Contents

	Page
Abstract	i
Declaration	iv
Certificates of the supervisor	V
Certificates of the co-supervisor	vi
Acknowledgement	vii
Contents	ix
List of Tables	ixv
List of Figures	xvi
1. INTRODUCTION	1
References	5
2. REVIEW OF LITERATURE	7
2.1 Ohmic heating (OH) process	7
2.2 Ohmic heating and electrical conductivity (EC)	8
2.3 Effects of ohmic heating on quality characteristics of food	9
2.4 Various processes assisted by ohmic heating	12
2.5 Effects of ohmic heating on enzymes and microbes	14
2.5.1 Effect of OH on Polyphenol oxidase (PPO)	14
2.5.2 Effect of ohmic heating on Peroxidases (POD)	17
2.5.3 Effect of ohmic heating on Microbes	18
2.6 Mango pulp/puree and its characteristics	19
2.7 Mango processing	22
References	24
3. MATERIALS AND METHODS	32
3.1 Materials	32
3.2 Methods	32
3.2.1 Design and development of Ohmic heating (OH) Setup	34
3.2.1.1 Design requirements	34
3.2.1.2 Conceptual design	34
3.2.1.3 Design and fabrication ohmic heating setup	35
3.2.1.4 Heating chamber	35

	3.2.1.5 Electrodes	36
	3.2.1.6 Power supply and voltage control	37
	3.2.1.7 Microprocessor based data acquisitioning assembly	38
3.2	2.2 Samples for performance evaluation	38
3.2	2.3 Sample preparation	38
3.2	2.4 Properties of the sample	39
	3.2.4.1 Moisture content	39
	3.2.4.2 Density	39
	3.2.4.3 Total soluble solids (TSS)	39
	3.2.4.4 Titratable acidity	40
	3.2.4.5 pH	40
3.2	2.5 Performance evaluation OH process	40
	3.2.5.1 Electrical conductivity	40
	3.2.5.2 Heat capacity (Specific heat, Cp)	41
	3.2.5.3 Heating rate	41
	3.2.5.4 Heating power	41
	3.2.5.5 Energy efficiency	41
	3.2.5.6 Heat loss into the heating chamber	41
3.2	2.6 Mango puree characterization on the basis of Acid and TSS content	42
	3.2.6.1 Sample preparation	42
	3.2.6.2 Water activity	43
	3.2.6.3 Back extrusion	43
	3.2.6.4 Dynamic rheology	43
	3.2.6.5 Differential Scanning Calorimetry (DSC) and Thermo-gravimetric	44
	Analysis (TGA)	
	3.2.6.6 Ohmic heating profile	44
3.2	2.7 Optimization of ohmic heating process parameters	44
3.2	2.8 Parameters measured for the optimization process	45
	3.2.8.1 Poly-phenol oxidase (PPO) essay	45
	3.2.8.2 Peroxidase (POD) essay	45
	3.2.8.3 Bacterial count estimation	45
	3.2.8.4 Color measurement	46

3.2.9 Enzymes and microbial inactivation kinetics modeling	46
3.2.9. 1 First order reaction	47
3.2.9.2 Distinct isozymes	47
3.2.9.3 Two-fraction	47
3.2.9.4 Fractional conversion	47
3.2.9.5 Weibull distribution	47
3.2.9.6 nth order	48
3.2.9.7 Decimal reduction time (D-value)	48
3.2.9.8 Thermal resistance constant (Z-value)	48
3.2.9.9 Exponential model for bacterial reduction	48
3.2.9.10 Temperature dependency of bacterial inactivation	49
3.2.9.11 Linear model for color change (ΔE)	49
3.2.9.12 Chi square (χ2) value	49
3.2.10 Effects of ohmic heating process on mango puree and its storage	49
behavior	
3.2.10.1 Hot water or conventional heat treatment (HW)	50
3.2.10.2 TSS, Titratable acidity, pH, and TBC	50
3.2.10.8 Steady shear flow behavior	50
3.2.10.9 Modeling flow behavior of mango puree	50
3.2.10.3 Extraction of particle phase (cell wall material)	51
3.2.10.4 Scanning Electron Microscopy (SEM)	51
3.2.10.7 Vitamin C	51
3.2.10.5 Total phenolic content (TPC)	52
3.2.10.6 β- carotenes	52
3.2.11 Statistical Analysis	53
References	54
4. RESULTS AND DISCUSSION	56
4.1 Design and development of OH setup and its performance evaluation	56
4.1.1 Ohmic heating setup and its operation	56
4.1.2 Properties of fresh fruit juice/puree	57
4.1.3 Ohmic heating behavior of fresh juice and puree	59
4.1.3.1 Electric conductivity (EC) and OH behavior	59
	•

4.1.3.2 Electric Field Strength (EFS) and ohmic heating (OH) behavior	60
4.1.3.3 Performance of ohmic heating	63
4.2 Characteristics of fresh mango puree at different levels of Acid and TSS	66
content	
4.2.1 pH and water activity	67
4.2.2 Back extrusion Parameters	68
4.2.3 Rheological characteristics of mango puree	68
4.2.4 Differential scanning calorimetry (DSC) and Thermogravimetric analysis	72
(TGA)	
4.2.5 Ohmic heating (OH) profile of mango puree	76
4.2.5.1 Effect of acid content on the ohmic heating (OH) behavior of	76
mango puree	
4.2.5.2 Effect of TSS on the OH behavior of mango puree	78
4.3 Optimization of ohmic heating process parameters	78
4.3.1 Effect of ohmic heating on Polyphenoloxidase activity	81
4.3.2 Effect of ohmic heating on Peroxidase activity	81
4.3.3 Effect of ohmic heating on bacterial count	82
4.3.4 Effect of ohmic heating on the change in color (ΔE)	84
4.3.5 Optimized condition and Desirability	85
4.3.6 Validation	87
4.4 Kinetics of enzyme, microbial inactivation and color change during OH	89
4.4.1 Enzyme inactivation	90
4.4.1.1 Polyphenol oxidase (PPO) inactivation	90
4.4.1.2 Peroxidase (POD) inactivation	95
4.4.2 Bacterial inactivation kinetics	99
4.4.3 Color change (ΔE)	102
4.5 Effects of heating and holding time of OH and hot water (HW)	104
4.5.1 Titratable acidity, pH and total soluble solids (TSS)	104
4.5.2 Steady shear flow behavior of puree	106
4.5.2.1 Kinetics of steady shear flow behavior	107
4.5.3 Morphology of mango puree particle phase	109
4.5.4 Vitamin C	110
4.5.5 Total phenolic content (TPC)	111

4.5.6 β- Carotenes	112
4.5.7 Storage study of HW and OH treated mango puree	113
4.5.7.1 Changes in pH, Titratable acidity and TSS	114
4.5.7.2 Changes in steady shear flow behavior	116
4.5.7.3 Changes in Vitamin C content during storage	119
4.5.7.4 Changes in Total phenolic content (TPC)	120
4.5.7.5 Changes in β carotenes during storage	121
4.5.7.6 Changes in the bacterial count during storage	123
References	125
5. SUMMARY AND CONCLUSIONS	133
Appendix	

xiii