝑟−1)
′ − 𝑟(𝑟 − 1)𝜇(𝑟−2)

′ }, 𝑟 > 2           (5.2.6) 

 where,  𝜇(1)
′ =

(𝜃+1)2(𝜃+2)

𝜃(𝜃2+3𝜃+1)
, 

𝜇(2)
′ =

(𝜃+1)2(𝜃+3)

𝜃2(𝜃2+3𝜃+1)
 . 

From equation (5.2.6) the higher factorial moments may be obtained. 

From the factorial moments using the relationship between the factorial moments and 

raw moments, the raw moment has been obtained as, 

𝜇1
′ =

(𝜃+1)2(𝜃+2)

𝜃(𝜃2+3𝜃+1)
 , 

𝜇2
′ =

(𝜃+1)2{𝜃(𝜃+2)+2(𝜃+3)}

𝜃2(𝜃2+3𝜃+1)
 , 

𝜇3
′ =

(𝜃+1)2{𝜃(𝜃2+6𝜃+6)+2(𝜃2+9𝜃+12)}

𝜃3(𝜃2+3𝜃+1)
 , 

𝜇4
′ =

(𝜃+1)2{𝜃(𝜃3+14𝜃2+36𝜃+24)+2(𝜃3+21𝜃2+72𝜃+6)}

𝜃4(𝜃2+3𝜃+1)
 . 

The central moment 𝜇2 has been obtained as 

  𝜇2 =
(𝜃+1)2(𝜃3+6𝜃2+10𝜃+2)

𝜃2(𝜃2+3𝜃+1)2 . 

5.2.4 Index of dispersion and co-efficient of variation 

The index of dispersion of ZTPL distribution has been denoted by 𝛾 and may be 

defined as, 

I. D =
𝜎2

𝜇
=

𝜃3+6𝜃2+10𝜃+2

𝜃(𝜃+2)(𝜃2+3𝜃+1)
 .              [Ghitany et al. [40]] 

The co-efficient of variation may be defined as, 

 C.V =
𝜎

𝜇
=

√(𝜃3+6𝜃2+10𝜃+2)

(𝜃+1)(𝜃+2)
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5.3 Zero-truncated new generalized Poisson-Lindley (ZTNGPL) 

distribution  

 Shanker and Mishra [93] obtained discrete two-parameter Poisson-Lindley 

distribution having the pmf as, 

𝑝0(𝑥;  𝜃, 𝛼) =
𝜃2{1+𝜃+𝛼(𝑥+1)}

(𝜃+𝛼)(1+𝜃)𝑥+2 ;  𝑥 = 0, 1, 2 … ;  𝜃 > 0, 𝛼 > 0 . (5.3.1) 

The distribution has been further studied by Bhati et al. [10] and renamed it as new 

generalized Poisson-Lindley (NGPL) distribution and investigated certain additional 

properties. 

The pmf of ZTNGPL may be obtained as, 

𝑃∗(𝑋 = 𝑥) = 𝑝∗(𝑥) =
𝑃0(𝑥; 𝜃,𝛼)

1−𝑃0(0; 𝜃,𝛼)
 , 

where,  𝑃0(𝑥;  𝜃, 𝛼) is the pmf as given in equation (5.3.1). 

𝑃0(0;  𝜃, 𝛼) is the pmf of NGPL distribution at 𝑥 = 0. 

Thus the pmf of ZTNGPL distribution has been obtained as 

𝑃∗(𝑋 = 𝑥) = 𝑝∗(𝑥) =
𝜃2(1+𝜃+𝛼(𝑥+1))

(𝜃2+2𝜃𝛼+𝛼+𝜃)(𝜃+1)𝑥 , 𝑥 = 1,2, … ;  𝜃 > 0, 𝛼 > 0 . 

5.3.1 Probability generating function 

 If 𝑋~ZTNGPL distribution then the probability generating function (pgf) of 𝑋 

may be written as, 

𝑔(𝑡) = 𝐸(𝑡𝑥), |𝑡| < 1  

= ∑ 𝑡𝑥𝑝∗(𝑥)∞
𝑥=1  , 

=
𝜃2𝑡{(𝛼+𝜃+1)(1+𝜃−𝑡)+𝛼𝑡(1+𝜃)}

(𝜃2+𝛼+𝜃+2𝛼𝜃)(1+𝜃−𝑡)2
, 𝜃 > 0, 𝛼 > 0 . 

The recurrence relation for probabilities may be obtained as 

𝑝𝑟+1 =
{3𝑟(1+𝜃)2𝑝𝑟−3(1+𝜃)(𝑟−1)𝑝𝑟−1+(𝑟−2)𝑝𝑟−2}

(𝑟+1)(1+𝜃)3
, 𝑟 > 1  
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where, 𝑝1 =
𝜃2(1+𝜃+𝛼)

(𝜃2+𝛼+𝜃+2𝛼𝜃)(1+𝜃)
 , 

𝑝2 =
𝜃2(1+𝜃+2𝛼)

(𝜃2+𝛼+𝜃+2𝛼𝜃)(1+𝜃)2
 . 

5.3.2 Recursive expression for moment generating function 

 The moment generating function (mgf) may be obtained as, 

𝑚(𝑡) = 𝐸(𝑒𝑡𝑥) , 

=
𝜃2𝑒𝑡{(𝛼+𝜃+1)(1+𝜃−𝑒𝑡)+𝛼𝑒𝑡(1+𝜃)}

(𝜃2+𝛼+𝜃+2𝛼𝜃)(1+𝜃−𝑒𝑡)2
  .           (5.3.2) 

Differentiating equation (5.3.2) w.r.t 𝑡 and equating the co-efficient of 
𝑡𝑟

𝑟!
 we have 

𝜇𝑟+1
′ =

𝐴(1+𝜃)[2𝑟𝐵+𝐶(1+𝜃)+∑ 𝜇𝑗
′{3(1+𝜃)2−3(1+𝜃)2𝑟+1−𝑗+3𝑟+1−𝑗}∞

𝑗=1 ]

𝜃3  , 

where,  𝐴 =
𝜃2

(𝜃2+𝛼+𝜃+2𝛼𝜃)
, 

𝐵 = (2𝜃𝛼 + 𝛼 + 𝜃 + 1) , 

𝐶 = 𝛼 + 𝜃 + 1 . 

5.3.3 Recursive expression for factorial moment generating function 

 The factorial moment generating function (fmgf) may be written as, 

 𝐺(𝑡) = 𝑔(1 + 𝑡),  

=
𝜃2(1+𝑡){(1+𝜃+𝛼)(𝜃−𝑡)+𝛼(1+𝑡)(1+𝜃)}

(𝜃2+𝛼+𝜃+𝛼𝜃)(𝜃−𝑡)2  .           (5.3.3) 

Expanding equation (5.3.3) and equating the co-efficient of 
𝑡𝑟

𝑟!
 we have obtained the 

recurrence relation for factorial moment generating function as, 

𝜇(𝑟)
′ =

𝑟[2𝜃𝜇(𝑟−1)
′ −(𝑟−1)𝜇(𝑟−2)

′ ]

𝜃2 , 𝑟 > 2                    (5.3.4) 

where, 𝜇(1)
′ =

(𝜃+1)2(𝜃+2𝛼)

𝜃(𝜃2+𝛼+𝜃+2𝛼𝜃)
 , 



64 
 

𝜇(2)
′ =

2(𝜃+1)2(𝜃+3𝛼)

𝜃2(𝜃2+𝛼+𝜃+2𝛼𝜃)
 . 

The higher order probabilities may be obtained from equation (5.4.4) for 𝑟 = 3, 4, … 

From the factorial moments the raw moments have been obtained as 

𝜇1
′ =

(𝜃+1)2(𝜃+2𝛼)

𝜃(𝜃2+𝛼+𝜃+2𝛼𝜃)
 , 

𝜇2
′ =

(𝜃+1)2(𝜃2+2𝛼𝜃+2𝜃+6𝛼)

𝜃2(𝜃2+𝛼+𝜃+𝛼𝜃)
 , 

𝜇3
′ =

(𝜃+1)2(𝜃3+2𝛼𝜃2+6𝜃2+18𝛼𝜃+6𝜃24𝛼)

𝜃3(𝜃2+𝛼+𝜃+𝛼𝜃)
 , 

𝜇4
′ =

(𝜃+1)2(𝜃4+2𝛼𝜃3+14𝜃3+42𝛼𝜃2+36𝜃2+144𝛼𝜃+24𝜃+120𝛼)

𝜃3(𝜃2+𝛼+𝜃+𝛼𝜃)
 . 

5.4 Zero-truncated generalized two-parameter Poisson-Lindley (ZTGTPL) 

distribution 

 Two-parameter Poisson-Lindley (TPPL) distribution has been obtained by 

Shanker et al. [93]. Again in the previous chapter we have revisited (TPPL) 

distribution and named it as generalized two-parameter Poisson-Lindley (GTPL) 

distribution having the pmf as, 

𝑃0(𝑥;  𝜃, 𝛼) =
𝜃2

(𝜃+1)𝑥+1(𝛼𝜃+1)
(𝛼 +

𝑥+1

𝜃+1
) , 𝑥 = 0,1,2 … ;  𝜃 > 0, 𝛼 > 0  .   (5.4.1) 

Now, the pmf of ZTGTPL distribution may be obtained as, 

𝑃∗∗(𝑋 = 𝑥) = 𝑝∗∗(𝑥) =
𝑃0(𝑥; 𝜃,𝛼)

1−𝑃0(0; 𝜃,𝛼)
 , 

where,  𝑃0(𝑥;  𝜃, 𝛼) is the pmf of GTPL distribution, 

and, 𝑃0(0;  𝜃, 𝛼) is the pmf of ZTGTPL distribution at point 𝑥 = 0. 

 Then, the resultant distribution is the ZTGTPL distribution obtained by Shanker and 

Shukla [91] having the pmf as, 

𝑃∗∗(𝑋 = 𝑥) = 𝑝∗∗(𝑥) =
𝜃2(𝑥+𝛼(𝜃+1)+1)

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(𝜃+1)𝑥
, 𝑥 = 1,2, … ;  𝜃 > 0, 𝛼 > 0  (5.4.2) 
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It has been observed that ZTPL distribution obtained by Ghitany et al. [40] is a 

particular case of ZTGTPL distribution when 𝛼 = 1. 

5.4.1 Probability generating function 

 The probability generating function of ZTGTPPL distribution may be obtained 

as, 

𝑔(𝑡) = 𝐸(𝑡𝑥) ,  

= ∑ 𝑡𝑥𝑝∗∗(𝑥)∞
𝑥=1  , 

=
𝜃2𝑡{(𝛼(𝜃+1)+1)(1+𝜃−𝑡)+(1+𝜃)}

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(1+𝜃−𝑡)2 .           (5.4.3) 

Differentiating equation (5.4.3) w.r.t ′𝑡′ and equating the co-efficient of 𝑡𝑟 we have 

obtained the recurrence relation for probabilities as 

𝑝𝑟+1 =
{3𝑟(1+𝜃)2𝑝𝑟−3(1+𝜃)(𝑟−1)𝑝𝑟−1+(𝑟−2)𝑝𝑟−2}

(𝑟+1)(1+𝜃)3 ,          (5.4.4) 

where, 𝑝1 =
𝜃2(2+𝛼(𝜃+1))

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(1+𝜃)
, 

𝑝2 =
𝜃2(3+𝛼(𝜃+1))

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(1+𝜃)2 . 

The higher order probabilities of ZTGTPL distribution may be obtained from 

equation (5.4.4) for 𝑟 = 3, 4, … etc. 

5.4.2 Recursive expression for moment generating function 

 The moment generating function (mgf) of ZTGPL distribution 

𝑚(𝑡) =
𝜃2𝑒𝑡{(𝛼(𝜃+1)+1)(1+𝜃−𝑒𝑡)+(1+𝜃)}

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(1+𝜃−𝑒𝑡)2                    (5.4.5) 

Now by differentiating equation (5.4.5) and equating the co-efficient of 
𝑡𝑟

𝑟!
 we obtain 

the recurrence relation for moment generating function as 

𝜇𝑟+1
′ =

𝐴{(1+𝜃)(𝜃−𝛼(1+𝜃)−2𝑟)−4.3𝑟(𝛼(1+𝜃)+1)}+∑ {3(1+𝜃)2−3(1+𝜃)2𝑟−𝑗+1+3𝑟−𝑗+1}𝜇𝑗
′𝑟

𝑗=1

𝜃3 , 𝑟 > 1  

where, 𝐴 =
𝜃3

(𝜃2𝛼+𝜃𝛼+2𝜃+1)
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The first four moments about origin may be obtained from mgf given in equation 

(5.4.5) as 

𝜇1
′ =

(𝜃+1)2(𝜃𝛼+2)

𝜃(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 , 

𝜇2
′ =

(𝜃+1)2{𝜃𝛼(𝜃+2)+2(𝜃+3)}

𝜃2(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 , 

𝜇3
′ =

(𝜃+1)2{𝜃𝛼(𝜃2+6𝜃+6)+2(𝜃2+9𝜃+12)}

𝜃3(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 , 

𝜇3
′ =

(𝜃+1)2{𝜃𝛼(𝜃3+14𝜃2+36𝜃+24)+2(𝜃3+21𝜃2+72𝜃+60)}

𝜃4(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 . 

The variance of ZTGTPL distribution has been obtained as, 

 𝜇2 =
(𝜃+1)2{𝜃3𝛼2+𝛼2𝜃2+5𝜃2𝛼+4𝛼𝜃+6𝜃+2}

𝜃2(𝜃2𝛼+𝛼𝜃+2𝜃+1)2 . 

5.4.3 Recursive expression for factorial moment generating function (fmgf) 

 The factorial moment generating function may be written as 

𝐺(𝑡) = 𝑔(1 + 𝑡),  

=
𝜃2(1+𝑡){(𝛼(𝜃+1)+1)(𝜃−𝑡)+(1+𝜃)}

(𝜃2𝛼+𝜃𝛼+2𝜃+1)(𝜃−𝑡)2  .           (5.4.6) 

The recursive expression for factorial moment generating function has been obtained 

as 

𝜇(𝑟+1)
′ =

𝑟[3𝜃2𝜇(𝑟)
′ −3𝜃(𝑟−1)𝜇(𝑟−1)

′ +(𝑟−1)(𝑟−2)𝜇(𝑟−2)
′ ]

𝜃3 , 𝑟 > 2  

where, 𝜇(1)
′ =

(𝜃+1)2(𝜃𝛼+2)

𝜃(𝜃2𝛼+𝜃𝛼+2𝜃+1)
,  

𝜇(2)
′ =

(𝜃+1)2(𝜃𝛼+2)

𝜃2(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 . 

The general expression for factorial moments may be written as, 

𝜇(𝑟)
′ =

𝑟!(𝜃+1)2(𝜃𝛼+𝑟+1)

𝜃𝑟(𝜃2𝛼+𝜃𝛼+2𝜃+1)
 . 
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5.5 Index of dispersion 

 The Index of dispersion for ZTGTPL distribution has been obtained as 

I. D =
𝜎2

𝜇
=

{𝜃3𝛼2+𝛼2𝜃2+5𝜃2𝛼+4𝛼𝜃+6𝜃+2}

𝜃(𝜃2𝛼+𝛼𝜃+2𝜃+1)((𝜃𝛼+2))
.     

The I.D may be equi-dispersed, over-dispersed or under-dispersed according as 𝜎2 =

𝜇 or 𝜎2 > 𝜇 or 𝜎2 < 𝜇. 

5.6 Estimation of parameters 

 This section is based on the estimation of parameters by the following methods.  

5.6.1  Estimation of parameters ZTPL distribution 

 The parameters of ZTPL distribution may be obtained by the method of 

maximum likelihood. Supposing 𝑥1, 𝑥2, … , 𝑥𝑛 to be a sample of size 𝑛 from ZTPL 

distribution and 𝑓𝑥 be the observed frequency corresponding to 𝑋 = 𝑥(𝑥 = 1,2, … 𝑘) 

such that ∑ 𝑓𝑥 = 𝑛.𝑘
𝑥=1   

Then the likelihood function of ZTPL distribution may be written as, 

 𝐿 = ∏ 𝑝(𝑥;  𝜃, 𝛼)𝑘
𝑥=1  , 

 𝐿 = (
𝜃2𝑛

(𝜃2+3𝜃+1)𝑛)
1

(𝜃+1)∑ 𝑥𝑓𝑥
𝑘
𝑥=1

∏ {𝜃𝑥 + 𝜃 + 2}𝑛𝑘
𝑥=1  . 

The log-likelihood function is 

log 𝐿 = 2𝑛log𝜃 − 𝑛log(𝜃2 + 3𝜃 + 1) − ∑ 𝑥𝑓𝑥log(𝜃 + 1) +𝑘
𝑥=1 ∑ 𝑓𝑥log(𝑥 + 𝜃 + 2)𝑘

𝑥=1  . 

The derivative of log likelihood equations is, 

 
𝜕logL

𝜕𝜃
=

2𝑛

𝜃
−

𝑛(2𝜃+3)

(𝜃2+3𝜃+1)
−

𝑛�̅�

(𝜃+1)
+ ∑

𝑓𝑥

(𝑥+𝜃+2)
= 0,𝑘

𝑥=1  which is a non-linear 

equation and can be solved by numerical methods. 

5.6.2 Estimation of parameters of ZTNGPL distribution 

 The parameters of ZTNGPL distribution may be obtained the method of 

maximum likelihood by considering 𝑥1, 𝑥2, … , 𝑥𝑛 to be a sample of size 𝑛 from 
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ZTNGPL distribution and 𝑓𝑥 be the observed frequency corresponding to 𝑋 =

𝑥(𝑥 = 1,2, … 𝑘) such that ∑ 𝑓𝑥 = 𝑛.𝑘
𝑥=1   

Then, the likelihood function may be written as 

𝐿 = ∏ 𝑝∗(𝑥;  𝜃, 𝛼)𝑘
𝑥=1  ,   

𝐿 = (
𝜃2𝑛

(𝜃2+2𝜃𝛼+𝛼+𝜃))𝑛)
1

(𝜃+1)∑ 𝑥𝑓𝑥
𝑘
𝑥=1

∏ {𝛼𝑥 + 𝜃 + 𝛼 + 1}𝑛𝑘
𝑥=1  . 

The log-likelihood function may be written as, 

log 𝐿 = 2𝑛log𝜃 − 𝑛log(𝜃2 + 2𝜃𝛼 + 𝜃 + 𝛼) − ∑ 𝑥𝑓𝑥log(𝜃 + 1)𝑘
𝑥=1   

+ ∑ 𝑓𝑥log{𝛼𝑥 + 𝜃 + 𝛼 + 1}𝑘
𝑥=1  . 

The derivatives of log likelihood equations are, 

 
𝜕logL

𝜕𝜃
=

2𝑛

𝜃
−

𝑛(2𝜃+2𝛼+1)

(𝜃2+2𝜃𝛼+𝜃+𝛼)
−

𝑛�̅�

(𝜃+1)
+ ∑

𝑓𝑥

(𝛼𝑥+𝜃+𝛼+1)
= 0𝑘

𝑥=1  , 

 
𝜕logL

𝜕𝛼
= −

𝑛(2𝜃+1)

(𝜃2+2𝜃𝛼+𝜃+𝛼)
+ ∑

(𝑥+1)𝑓𝑥

(𝛼𝑥+𝜃+𝛼+1)
𝑘
𝑥=1 = 0 , 

The second derivatives are 

 
𝜕2logL

𝜕𝜃2 = −
2𝑛

𝜃2 +
𝑛{2 (𝜃 2+2𝛼𝜃+𝜃+2𝛼2+𝛼) +1}

(𝜃2+2𝜃𝛼+𝜃+𝛼)2 +
𝑛�̅�

(𝜃+1)2 + ∑
𝑓𝑥

 (𝛼𝑥+𝜃+𝛼+1)2 = 0𝑘
𝑥=1  , 

 
𝜕2logL

𝜕𝛼2 =
𝑛(2𝜃+1)2

(𝜃2+2𝜃𝛼+𝜃+𝛼)2 − ∑
 (𝑥+1)2𝑓𝑥

 (𝛼𝑥+𝜃+𝛼+1)2 = 0𝑘
𝑥=1  , 

 
𝜕2logL

𝜕𝜃𝜕𝛼
=

𝑛{2𝜃 2+2𝜃+2𝛼+1}

(𝜃2+2𝜃𝛼+𝜃+𝛼)2 + ∑
(𝑥+1)𝑓𝑥

 (𝛼𝑥+𝜃+𝛼+1)2 = 0𝑘
𝑥=1  . 

The following equations for 𝜃 and �̂� can be solved 

[

𝜕2logL

𝜕2𝜃
      

𝜕2logL

𝜕𝜃𝜕𝛼

𝜕2logL

𝜕𝜃𝜕𝛼
    

𝜕2logL

𝜕2𝛼

]

�̂�=𝜃0

�̂�=𝛼0

[
𝜃 − 𝜃0

�̂� − 𝛼0
] = [

𝜕logL

𝜕𝜃
𝜕logL

𝜕𝛼

]

�̂�=𝜃0

�̂�=𝛼0

 , 

where 𝜃0 and 𝛼0 are the initial values of 𝜃 and 𝛼 respectively. These equations are 

solved iteratively till sufficiently closed values of 𝜃 and �̂� can be obtained. 
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5.6.3 Estimation of parameters of ZTGTPL distribution 

 Suppose 𝑥1, 𝑥2, … , 𝑥𝑛 be a sample of size 𝑛 from ZTGTPL distribution and 𝑓𝑥 

be the observed frequency corresponding to 𝑋 = 𝑥(𝑥 = 1,2, … 𝑘) such that ∑ 𝑓𝑥 =𝑘
𝑥=1

𝑛.  

Then, the likelihood function may be written as 

𝐿 = ∏ 𝑝∗∗(𝑥;  𝜃, 𝛼)𝑘
𝑥=1  ,   

 𝐿 = (
𝜃2𝑛

(𝜃2𝛼+𝜃𝛼+2𝜃+1)𝑛)
1

(𝜃+1)∑ 𝑥𝑓𝑥
𝑘
𝑥=1

∏ {𝑥 + 1 + 𝛼(𝜃 + 1)}𝑓𝑥𝑘
𝑥=1 .  

The log likelihood function may be written as 

logL = 2𝑛log𝜃 − 𝑛log(𝜃2𝛼 + 𝜃𝛼 + 2𝜃 + 1) − ∑ 𝑥𝑓𝑥log(𝜃 + 1)𝑘
𝑥=1   

+ ∑ 𝑓𝑥log{𝑥 + 1 + 𝛼(𝜃 + 1)}𝑘
𝑥=1  . 

The maximum likelihood estimates of  𝜃 and 𝛼 can be solved from the equations,  

 
𝜕logL

𝜕𝜃
=

2𝑛

𝜃
−

𝑛(2𝜃𝛼+𝛼+2)

(𝜃2𝛼+𝜃𝛼+2𝜃+1)
−

𝑛�̅�

(𝜃+1)
+ ∑

𝛼𝑓𝑥

(𝑥+1+𝛼(𝜃+1))
= 0𝑘

𝑥=1  , 

 
𝜕logL

𝜕𝛼
= −

𝑛(𝜃2+𝜃)

(𝜃2𝛼+𝜃𝛼+2𝜃+1)
+ ∑

(𝜃+1)𝑓𝑥

(𝑥+1+𝛼(𝜃+1))
𝑘
𝑥=1 = 0 . 

The second derivatives are 

 
𝜕2logL

𝜕𝜃2
= −

2𝑛

𝜃2
−

𝑛{2𝜃2+2𝜃+1}

(𝜃2𝛼+𝜃𝛼+2𝜃+1)2
+ ∑

(𝑥+1)𝑓𝑥

 (𝑥+1+𝛼(𝜃+1))
2 = 0𝑘

𝑥=1  , 

 
𝜕2logL

𝜕𝛼2 =
𝑛(𝜃+𝜃2)

2

(𝜃2𝛼+𝜃𝛼+2𝜃+1)2 − ∑
𝜃(𝜃+1)2𝑓𝑥

 (𝑥+1+𝛼(𝜃+1))
2 = 0𝑘

𝑥=1  , 

 
𝜕2logL

𝜕𝜃𝜕𝛼
=

𝑛{2𝜃 2+2𝜃+1}

(𝜃2𝛼+𝜃𝛼+2𝜃+1)2
− ∑

(𝜃+1)2𝑓𝑥

 (𝑥+1+𝛼(𝜃+1))
2 = 0𝑘

𝑥=1  . 

The following equations for 𝜃 and �̂� can be solved by numerical method iteratively 

till close values of 𝜃 and �̂� are obtained.  

[

𝜕2logL

𝜕2𝜃
      

𝜕2logL

𝜕𝜃𝜕𝛼

𝜕2logL

𝜕𝜃𝜕𝛼
    

𝜕2logL

𝜕2𝛼

]

�̂�=𝜃0

�̂�=𝛼0

[
𝜃 − 𝜃0

�̂� − 𝛼0
] = [

𝜕logL

𝜕𝜃
𝜕logL

𝜕𝛼

]

�̂�=𝜃0

�̂�=𝛼0
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5.7 Goodness of fit 

 In this section an attempt has been made to test the suitability of ZTPL, 

ZTNGPL and ZTGTPL distributions. The goodness of fit of the three distributions 

has been studied for two data sets. The parameters are estimated by the method of 

maximum likelihood. 

Table 5.1 

 

Observed and expected frequencies of Number of flower heads    with 

number of fly eggs. [data by Finney and Varley [36]] 

 

Number of 

fly eggs 

Number of 

flowers 

Expected frequency 

ZTPL ZTNGPL ZTGTPL 

1 

2 

3 

4 

5 

6 

7 

8 

9 

22 

18 

18  

11  

9  

6  

3 

0 

1 

26.8 

19.8 

13.9 

9.5 

6.4 

4.2 

2.7 

1.7 

1.1 

26.0 

19.3 

14.1 

9.9 

7.1 

4.0 

2.7 

1.4 

1.0 

25.1 

20.3 

15.0 

10.1 

7.0 

4.5 

3.0 

1.6 

1.0 

Total 88 88 88 88 

Parameter estimates 𝜃 = 0.7185 𝜃 = 0.5426 

�̂� = 12.2145 

𝜃 = 0.0.82 

�̂� = 16.67 

𝜒2 5.9901 4.8457 3.9951 

d.f 4 3 3 

𝑝-value  0.1999 0.1835 0.2620 

  

 In table 5.1 the observed and expected frequency of ZTPL, ZTNGPL and 

ZTGTPL distribution has computed for data sets regarding counts of number of 

flower having number of fly eggs which is due to Finney and Varley [36].  The 

expected frequencies have been obtained to calculate the 𝜒2 values.  
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Table 5.2 Observed and expected frequencies of number of snowshoe hares counts 

captured over 7 days. [data by Keith and Meslow [61]] 

 

Number of 

times hares 

caught 

Observed 

frequency 

Expected frequency 

ZTPL ZTNGPL ZTGTPL 

1 

2 

3 

4 

5 

184 

55 

14 

4 

4 

182.6 

55.3 

16.5 

5.1 

1.6 

183 

54.0 

16.1 

4.8 

1.9 

183.4 

54.9 

15.2   

4.0 

2.7 

Total 261 261 261 126 

Parameter estimates 𝜃 = 0.7185 𝜃 = 2.4080 

�̂� = 17.3677 

𝜃 = 2.5570 

�̂� = 0.2343 

𝜒2 4.7578 2.7517 0.7170 

d.f 2 1 1 

𝑝-values 0.0927 0.1283 0.2102 

 

In table 5.2 we have considered data set due to Keith and Meslow [61] which is 

regarding the number of snowshoe hares count captured over 7 days. The expected 

frequencies and 𝜒2 values have been obtained. 

5.8 Conclusion 

 In Table 5.1 and Table 5.2 it has been observed that the 𝜒2 values have been 

calculated from the observed and observed and expected frequencies. Comparing the 

values of 𝜒2 in both the tables we may conclude that of all the three distribution 

ZTGTPL distribution gives a closer fit than ZTPL and ZTNGPL distribution. 
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