List of Tables

Гable No.	Title	Page
2.1	Studies conducted on effects of ohmic heating on PPO and POD	21
3.1	The details of materials required in the present research	33
3.2	Specification of Teflon heating chamber of ohmic heating	36
3.3	The list of food materials analyzed for performance of OH process	39
3.4	Process variable for optimization of ohmic heating process	44
3.5	The sample coding for OH and HW treatment studies	50
3.6	List of the models analyzed for steady shear flow behavior of mango	51
	puree	
4.1	Properties of the food samples studied	58
4.2	Electrical conductivity (EC) at room temperature and linear regression	60
	factors of change in EC with temperature	
4.3	Exponential model parameters of increase in heating rate with EFS	63
4.4	Energy consumption and losses during OH at different EFS	66
4.5	Characteristics of fresh mango puree	66
4.6	Effect of Acid content and TSS on the pH and water activity of the	67
	mango puree	
4.7	Rheological characteristics of the samples at 30 and 90 °C temperature	70
	(at 1-Hz)	
4.8	Response values at different experimental conditions	83
4.9	ANOVA results of the suggested model	84
4.10	Constraints of the optimization process	86
4.11	The ten best conditions suggested by the RSM	87
4.12	Difference between the 1 st and 7 th suggested optimization condition	87
4.13	Experimental and predicted values of PPO, POD residual activity,	87
	bacterial count and color change at optimized condition	
4.14	Chi square and R ² values of selected models for the PPO inactivation	92
4.15	The Distinct enzymes model coefficients and statistical parameters of	94
	PPO inactivation during OH	
4.16	Decimal reduction time and Thermal resistance constant of labile (l) and	95
	resistant (r) fraction of PPO calculated form best fit model parameters	
4.17	Chi square and R ² values of selected models for the POD inactivation	97

4.18	Weibull model coefficients and statistical parameters of POD	98
	inactivation during OH	
4.19	Decimal reduction time (D value) and Thermal resistance constant (Z)	98
	of POD calculated form best fit model parameters	
4.20	Exponential model parameters of microbial reduction during OH	101
	process	
4.21	Linear model parameters of T ⁻¹ vs ln(k)	101
4.22	Linear regression parameters of ΔE during OH of mango puree	103
4.23	The sample coding for OH and HW treatment studies	104
4.24	List of the models used to verify flow behavior of HW and OH treated	108
	mango puree	
4.25	Model parameters and coefficient of determination (R ²) and RMSE	108
	value of the fitted models	
4.26	Effect of storage time on Herschel–Bulkley model parameters	119

List of Figures

Figure No.	Title	Page
1.1	Principle of ohmic heating	2
3.1	Ohmic heating setup conceptual design	35
3.2	Dimensions of the hollow cylindrical Teflon heating chamber	36
3.3	Ohmic heating chamber (a) Assembled, (b) Dissembled and (c)	37
	Platinized titanium electrode	
3.4	Depiction of enzyme activity calculation	46
3.5	Samples stored in glass vials	52
3.6	Standard curve of gallic acid	52
4.1	The schematic diagram of ohmic heating assembly	57
4.2	The actual lab scale ohmic heating setup	58
4.3	EC and temperature relation of different food material during OH	60
4.4	Ohmic heating behavior of mango puree, tomato juice, pineapple	61
	juice, watermelon juice and litchi juice	
4.5	The time required to achieve the desired temperature at different EFS	62
4.6	Exponential model and heating rate at different EFS in mango puree	63
	tomato juice, pineapple juice, watermelon juice and litchi juice	
	during OH	
4.7	Energy efficiency (%) of the OH process of mango puree, tomato	64
	juice, pineapple juice, watermelon juice and litchi juice	
4.8	Average temperature of heating chamber at the time of final	65
	temperature at different EFS.	
4.9	Back extrusion parameters of the sample with different (a) acid and	69
	(b) TSS level	
4.10	Effect of TSS and acid content on dynamic mechanical spectra of	71
	mango puree at (a) 30 and (b) 90°C	
4.11	Effect of TSS and acid content on the complex viscosity of mango	72
	puree at (a) 30 and (b) 90°C	
4. 12	DSC plots of mango puree DSC (a) Acid content (b) TSS	74
4.13	TGA plots of mango puree DSC (a) Acid content (b) TSS	75
4.14	Change in temperature of samples with varying acid content during	77
	OH at 10 - 40 V/cm	

4.15	Change in temperature of samples with varying TSS during OH at	79
	10 - 40 V/cm	
4.16	The OH rate at different EFS with different acid content in mango	80
	puree	
4.17	The OH rate at different EFS with different TSS content in mango	80
	puree	
4.18	Surface plots of the (a) PPO; (b) POD; (c) Plate count; and (d) ΔE	86
4.19	Desirability of the optimized condition	88
4.20	The PPO inactivation (residual activity) during OH at different EFS	91
	and temperature (°C)	
4.21	The Experimental and predicted values of bested fitted model for	92
	PPO [a] and POD [b] inactivation	
4.22	Effect of EFS on rate constant of labile fraction of PPO	93
4.23	Effect of EFS on rate constant of resistant fraction of PPO	93
4.24	The POD inactivation (residual activity) during OH at different EFS	96
	and temperature	
4.25	Effect of EFS on rate constant of POD inactivation	97
4.26	Semi-log plots for microbial reduction during OH at different EFS	100
	and temperature	
4.27	Plot between inverse of absolute temperature (K) and reduction	101
	constant of microbial reduction during OH	
4.28	Activation energy for microbial reduction at the different EFS of OH	101
	treatment	
4.29	Color change (ΔE) during OH at different EFS and temperature	102
4.30	Effect of HW and OH treatment on pH of mango puree	104
4.31	Effect of HW and OH treatment on acidity (% citric acid) of mango	105
	puree	
4.32	Effect of HW and OH treatment on TSS content of mango puree	105
4.33	Shear stress vs. shear rate plot of Control, HW and OH treated	107
	mango puree	
4.34	Viscosity vs shear rate plot of Control, HW and OH treated mango	107
	puree	

4.35	SEM images (at 1000X) of cell wall material extracted from (a)	110
	Control, (b) HW and (c) OH treated mango puree	
4.36	Effect of HW and OH treatment on Vitamin C content of mango	111
	puree	
4.37	Effect of HW and OH treatment on the Total phenolic content of	112
	mango puree	
4.38	Effect of HW and OH treatment on β -carotenes of mango puree	113
4.39	Change in pH of HW and OH treated mango puree sample during	115
	storage	
4.40	Change in acidity (% citric acid) of HW and OH treated mango	115
	puree sample during storage	
4.41	Change in TSS of HW and OH treated mango puree sample during	116
	storage	
4.42	Shear rate vs. Shear stress plot of HW treated samples during storage	117
4.43	Shear rate vs. Shear stress plot of OH treated samples during storage	117
4.44	Shear rate vs. viscosity plot of HW treated samples during storage	118
4.45	Shear rate vs. viscosity plot of OH treated samples during storage	118
4.46	Change in Vitamin C content of HW and OH treated mango puree	120
	sample during storage Change in the	
4.47	Total phenolic content of HW and OH treated mango puree sample	121
	during storage	
4.48	Change in β -carotenes of HW and OH treated mango puree sample	122
	during storage	
4.49	Change in the bacterial count (BC) of HW and OH treated mango	124
	puree samples	