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Chapter 7 

 

 

Some properties of Poisson Size-biased new 

quasi Lindley distribution 

 

 

7.1 Introduction 

 Size biased distributions as has been discussed in previous chapter arises when 

observations with unequal probabilities are recorded having probability proportional 

to some measure of unit size. Size-biased distributions are known to be a special case 

of the weighted distributions. Fisher [37] first introduce these distributions to model 

ascertainment biased and was later formalized by Rao [84] in a unifying theory.   

 In this chapter, Poisson Size-biased new quasi Lindley distribution has been 

introduced by compounding Poisson distribution with size biased new quasi Lindley 

distribution. It has been observed that Poisson size biased Lindley distribution 

introduced by Adhikari and Srivastava [2] is a particular case of Poisson size biased 

new quasi Lindley distribution. We have studied some statistical properties like 

probability generating function, recurrence relations, index of dispersion and 

estimation of parameters.  

 



86 
 

7.2 Derivation of Poisson size-biased new quasi-Lindley distribution 

 The Poisson size-biased new quasi-Lindley (PSBNQL) distribution may be 

obtained by compounding the Poisson distribution with the size biased new quasi-

Lindley distribution having the probability density function (pdf), 

𝑓(𝑥;  𝜃, 𝛼) =
𝑥𝜃3(𝜃+𝛼𝑥)𝑒−𝜃𝑥

𝜃2+2𝛼
; 𝑥 > 0, 𝛼 > 0, 𝜃 > 0.          (7.2.1) 

Then, the probability mass function (pmf) of PSBNQL distribution may be obtained 

as 

𝑃(𝑥;  𝜃, 𝛼) = ∫
𝑒−𝜆𝜆𝑥

𝑥!

𝜆𝜃3(𝜃+𝛼𝜆)𝑒−𝜃𝜆

(𝜃2+2𝛼)
𝑑𝜆

∞

0
 , 

=
𝜃3

(𝜃2+2𝛼)𝑥!
∫ 𝑒−(1+𝜃)𝜆𝜆𝑥+1(𝜃 + 𝛼𝜆)𝑑𝜆

∞

0
 , 

=
𝜃3

(𝜃2+2𝛼)𝑥!
(𝜃 ∫ 𝜆𝑥+1𝑒−𝜆(1+𝜃)𝑑𝜆 + 𝛼 ∫ 𝜆𝑥+2𝑒−𝜆(1+𝜃)𝑑𝜆

∞

0

∞

0
) , 

=
𝜃3

(𝜃2+2𝛼)𝑥!
(𝜃

Γ(𝑥+2)

(1+𝜃)𝑥+2 + 𝛼
Γ(𝑥+3)

(1+𝜃)𝑥+3) , 

=
𝜃3

(𝜃2+2𝛼)𝑥!
(

𝜃(𝑥+1)𝑥!

(1+𝜃)𝑥+2 +
α(𝑥+2)(𝑥+1)𝑥!

(1+𝜃)𝑥+3 ) , 

=
𝜃3(𝑥+1)

(𝜃2+2𝛼)(1+𝜃)𝑥+2 (𝜃 +
α(𝑥+2)

(1+𝜃)
), 𝑥 = 1,2,3 … , 𝛼 > 0, 𝜃 > 0        (7.2.2) 

Particular Case: Poisson size biased Lindley distribution is a particular case of 

Poisson size biased new quasi Lindley distribution at 𝛼 = 𝜃.  

7.3  Graphical representation of PSBNQL distribution 

 To study the behaviour of PSBNQL distribution, the probabilities for possible 

values of 𝑥 are computed for different values of parameter 𝛼 and 𝜃. In figure 7.1 and 

7.2, it is clear for fixed 𝛼 i.e. at  𝛼 = 0.03  and 𝛼 = 1.0  respectively and as  𝜃 varies. 

As 𝜃 increases the probability curves shift upward and decreases monotonically 

becoming unimodal. 

 In  Figure 7.3 it can  been  seen  that  for  lager  value  of  𝛼 i.e 𝛼 = 7.0 and 

smaller  values  of  𝜃 i.e 𝜃 = 0.3, 0.5, 0.9 the probability  curve  is positively  

skewed and shift upward as 𝜃 increases reducing its flatness. 
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 In Figure 7.4, for larger values of  𝛼 and 𝜃 i.e for 𝛼 = 15 and 𝜃 = 5.0, 7.0, 9.0 

the probability curve is decreasing monotonically and tends to zero after a certain 

point. 

Figure 7.1 pmf plot of PSBNQL distribution for 𝛼 = 0.03 and 𝜃 = 0.3, 3.0, 7.0. 

 

                

 

Figure 7.2 pmf plot of PSBNQL distribution for 𝛼 = 1.0 and 𝜃 = 0.7, 3.0, 7.0. 
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Figure 7.3 pmf plot of PSBNQL distribution for 𝛼 = 7.0 and 𝜃 = 0.3, 3.0, 7.0. 

 

 

 

Figure 7.4 pmf plot of PSBNQL distribution for 𝛼 = 15 and 𝜃 = 5.0, 7.0, 9.0 
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7.4 Distributional properties of PSBNQPL distribution 

7.4.1 Shape of the probability function 

 We have, 

𝑃(𝑥+1; 𝜃,𝛼)

𝑃(𝑥; 𝜃,𝛼)
=

1

(1+𝜃)
(1 +

𝛼

𝜃(1+𝜃)+𝛼(𝑥+2)
) , 

which is a decreasing function in ′𝑥′. Therefore, PSBNQL distribution is unimodal 

and has an increasing failure rate. [Johnson et al. [56]] 

7.4.2 Factorial moments 

 Let the random variable 𝑋~Poisson distribution with parameter 𝜆 and 

𝜆~SBNQL distribution given in equation (7.2.1). Then, the 𝑟𝑡ℎ factorial moment of 

PSBNQL distribution may be obtained as 

𝜇(𝑟)
′ = 𝐸[𝐸(𝑋(𝑟)|𝜆)] , 

where,  𝑋(𝑟) = 𝑋(𝑋 − 1)(𝑋 − 2) … (𝑋 − 𝑟 + 1) , 

= ∫ [∑
𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 ]

∞

0

𝜆𝜃3(𝜃+𝛼𝜆)𝑒−𝜃𝜆

(𝜃2+2𝛼)
𝑑𝜆 , 

= ∫ [𝜆𝑟 ∑
𝑒−𝜆𝜆𝑥−𝑟

(𝑥−𝑟)!
∞
𝑥=𝑟 ]

∞

0

𝜆𝜃3(𝜃+𝛼𝜆)𝑒−𝜃𝜆

(𝜃2+2𝛼)
𝑑𝜆 . 

Substituting ′𝑥 + 𝑟′ by ′𝑥′ we have, 

= ∫ 𝜆𝑟 [∑
𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 ]

∞

0

𝜆𝜃3(𝜃+𝛼𝜆)𝑒−𝜃𝜆

(𝜃2+2𝛼)
𝑑𝜆 .     

The expression within the bracket in the above expression is unity as it is the 

summation of pmf of Poisson distribution. 

Thus, we obtain 

𝜇(𝑟)
′ =

𝜃3

(𝜃2+2𝛼)
∫ 𝜆𝑟+1(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
 , 

=
Γ(𝑟+2)

(𝜃2+2𝛼)𝜃𝑟
(𝜃2 + 2𝛼 + 𝛼𝑟) .                       (7.4.1) 
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Now for 𝑟 = 1, 2, 3 and 4 in equation (7.4.1) the first four factorial moments may be 

obtained as 

𝜇(1)
′ =

2(𝜃2+3𝛼)

𝜃(𝜃2+2𝛼)
 , 

𝜇(2)
′ =

6(𝜃2+4𝛼)

𝜃2(𝜃2+2𝛼)
 , 

𝜇(3)
′ =

24(𝜃2+5𝛼)

𝜃3(𝜃2+2𝛼)
 , 

𝜇(4)
′ =

24(𝜃2+6𝛼)

𝜃4(𝜃2+2𝛼)
 . 

7.4.3 Raw and Central moments 

If the random variable (r.v) 𝑋~Poisson distribution with parameter 𝜆 and 

𝜆~SBNQL distribution given in equation (7.2.1) then the 𝑟𝑡ℎ moment of PSBNQL 

distribution may be written as 

𝜇𝑟
′ = ∫ {∑ 𝑥𝑟 𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 }

∞

0

𝜆𝜃3(𝜃+𝛼𝜆)𝑒−𝜃𝜆

𝜃2+2𝛼
𝑑𝜆 , 

=
𝜃3

(𝜃2+2𝛼)
[∫ (∑ 𝑥𝑟 𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 ) 𝜆(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
] .         (7.4.2) 

The expression within the bracket is the 𝑟𝑡ℎ moment about origin of Poisson 

distribution. For 𝑟 = 1, in equation (7.4.2) and the expression within the bracket as 

mean of Poisson distribution we get the first moment about origin as, 

 𝜇1
′ =

𝜃3

(𝜃2+2𝛼)
[∫ 𝜆2(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
], 

=
2(𝜃2+3𝛼)

𝜃(𝜃2+2𝛼)
 . 

Taking 𝑟 = 2, in equation (7.4.2) and the expression within the bracket as the second 

moment about origin of Poisson distribution we get, 

𝜇2
′ =

𝜃3

(𝜃2+2𝛼)
[∫ (𝜆2 + 𝜆)𝜆(𝜃 + 𝛼𝜆)𝑒−𝜃𝜆𝑑𝜆

∞

0
] , 

 =
2𝜃(𝜃2+3𝛼)+6(𝜃2+4𝛼)

𝜃2(𝜃2+2𝛼)
 . 
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For 𝑟 = 3 and 4 in equation (7.4.2) and using the respective moment about origin of 

Poisson distribution we get, 

𝜇3
′ =

2𝜃2(𝜃2+3𝛼)+18𝜃(𝜃2+4𝛼)+24(𝜃2+5𝛼)

𝜃3(𝜃2+2𝛼)
  , 

𝜇4
′ =

2𝜃3(𝜃2+3𝛼)+42𝜃2(𝜃2+4𝛼)+24𝜃(𝜃2+5𝛼)+120(𝜃2+6𝛼)

𝜃4(𝜃2+2𝛼)
 . 

The central moments about mean 𝜇2, 𝜇3 has been obtained as, 

𝜇2 = 𝜇2
′ − 𝜇1

′ 2
. 

Thus,  𝜇2 =
2𝜃5+2𝜃4+12𝛼2+12𝛼2𝜃+10𝜃3𝛼+12𝛼2𝜃

𝜃2(𝜃2+2𝛼)2  . 

𝜇3 =
2𝜃8+6𝜃7+𝜃6(14𝛼+14)+48𝜃5+𝜃4𝛼(40𝛼+36)+36𝜃3𝛼2+24𝜃2𝛼2(𝛼+3)+72𝜃𝛼3+48

𝜃3(𝜃2+2𝛼)3  . 

7.4.4 Index of dispersion, co-efficient of variation and Skewness 

 The index of dispersion may be defined as the ratio of variance to mean and 

may be defined as, 

I. D =
𝜎2

𝜇
 , 

I. D =
2𝜃5+2𝜃4+12𝛼2+12𝛼2𝜃+10𝜃3𝛼+12𝛼2𝜃

2𝜃(𝜃2+3𝛼)(𝜃2+2𝛼)
, 

I. D = 1+
2𝜃4+12𝜃2𝛼+12𝛼2

2𝜃(𝜃2+3𝛼)(𝜃2+2𝛼)
> 1.  

Thus, it has been observed that I.D>1 which means that PSBNQL distribution is over 

dispersed. 

The coefficient of variation may be defined as,  

C.V=
𝜎

𝜇
=

√2𝜃5+2𝜃4+12𝛼2+12𝜃2𝛼+4𝜃3𝛼+6𝛼𝜃3+12𝛼2𝜃

2(𝜃2+3𝛼)
 . 

 The skewness of PSBNQL distribution denoted by√𝛽1 may be written as, 

√𝛽1 =
𝜇3

𝜇2

3
2

 , 
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√𝛽1 =
2𝜃8+6𝜃7+𝜃6(14𝛼+14)+48𝜃5+𝜃4𝛼(40𝛼+36)+36𝜃3𝛼2+24𝜃2𝛼2(𝛼+3)+72𝜃𝛼3+48

(2𝜃5+2𝜃4+12𝛼2+12𝛼2𝜃+10𝜃3𝛼+12𝛼2𝜃)3/2
 . 

7.4.5 Probability generating function 

The probability generating function (pgf) of PSBNQL distribution has been 

obtained as 

𝑔(𝑡) = 𝐸(𝑡𝑥) , 

= ∑ 𝑡𝑥𝑃(𝑥)∞
𝑥=0  , 

= ∑ 𝑡𝑥 𝜃3(𝑥+1)

(𝜃2+2𝛼)(1+𝜃)𝑥+2
(𝜃 +

α(𝑥+2)

(1+𝜃)
)∞

𝑥=0  , 

=
𝜃3{(𝜃(1+𝜃)+2𝛼)−𝜃𝑡}

(𝜃2+2𝛼)(1+𝜃−𝑡)3
, |𝑡| < 1.  

The probability recurrence relation has been obtained as 

𝑝𝑟 =
3(1+𝜃)2𝑃𝑟−1−3(1+𝜃)𝑃𝑟−2+𝑃𝑟−3

(1+𝜃)3 , 𝑟 ≥ 3           (7.4.3) 

and,  𝑝0 =
𝜃3

(𝜃2+2𝛼)(1+𝜃)2 (𝜃 +
2α

(1+𝜃)
) ,  

𝑝1 =
2𝜃3

(𝜃2+2𝛼)(1+𝜃)3 (𝜃 +
3α

(1+𝜃)
) , 

𝑝2 =
3𝜃3

(𝜃2+2𝛼)(1+𝜃)4 (𝜃 +
4α

(1+𝜃)
) , 

𝑝3 =
4𝜃3

(𝜃2+2𝛼)(1+𝜃)5
(𝜃 +

5α

(1+𝜃)
) . 

The higher order probabilities may be obtained from equation (7.4.3). 

It has been observed that the pgf of PSBNQL distribution is same as the pgf of PSBL 

distribution of Adhikari and Srivastava [2] when 𝛼 = 𝜃. 

The moment generating function may be obtained as, 

𝑚(𝑡) =
𝜃3{(𝜃(1+𝜃)+2𝛼)−𝜃𝑒𝑡}

(𝜃2+2𝛼)(1+𝜃−𝑒𝑡)3  . 
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7.4.6 Factorial moment generating function 

The factorial moment generating function (fmgf) may be obtained as, 

𝐺(𝑡) = 𝑔(1 + 𝑡) , 

𝐺(𝑡) =
𝜃3{(𝜃2+2𝛼)−𝜃𝑡}

(𝜃2+2𝛼)(𝜃−𝑡)3
 .                     (7.4.4)    

Differentiating equation (7.4.4) w.r.t ′𝑡′ we have, 

𝐺′(𝑡) =
𝜃3

(𝜃2+2𝛼)
{

3(𝜃2+2𝛼−𝜃𝑡)−𝜃(𝜃−𝑡)

(𝜃2+2𝛼)(𝜃−𝑡)4
}                   (7.4.5) 

Now, expanding equation (7.4.5) and equating the co-efficient of  
𝑡𝑟

𝑟!
 We have 

obtained the  recurrence relation for factorial  moment  generating  function  as 

𝜇(𝑟+1)
′ =

𝑟[4𝜇(𝑟)
′ −6(𝑟−1)𝜇(𝑟−1)

′ +(𝑟−1)(𝑟−2)(𝑟−3)𝜇(𝑟−2)
′ −(𝑟−1)(𝑟−2)(𝑟−3)(𝑟−4)𝜇(𝑟−3)

′ ]

𝜃4 , 𝑟 > 3  

7.5 Methods of estimation of parameters 

 The estimation of parameters is considered as an important property of a 

distribution. In order to estimate the parameters of PSBNQL distribution we have 

discussed the method of moment and method of maximum likelihood. 

7.5.1 Method of moment 

 The first two raw moments are used the estimate the parameters. From the first 

two moments we have, 

𝜇1
′ =

2(𝜃2+3𝛼)

𝜃(𝜃2+2𝛼)
 , 

𝜇2
′ =

2𝜃(𝜃2+3𝛼)+6(𝜃2+4𝛼)

𝜃2(𝜃2+2𝛼)
 . 

Now, let  
𝜇2

′ −𝜇1

𝜇1
′ 2 =

6(𝜃2+4𝛼)(𝜃2+2𝛼)

4(𝜃2+3𝛼)2
= 𝑘(say) .           (7.5.1) 

Substituting 𝛼 = 𝑏𝜃2 in equation (7.5.1) we have, 

𝜇2
′ −𝜇1

𝜇1
′ 2 =

3(1+4𝑏)(1+2𝑏)

2(1+3𝑏)2 = 𝑘(say) ,  
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we have obtained a quadratic equation in 𝑏 as, 

(24 − 18𝑘)𝑏2 + (18 − 12𝑘)𝑏 + (3 − 2𝑘) = 0 .          (7.5.2) 

Now, if we replace the first two population moments by the respective sample 

moments in (7.5.1) an estimate of 𝑘 may be obtained. Then by substituting the 

estimate of 𝑘 in (7.5.2), the estimate 𝑏̂ can be obtained from the quadratic equation. 

 Also we have 

𝜇1
′ = 𝑥̅ =

2(𝜃2+3𝛼)

𝜃(𝜃2+𝛼)
,                                              (7.5.3) 

 Substituting 𝛼 = 𝑏𝜃2 in the expression (7.5.3) we have 

       𝑥̅ =
2(1+3𝑏)

𝜃(1+𝑏)
. 

Hence     𝜃 = (
2(1+3𝑏)

1+𝑏
)

1

𝑋̅
,  

 and   𝛼̂ = 𝑏𝜃2 =
4𝑏̂(1+3𝑏̂)

2

(1+𝑏 ̂)
2

(𝑋̅)2
. 

7.5.2 Method of maximum likelihood 

Let, 𝑥1,  𝑥2,  … … ,  𝑥𝑛 are sample of size n from PSBNQL distribution. 

Then, the Likelihood function may be obtained as 

𝐿 = ∏ 𝑓(𝑥𝑖, 𝜃, 𝛼)𝑛
𝑖=1  , 

= ∏
𝜃3(𝑥𝑖+1)

(𝜃2+2𝛼)(1+𝜃)𝑥𝑖+2 (𝜃 +
α(𝑥𝑖+2)

(1+𝜃)
) .𝑛

𝑖=1                   (7.5.4) 

The log-likelihood function may be obtained as, 

log 𝐿 = 3𝑛 log 𝜃 − 𝑛log (𝜃2 + 2𝛼) + ∑ (𝑥𝑖 + 1) − (𝑥𝑖 + 3)𝑛
𝑖=1 log(1 + 𝜃)  

 + ∑ log𝑛
𝑖=1 (𝜃(1 + 𝜃) + 𝛼(𝑥𝑖 + 2).              (7.5.5) 

Now, Differentiating equation (7.5.5) w.r.t 𝜃 and 𝛼 we have obtained 

𝜕log  𝐿

𝜕𝜃
 = 

3𝑛

𝜃
−

2𝑛𝜃

(𝜃2+2𝛼)
−

(𝑥𝑖+3)

1+𝜃
+ ∑

(2𝜃+1)

{𝜃(𝜃+1)+𝛼(𝑥𝑖+2)}
= 0𝑛

𝑖=1  ,  
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𝜕2log 𝐿

𝜕𝜃2
=

−3𝑛

𝜃2
−

𝑛(4𝛼−2𝜃2)

(𝜃2+2𝛼)2
+

(𝑥𝑖+3)

(1+𝜃)2
+ ∑

(2𝛼(𝑥𝑖+2)−2𝜃2−2𝜃−1)

{𝜃(𝜃+1)+𝛼(𝑥𝑖+2)}2
𝑛
𝑖=1 ,  

𝜕2log 𝐿

𝜕𝛼2 =
−4𝑛

(𝜃2+2𝛼)2 − ∑
(𝑥𝑖+2)2

(𝜃(𝜃+1)+𝛼(𝑥𝑖+2))2
𝑛
𝑖=1  ,     

𝜕2log 𝐿

𝜕𝜃𝜕𝛼
=

−4𝑛

(𝜃2+2𝛼)2 − (2𝜃 + 1) ∑
(𝑥𝑖+2)

(𝜃(𝜃+1)+𝛼(𝑥𝑖+2))2
𝑛
𝑖=1  .   

The above equations cannot be solved directly and so Fisher’s scoring method can be 

applied to solve these equations. The equations can be solved for  𝜃 and 𝛼̂ iteratively 

till sufficiently close values of 𝜃 and  𝛼̂ are obtained, where 𝜃0and 𝛼0 are the initials 

value of 𝜃 and 𝛼 respectively 

[

𝜕2log 𝐿

𝜕𝛼2

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝛼𝜕𝜃

𝜕2log 𝐿

𝜕𝜃2

] [
𝜃 − 𝜃0

𝛼̂ − 𝛼0
] = [

𝜕log𝐿

𝜕𝛼

  
𝜕log𝐿

𝜕𝜃

]

𝜃̂=𝜃0

𝛼̂=𝛼0
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