Minimal reducing subspaces of operator pseudo shifts of type I

4.1 Introduction

If S is a scalar weighted unilateral shift on $\ell_+^2(\mathbb{C})$, then S is irreducible, as already mentioned earlier. For N > 1, if we consider weighted unilateral shifts $S_0, S_1, \ldots, S_{N-1}$ on $\ell_+^2(\mathbb{C})$, then $S_0 \oplus S_1 \oplus \cdots \oplus S_{N-1}$ on the direct sum of N copies of $\ell_+^2(\mathbb{C})$ is unitarily equivalent to M_z^N on $H^2(\beta)$, as discussed in Section 2.3. Therefore, by [50] we get a complete description of the reducing subspaces of $S_0 \oplus S_1 \oplus \cdots \oplus S_{N-1}$. Again, instead of a finite N, if we consider a countable direct sum of weighted unilateral shifts i.e, $S_0 \oplus S_1 \oplus \ldots$, then this operator is unitarily equivalent to the operator weighted shift S on $\ell_+^2(K)$ with weights $\{A_n\}_{n\in\mathbb{N}_0}$, where each A_n is invertible diagonal on K. Now, from [20], we get a description of the reducing subspaces of $S_0 \oplus S_1 \oplus \ldots$.

Thus, we have a fairly good idea of the reducing and minimal reducing subspace of a direct sum of scalar weighted unilateral shifts on $\ell^2_+(\mathbb{C})$. However, we do not know much about the reducing subspaces for a direct sum of operator weighted unilateral shifts on $\ell^2_+(K)$.

Question: "If S_1 and S_2 are operator weighted shifts on $H^2(K)$, what are the reducing subspaces for $S_1 \oplus S_2$?"

To address this question, we first propose the definition of an operator weighted pseudo shift on $\ell^2_+(K)$. The motivation for the definition comes from that of a scalar weighted pseudo shift as given first in [12].

Definition 4.1.1. [12] Let X and Y be topological sequence spaces over I and J respectively. Then a continuous linear operator $T: X \to Y$ is called a weighted pseudo shift if there is a sequence $(b_j)_{j \in J}$ of non-zero scalars and an injective mapping $\varphi: J \to I$ such that

$$T(x_i)_{i \in I} = (b_j x_{\varphi(j)})_{j \in J}$$

for $(x_i) \in X$. T is denoted as $T_{b,\varphi}$ and $(b_j)_{j\in J}$ is called the weight sequence.

Thus, taking $I = J = \mathbb{N}_0$ and $\varphi(j) = j + 1$ for all $j \in \mathbb{N}_0$ in Definition 4.1.1, we get

$$T(x_0, x_1, \dots) = (b_0 x_1, b_1 x_2, \dots),$$

which is the backward unilateral weighted shift on $\ell^2_+(\mathbb{C})$ with weights $\{b_n\}_{n\in\mathbb{N}_0}$. Similarly, every backward bilateral weighted shift is a weighted pseudo shift. These operators are further studied in [35, 52, 53, 54].

Motivated by Definition 4.1.1, we propose the definition of an operator weighted pseudo shift on $\ell^2_+(K)$ as follows:

Definition 4.1.2. Let $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ be an injective map, and $\{A_n\}_{n \in \mathbb{N}_0}$ be a sequence of bounded linear operators on K such that there exists m, M > 0 with $m \leq ||A_n|| \leq M$ for all $n \in \mathbb{N}_0$. Then the operator $T : \ell^2_+(K) \to \ell^2_+(K)$ defined by

$$T(f_0, f_1, \dots) = (A_0 f_{\varphi(0)}, A_1 f_{\varphi(1)}, \dots)$$

is called the operator pseudo shift induced by φ , usually denoted by T_{φ} .

We consider each A_n to be positive invertible and to have a diagonal matrix representation with respect to basis $\{e_i\}_{i\in\mathbb{N}_0}$ of K. Hence, for each $n\in\mathbb{N}_0$ there exists a sequence of positive scalars $\{\alpha_i^{(n)}\}_{i\in\mathbb{N}_0}$ such that $A_ne_i = \alpha_i^{(n)}e_i$.

For $i, j \in \mathbb{N}_0$, let $g_{i,j} := (0, \ldots, e_i, 0, \ldots)$ with e_i occuring at the *j*th place. Then $\{g_{i,j}\}_{i,j\in\mathbb{N}_0}$ is an orthonormal basis for $\ell^2_+(K)$. Thus, if $R(\varphi)$ denotes the range of the injective map φ on \mathbb{N}_0 , then for each $i, j \in \mathbb{N}_0$,

$$T_{\varphi}g_{i,j} := \begin{cases} \alpha_i^{(\varphi^{-1}(j))}g_{i,\varphi^{-1}(j)}, & \text{if } j \in R(\varphi); \\ 0, & \text{otherwise.} \end{cases}$$
(4.1.1)

In particular,

$$T_{\varphi}g_{i,\varphi(k)} = \alpha_i^{(k)}g_{i,k} \text{ for all } i,k \in \mathbb{N}_0.$$
(4.1.2)

In Theorem 4.3.14 of this chapter, we show that T_{φ} can be identified with a direct sum of copies of unilateral (backward) operator weighted shifts, circulant operators and bilateral operator weighted shifts.

4.2 Preliminaries

Lemma 4.2.1. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Then for k > 0 and $i, j \in \mathbb{N}_0$, we have

$$T_{\varphi}^{k}g_{i,j} := \begin{cases} \alpha_{i}^{(\varphi^{-1}(j))}\alpha_{i}^{(\varphi^{-2}(j))}...\alpha_{i}^{(\varphi^{-k}(j))}g_{i,\varphi^{-k}(j)}, & \text{if } j \in R(\varphi^{k}); \\ 0, & \text{otherwise.} \end{cases}$$

The proof follows from repeated applications of Equation 4.1.1.

Lemma 4.2.2. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. For $i,j\in\mathbb{N}_0$, $T^*_{\varphi}g_{i,j} = \alpha_i^{(j)}g_{i,\varphi(j)}$.

Proof. For $f = (f_i) \in \ell^2_+(K)$, we have

$$\langle T_{\varphi}f, g_{i,j} \rangle = \langle A_j f_{\varphi(j)}, e_i \rangle$$

$$= \langle f_{\varphi(j)}, A_j^* e_i \rangle$$

$$= \alpha_i^{(j)} \langle f_{\varphi(j)}, e_i \rangle$$

$$= \alpha_i^{(j)} \langle f, g_{i,\varphi(j)} \rangle$$

$$= \langle f, \alpha_i^{(j)} g_{i,\varphi(j)} \rangle.$$

Therefore, $T^*_{\varphi}g_{i,j} = \alpha_i^{(j)}g_{i,\varphi(j)}$.

Lemma 4.2.3. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. For k > 0 and $i, j \in \mathbb{N}_0$, we have the following:

(i)
$$T_{\varphi}^{k}(T_{\varphi}^{*})^{k}g_{i,j} = (\alpha_{i}^{(j)}\alpha_{i}^{(\varphi(j))}\dots\alpha_{i}^{(\varphi^{k-1}(j))})^{2}g_{i,j}, and$$

(ii) $(T_{\varphi}^{*})^{k}T_{\varphi}^{k}g_{i,j} := \begin{cases} (\alpha_{i}^{(\varphi^{-1}(j))}\alpha_{i}^{(\varphi^{-2}(j))}\dots\alpha_{i}^{(\varphi^{-k}(j))})^{2}g_{i,j}, & \text{if } j \in R(\varphi^{k}); \\ 0, & \text{otherwise.} \end{cases}$

The result follows immediately from Lemma 4.2.1 and Lemma 4.2.2.

Lemma 4.2.4. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. For $f = (f_i) \in \ell^2_+(K)$, the adjoint of T is defined as $T^*_{\varphi}f = (y_0, y_1, \ldots)$ where

$$y_j := \begin{cases} A^*_{\varphi^{-1}(j)} f_{\varphi^{-1}(j)}, & \text{if } j \in R(\varphi); \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Let $f = (f_i) \in \ell^2_+(K)$ and for each $j \in \mathbb{N}_0$, define

$$y_j := \begin{cases} A^*_{\varphi^{-1}(j)} f_{\varphi^{-1}(j)}, & \text{if } j \in R(\varphi); \\ 0, & \text{otherwise.} \end{cases}$$

Then $y = (y_j) \in \ell^2_+(K)$ and for any $h = (h_i) \in \ell^2_+(K)$, we have

$$\langle T_{\varphi}h, f \rangle = \sum_{i \in \mathbb{N}_0} \langle A_i h_{\varphi(i)}, f_i \rangle$$

=
$$\sum_{i \in \mathbb{N}_0} \langle h_{\varphi(i)}, A_i^* f_i \rangle$$

=
$$\sum_{j \in R(\varphi)} \langle h_j, A_{\varphi^{-1}(j)}^* f_{\varphi^{-1}(j)} \rangle$$

=
$$\langle h, y \rangle.$$

Thus, $T_{\varphi}^*f = y$.

Lemma 4.2.5. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Then T_{φ}^* is a pseudo shift if and only if φ is bijective.

Proof. Let φ be bijective. Then $R(\varphi) = \mathbb{N}_0$ and so by Lemma 4.2.4, it follows that for each $f = (f_i) \in \ell^2_+(K)$, the adjoint of T_{φ} is given as

$$T_{\varphi}^*f = (A_{\varphi^{-1}(0)}^*f_{\varphi^{-1}(0)}, A_{\varphi^{-1}(1)}^*f_{\varphi^{-1}(1)}, \dots).$$

Let $B_n := A^*_{\varphi^{-1}(n)}$ for all $n \in \mathbb{N}_0$ and $\psi := \varphi^{-1}$. Then T^*_{φ} is the pseudo shift on $\ell^2_+(K)$ with operator weights $\{B_n\}_{n \in \mathbb{N}_0}$, induced by the injective map ψ .

Conversely, let, if possible, φ is not bijective. Then there exists $j \in \mathbb{N}_0$ which is not in the range of φ . So, by Lemma 4.2.4, $y_j = 0$ where $T_{\varphi}^* f = (y_0, y_1, \dots)$, and so by definition T_{φ}^* cannot be a pseudo shift.

For example, if T is the unilateral backward shift induced by $\varphi(n) = n + 1$ for all $n \in \mathbb{N}_0$, then T^* , which is the unilateral forward shift is not a pseudo shift. However, the bilateral shift and its adjoint are both pseudo shifts.

4.3 φ induced partition of \mathbb{N}_0 .

Definition 4.3.1. For an injective map φ on \mathbb{N}_0 , we define the following subsets of \mathbb{N}_0 :

(i) $\mathcal{M}_1 = \{n \in \mathbb{N}_0 : n \notin R(\varphi)\}.$ (ii) $\mathcal{M}_2 = \{n \in \mathbb{N}_0 : n = \varphi^k(m) \text{ for some } m \in \mathcal{M}_1, k > 0\}.$ (iii) $\mathcal{M}_3 = \{n \in \mathbb{N}_0 : n = \varphi^k(n) \text{ for some } k > 0\}.$ (iv) $\mathcal{M}_4 = \mathbb{N}_0 - (\mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3).$

Here, $R(\varphi)$ denotes the range of φ .

Remark 4.3.2. (a) For an injective map φ on \mathbb{N}_0 , $\mathcal{M}_i \cap \mathcal{M}_j = \phi$ if $i \neq j$ and $1 \leq i, j \leq 4$.

(b) If φ is bijective, then $\mathcal{M}_1 = \mathcal{M}_2 = \phi$ and $\mathbb{N}_0 = \mathcal{M}_3 \cup \mathcal{M}_4$.

(c) If φ is injective but not surjective, then $R(\varphi) = \mathcal{M}_2 \cup \mathcal{M}_3 \cup \mathcal{M}_4 \subsetneq \mathbb{N}_0$.

Example 4.3.3. Let $\varphi : \mathbb{N}_0 \to \mathbb{N}_0$ be defined as follows: $\varphi(0) = 1, \ \varphi(1) = 2, \ \varphi(2) = 0,$ $\varphi(2n+1) = 2n+3 \text{ for all } n \ge 1,$ $\varphi(4) = 6, \ \varphi(4n) = 4(n-1) \text{ for all } n \ge 2,$ and $\varphi(4n+2) = 4(n+1)+2 \text{ for all } n \ge 1.$ Then $R(\varphi) = \mathbb{N}_0 - \{3\}$ and φ is injective. Here, $\mathcal{M}_1 = \{3\}, \ \mathcal{M}_2 = \{2n+1: n \ge 2\}, \ \mathcal{M}_3 = \{0, 1, 2\} \text{ and } \mathcal{M}_4 = \{2n: n \ge 2\}.$

Definition 4.3.4. Let φ be an injective map on \mathbb{N}_0 . For $n \in \mathbb{N}_0$, we define the set [[n]] as follows:

(i) If $n \in \mathcal{M}_1$, then $[[n]] := \{\varphi^k(n) : k \ge 0\}$ (ii) If $n \in \mathcal{M}_2$, then $[[n]] := \{\varphi^k(n) : k \ge -j, \text{ where } n = \varphi^j(m) \text{ for } m \in \mathcal{M}_1\}$ (iii) If $n \in \mathcal{M}_3 \cup \mathcal{M}_4$, then $[[n]] := \{\varphi^k(n) : k \in \mathbb{Z}\}.$

Lemma 4.3.5. If $j \in [[n]]$, then [[j]] = [[n]] and vice-versa.

Proof. Let $j \in [[n]]$. Then $j = \varphi^k(n)$ for some $k \in \mathbb{Z}$. If $t \in [[j]]$, then $t = \varphi^{\eta}(j)$ for some $\eta \in \mathbb{Z}$, so that $t = \varphi^{\eta+k}(n)$ which implies that $t \in [[n]]$. Thus, $[[j]] \subseteq [[n]]$.

Again, if $\lambda \in [[n]]$, then $\lambda = \varphi^{\tau}(n)$ for some $\tau \in \mathbb{Z}$ which implies that $\lambda = \varphi^{\tau-k}(j)$, so that $\lambda \in [[j]]$. Thus $[[n]] \subseteq [[j]]$.

In view of Lemma 4.3.5, we now propose the following definition:

Definition 4.3.6. Let φ be an injective map on \mathbb{N}_0 . Let $\lambda_0 := 0$ and for $n \in \mathbb{N}$, let λ_n be defined as the smallest positive integer not belonging to $[[\lambda_0]] \cup [[\lambda_1]] \cup \cdots \cup [[\lambda_{n-1}]]$. Then, we have $\lambda_0 < \lambda_1 < \ldots$, and $\mathbb{N}_0 = \bigcup_{i \in \mathbb{N}_0} [[\lambda_i]]$. $\Lambda_{\varphi} := \{\lambda_0, \lambda_1, \ldots\}$ is called the φ induced partition of \mathbb{N}_0 . Note that depending on the map φ , Λ_{φ} may also be a finite set.

Example 4.3.7. In Example 4.3.3, we have $\Lambda_{\varphi} = \{\lambda_0 = 0, \lambda_1 = 3, \lambda_2 = 4\}$, where $\lambda_0 \in \mathcal{M}_3, \lambda_1 \in \mathcal{M}_1, \lambda_2 \in \mathcal{M}_4$.

Definition 4.3.8. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \cdots\}$ be the φ induced partition of \mathbb{N}_0 . For $\lambda_n \in \Lambda_{\varphi}$, we define order of λ_n , denoted by $o(\lambda_n)$ as follows:

(i) If $\lambda_n \in \mathcal{M}_1$, then $o(\lambda_n) := 0$.

(ii) If $\lambda_n \in \mathcal{M}_2$, then $o(\lambda_n) := r$, where $\lambda_n = \varphi^r(m)$ for some $m \in \mathcal{M}_1$.

- (iii) If $\lambda_n \in \mathcal{M}_3$, then $o(\lambda_n) := r$, where r is the smallest positive integer such that $\lambda_n = \varphi^r(\lambda_n)$.
- (iv) If $\lambda_n \in \mathcal{M}_4$, then $o(\lambda_n) := \infty$.

Theorem 4.3.9. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \ldots\}$ be the φ induced partition of \mathbb{N}_0 . For $n \in \mathbb{N}_0$, let K_n be the closed linear span of $\{g_{i,j} : i \in \mathbb{N}_0, j \in [[\lambda_n]]\}$. If T_{φ} is the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n \in \mathbb{N}_0}$, then the following must hold: (a) T_{φ} reduces each K_n . (b) $\ell^2_+(K) = \sum_{n \in \mathbb{N}_0} \oplus K_n$. *Proof.* For $n \in \mathbb{N}_0$, it follows from Lemmas 4.2.1, 4.2.2 and 4.3.5 that T_{φ} reduces K_n . Now (b) follows from (a) together with Definition 4.3.6.

Theorem 4.3.10. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, ...\}$ be the φ induced partition of \mathbb{N}_0 . Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. If $\lambda_n \in \mathcal{M}_1 \cup \mathcal{M}_2$, then $T_{\varphi}|_{K_n}$ is unitarily equivalent to a unilateral backward operator weighted shift on $\ell^2_+(K)$.

Proof. Let $\lambda_n \in \mathcal{M}_1 \cup \mathcal{M}_2$ for some $n \in \mathbb{N}_0$, arbitrarily fixed. If $r = o(\lambda_n)$, then $[[\lambda_n]] = \{\varphi^k(\lambda_n) : k \ge -r\}$. As K_n is the closed linear span of $\{g_{i,j} : i \in \mathbb{N}_0, j \in [[\lambda_n]]\}$, so for $x = (x_0, x_1, \dots) \in K_n$ we have $x_j = 0$ for all $j \in \mathbb{N}_0 \setminus [[\lambda_n]]$.

For $i \in \mathbb{N}_0$, let $P_i : K_n \to K$ be defined as $P_i x = x_{\varphi^{i-r}(\lambda_n)}$ for $x = (x_0, x_1, \dots) \in K_n$. If $H_n := \{(P_0 x, P_1 x, \dots) : x \in K_n\}$, then H_n is isomorphic to K_n .

Let W be the backward shift on H_n with operator weights $\{W_i\}_{i\in\mathbb{N}_0}$, where $W_i := A_{\varphi^{i-r}(\lambda_n)}$ for all $i \in \mathbb{N}_0$ i.e, $W(P_0x, P_1x, \dots) = (W_0P_1x, W_1P_2x, \dots)$ for all $x \in K_n$. Then W is unitarily equivalent to $T_{\varphi}|_{K_n}$.

Definition 4.3.11. Let K be a separable complex Hilbert space, and for $n \in \mathbb{N}$, let $H_n := K \oplus \cdots \oplus K$ (*n* copies). For bounded linear operators $\{W_i\}_{i=0}^{n-1}$ on K, we define $\tilde{W}: H_n \to H_n$ as

$$W(y_0, y_1, \dots, y_{n-1}) = (W_0 y_1, W_1 y_2, \dots, W_{n-2} y_{n-1}, W_{n-1} y_0).$$

The operator \tilde{W} is called a weighted circulant operator on H_n .

Note: For n = 1, $\tilde{W}y_0 := W_0y_0$ for all $y_0 \in H_0 = K$.

Theorem 4.3.12. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, ...\}$ be the φ induced partition of \mathbb{N}_0 . Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. If $\lambda_n \in \mathcal{M}_3$, then $T_{\varphi}|_{K_n}$ is unitarily equivalent to a weighted circulant operator on H_r , where $r = o(\lambda_n)$. Proof. Let $r = o(\lambda_n)$. Then r is the smallest positive integer such that $\varphi^r(\lambda_n) = \lambda_n$, so that $[[\lambda_n]] = \{\lambda_n, \varphi(\lambda_n), \dots, \varphi^{r-1}(\lambda_n)\}$. For $i = 0, 1, \dots, r-1$, define $P_i : K_n \to K$ as $P_i x = x_{\varphi^i(\lambda_n)}$. If $H_r := \{(P_0 x, P_1 x, \dots, P_{r-1} x) : x \in K_n\}$, then H_r is isomorphic to K_n . Also if $W_i := A_{\varphi^i(\lambda_n)}$ for all $0 \le i \le r-1$ and W be the circulant operator on H_r defined as $W(y_0, y_1, \dots, y_{r-1}) = (W_0 y_1, W_1 y_2, \dots, W_{r-2} y_{r-1}, W_{r-1} y_0)$, then Won H_r is unitarily equivalent to $T_{\varphi}|_{K_n}$.

Theorem 4.3.13. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, ...\}$ be the φ induced partition of \mathbb{N}_0 . Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. If $\lambda_n \in \mathcal{M}_4$, then $T_{\varphi}|_{K_n}$ is unitarily equivalent to a bilateral backward operator weighted shift on $\ell^2(K)$.

Proof. Let $\lambda_n \in \mathcal{M}_4$ for some $n \in \mathbb{N}_0$, arbitrarily fixed. For $i \in \mathbb{Z}$, let $P_i x := x_{\varphi^i(\lambda_n)}$ for $x = (x_0, x_1, \ldots) \in K_n$, and let $H_n := \{(\ldots, P_{-1}x, [P_0x], P_1x, \ldots) : x \in K_n\}$. Then H_n is isomorphic to K_n . Also if $W_i := A_{\varphi^i(\lambda_n)}$ for all $i \in \mathbb{Z}$ and W be the bilateral (backward) operator weighted shift on H_n with weight sequence $\{W_i\}_{i\in\mathbb{Z}}$ i.e, $W(\ldots, y_{-1}, [y_0], y_1, \ldots) = (\ldots, W_{-1}y_0, [W_0y_1], W_1y_2, \ldots)$, then W is unitarily equivalent to $T_{\varphi}|_{K_n}$.

From Theorems 4.3.9, 4.3.10, 4.3.12 and 4.3.13 we can thus conclude the following:

Theorem 4.3.14. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$ and induced by an injective map φ on \mathbb{N}_0 . Then T_{φ} is a countable (or finite) direct sum of unilateral backward shift, circulant operators and bilateral shifts.

Definition 4.3.15. The operator weighted shift T_{φ} on $\ell^2_+(K)$ is classified as follows: (i) T_{φ} is of type I if \mathcal{M}_3 and \mathcal{M}_4 are empty.

- (ii) T_{φ} is of type II if \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 are empty.
- (iii) T_{φ} is of type III if \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_4 are empty.

In view of Theorem 4.3.14, we can say that if T_{φ} is of type I, then it is a countable (or finite) direct sum of unilateral backward operator weighted shifts. We now proceed to determine the necessary and sufficient conditions for a reducing subspace X_F of T_{φ} to be minimal.

4.4 Transparent sequences.

Definition 4.4.1. Let φ be an injective map on \mathbb{N}_0 and $\{A_n\}_{n\in\mathbb{N}_0}$ be a uniformly bounded sequence of invertible operators on K, such that $A_n e_i = \alpha_i^{(n)} e_i$ for all $i, n \in \mathbb{N}_0$. Let $T = T_{\varphi}$ be the operator pseudo shift on $\ell^2_+(K)$ with weight sequence $\{A_n\}_{n\in\mathbb{N}_0}$. For each $n \in \mathbb{N}_0$, two non-negative integers p and q are said to be R_n^T -related, denoted as $pR_n^T q$, if $\alpha_p^{(j)} = \alpha_q^{(j)}$ for all $j \in [[n]]$.

Remark 4.4.2. (i) For each $n \in \mathbb{N}_0$, R_n^T is an equivalence relation on \mathbb{N}_0 . For $p \in \mathbb{N}_0$, we denote the equivalence class of p as $[p]_n$. Thus $[p]_n = \{q \in \mathbb{N}_0 : pR_n^Tq\}$. For each $n \in \mathbb{N}_0$, we define $\Omega_0^{(n)} = [0]_n$, and for m > 0, $\Omega_m^{(n)} := [p]_n$, where p is the smallest positive integer such that $p \notin \bigcup_{j=0}^{m-1} \Omega_j^{(n)}$.

(ii) For $n \in \mathbb{N}_0$, let $\omega_n := \{k \in \mathbb{N}_0 : \Omega_k^{(n)} \neq \phi\}.$

(iii) If $j \in [[n]]$, then by Lemma 4.3.5, the set of equivalence classes of R_n^T and R_j^T are identical. Hence for $j \in [[n]]$, we have $\omega_j = \omega_n$, and $\Omega_k^{(j)} = \Omega_k^{(n)}$ for all $k \in \omega_n$.

Definition 4.4.3. For an injective map φ on \mathbb{N}_0 , we define a relation \sim^{φ} on \mathbb{N}_0 as follows:

For
$$p, q \in \mathbb{N}_0$$
, $p \sim^{\varphi} q$ if $\omega_p = \omega_q$ and $\Omega_k^{(p)} = \Omega_k^{(q)}$ for all $k \in \omega_p$

Remark 4.4.4. If φ be an injective map on \mathbb{N}_0 and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$, then $\Omega_k^{(\lambda_n)} = \Omega_k^{(\lambda_0)}$ for all $k \in \omega_{\lambda_0}$. Hence, in this case, we denote $\Omega_k^{(\lambda_0)}$ simply as Ω_k . **Definition 4.4.5.** Let $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ be a non-zero linear expression in K. Let r be the smallest non-negative integer such that $\alpha_r \neq 0$. The order of f is defined to be r and denoted as o(f) = r.

Definition 4.4.6. Let $F = (f_0, f_1, ...)$ be a nonzero element in $\ell^2_+(K)$. If there exists a nonnegative integer m such that

(i) $o(f_i) \ge m$ for each nonzero f_i , and

(ii) there exists at least one f_i such that $o(f_i) = m$

then m is defined to be the order of F, denoted as o(F).

Definition 4.4.7. Let Y be a nonzero nonempty subset of any separable Hilbert space H. Then order of Y, denoted as o(Y), is defined to be the nonnegative integer m satisfying the following conditions:

(i) $o(f) \ge m$ for all nonzero f in Y, and

(ii) there exists $\tilde{f} \in Y$ such that $o(\tilde{f}) = m$.

Definition 4.4.8. Let X be a nonzero subset of $\ell^2_+(K)$. Then for each $j \in \mathbb{N}_0$, define X_j to be the set $\{f_j : (f_0, f_1, \ldots) \in X\}$.

Remark 4.4.9. X is a non zero subset implies that the set X_j is also non zero for some $j \in \mathbb{N}_0$.

Lemma 4.4.10. Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$ induced by the injective map φ on \mathbb{N}_0 . If T_{φ} is of type I and X is a nonzero reducing subspace of T_{φ} , then there exists $j \in \mathcal{M}_1$ such that $X_j \neq 0$.

Proof. Let, if possible, $X_j = 0$ for all $j \in \mathcal{M}_1$. Thus $X \neq 0$ implies that there exists $j \in \mathcal{M}_2$ with $X_j \neq 0$. This in turn implies that there exists r > 0 such that $\varphi^{-r}(j) \in \mathcal{M}_1$.

Let $f_j \in X_j$, $f_j \neq 0$ and $F = (f_0, f_1, ...) \in X$. Suppose $f_j = \sum_{i \in \mathbb{N}_0} \beta_i e_i$. Then $f_j \neq 0$ implies there exist at least one β_i which is not zero. Now by Lemma 4.2.1, we have $T_{\varphi}^r F = (y_0, y_1, ...) \in X$ where

$$y_{\varphi^{-r}(j)} = \sum_{i \in \mathbb{N}_0} \beta_i (\alpha_i^{(\varphi^{-1}(j))} \alpha_i^{(\varphi^{-2}(j))} \dots \alpha_i^{(\varphi^{-r}(j))}) e_i \neq 0.$$

This means $X_{\varphi^{-r}(j)} \neq 0$ which implies $\varphi^{-r}(j) \in \mathcal{M}_2$. But this is a contradiction as $\mathcal{M}_1 \cap \mathcal{M}_2 = \phi$. Thus, $X \neq 0$ implies that there exists $j \in \mathcal{M}_1$ such that $X_j \neq 0$. \Box

Definition 4.4.11. If X is a nonzero reducing subspace of T_{φ} , then

$$(\mathcal{M}_1)_X := \{ j \in \mathcal{M}_1 : X_j \neq 0 \}.$$

Definition 4.4.12. Let X be a nonzero reducing subspace of the operator pseudo shift T_{φ} . If $(\mathcal{M}_1)_X \neq \phi$, then X is said to be an \mathcal{M}_1 -reducing subspace of T_{φ} .

Lemma 4.4.13. Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$ and induced by the injective map φ on \mathbb{N}_0 . Let T_{φ} be of type I and X be a non zero reducing subspace of T_{φ} with o(X) = r. Then X is \mathcal{M}_1 reducing subspace of T_{φ} and there exists $j \in (\mathcal{M}_1)_X$ such that $o(X_j) = r$.

Proof. By Lemma 4.4.10, $(\mathcal{M}_1)_X \neq \phi$ if T_{φ} is of type I. Hence, X is an \mathcal{M}_1 reducing subspace of T_{φ} . Clearly, o(X) = r implies $o(X_j) \geq r$ for all $j \in (\mathcal{M}_1)_X$. Also o(X) = r implies there exists $f = (f_0, f_1, \ldots) \in X$ such that o(f) = r. This in turn implies that there exists $j \in \mathbb{N}_0$ with $o(f_j) = r$. Thus if $f_j = \sum_{i \in \mathbb{N}_0} a_{i,j} e_i$, then $a_{r,j} \neq 0$ and $a_{i,j} = 0$ for all i < r.

If $j \in \mathcal{M}_1$, then $f_j \in X_j$ with $o(f_j) = r$. Thus $o(X_j) = r = o(X)$ and we are done. If $j \notin \mathcal{M}_1$, then since T_{φ} be of type I, we must have $j \in \mathcal{M}_2$, so that $\varphi^k(n) = j$ for some $n \in \mathcal{M}_1$ and $k \in \mathbb{N}$.

If $T_{\varphi}^k f = (g_0, g_1, \dots)$, then $g_t = A_t A_{\varphi(t)} \dots A_{\varphi^{k-1}(t)} f_{\varphi^k(t)}$ for all $t \in \mathbb{N}_0$. In particular,

$$g_n = A_n A_{\varphi(n)} \dots A_{\varphi^{k-1}(n)} f_{\varphi^k(n)}$$
$$= A_{\varphi^{-k}(j)} \dots A_{\varphi^{-1}(j)} f_j$$
$$= \sum_{i \in \mathbb{N}_0} a_{i,j} \alpha_i^{(\varphi^{-k}(j))} \dots \alpha_i^{(\varphi^{-1}(j))} e_i$$

with $a_{r,j} \neq 0$ and $a_{i,j} = 0$ for all i < r. Thus, $o(g_n) = r$ where $g_n \in X_n$. This implies $n \in (\mathcal{M}_1)_X$ and $o(X_n) = r$.

Definition 4.4.14. Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$ and induced by the injective map φ on \mathbb{N}_0 . Let T_{φ} be of type I and X be a nonzero reducing subspace of T_{φ} with o(X) = r. Then $o_1(X) := \inf\{j \in (\mathcal{M}_1)_X : o(X_j) = r\}$.

Definition 4.4.15. Let T_{φ} be the operator pseudo shift on $\ell^2_+(K)$ with uniformly bounded invertible positive diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$ and induced by the injective map φ on \mathbb{N}_0 . Let $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \dots\}$ be the φ induced partition of \mathbb{N}_0 , and consider a non-zero linear expression $f = \sum_{i\in\mathbb{N}_0} \alpha_i e_i$ in K such that o(f) = r. If there exists $\lambda_n \in \Lambda_{\varphi}$ such that $i \in [r]_{\lambda_n}$ for each non-zero α_i in f, then f is said to be n-transparent in K of order r.

Example 4.4.16. Consider the injective map φ given by $\varphi(2n) = 2(n + 1)$ and $\varphi(2n + 1) = 2n + 3$ for all $n \in \mathbb{N}_0$. Then, $\mathcal{M}_1 = \{0, 1\}, \mathcal{M}_2 = \{2, 3, \ldots\},$ $\mathcal{M}_3 = \mathcal{M}_4 = \phi$ and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1\},$ where $\lambda_0 = 0$ and $\lambda_1 = 1$. Let $f = \alpha_3 e_3 + \alpha_4 e_4 + \alpha_5 e_5 + \alpha_6 e_6 \in K$ and $\alpha_i \neq 0$ for all $i \in \{3, 4, 5, 6\}$. For each $n \in \mathbb{N}_0$, let $A_n e_i = \alpha_i^{(n)} e_i$, where the scalars $\alpha_i^{(n)}$ take the following values:

$$\alpha_i^{(2n)} = \begin{cases} 1, & \text{if } 0 \le i \le 6; \\ 2, & \text{if } i > 6. \end{cases} \quad and \; \alpha_i^{(2n+1)} = \begin{cases} 3, & \text{if } 0 \le i \le 6; \\ 4, & \text{if } i > 6. \end{cases}$$

Let $T = T_{\varphi}$ be the operator pseudo shift on $\ell^2_+(K)$ with operator weights $\{A_n\}_{n \in \mathbb{N}_0}$ induced by the injective map φ on \mathbb{N}_0 . Then, the equivalence classes of $R^T_{\lambda_0}$ are

$$\Omega_0^{(\lambda_0)} = [0]_{\lambda_0} = \{0, 1, \dots, 6\}, \text{ and } \Omega_1^{(\lambda_0)} = [7]_{\lambda_0} = \{7, 8, \dots\}.$$

Also, the equivalence classes of $R_{\lambda_1}^T$ are

$$\Omega_0^{(\lambda_1)} = [0]_{\lambda_1} = \{0, 1, \dots, 6\}, \text{ and } \Omega_1^{(\lambda_1)} = [7]_{\lambda_1} = \{7, 8, \dots\}.$$

Clearly, in this case we have $\lambda_0 \sim^{\varphi} \lambda_1$. Now, if r = o(f), then r = 3. Here,

$$[r]_{\lambda_0} = [r]_{\lambda_1} = \{0, 1, \dots, 6\}.$$

Therefore, f is 0-transparent as well as 1-transparent in K of order 3.

Theorem 4.4.17. Let f be non-zero n-transparent in K of order r. If $m \in \mathbb{N}_0$ is such that $\lambda_n \sim^{\varphi} \lambda_m$, then f is m-transparent in K of order r.

Proof. Let $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ with o(f) = r. Then $i \in [r]_{\lambda_n}$ for all $i \in \mathbb{N}_0$ such that $\alpha_i \neq 0$. Now $\lambda_n \sim^{\varphi} \lambda_m$ implies $[r]_{\lambda_n} = [r]_{\lambda_m}$. Therefore, $i \in [r]_{\lambda_m}$ for all $i \in \mathbb{N}_0$ such that $\alpha_i \neq 0$. Hence, f is m-transparent in K.

Remark 4.4.18. Converse of the above is not true. Suppose $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ such that o(f) = r and f is both n-transparent and m-transparent in K. This means $i \in [r]_{\lambda_n}$ and $i \in [r]_{\lambda_m}$ for all $i \in \mathbb{N}_0$ such that $\alpha_i \neq 0$. However, this does not necessarily imply that $[r]_{\lambda_n} = [r]_{\lambda_m}$. In fact, $\lambda_m \sim^{\varphi} \lambda_n$ if and only if $[p]_{\lambda_n} = [p]_{\lambda_m}$ for all $p \in \mathbb{N}_0$.

Example 4.4.19. Consider φ and f in K as defined in Example 4.4.16. For each $n \in \mathbb{N}_0$, let $A_n e_i = \alpha_i^{(n)} e_i$, where the scalars $\alpha_i^{(n)}$ take the following values:

$$\alpha_i^{(2n)} = \begin{cases} 1, & \text{if } 0 \le i \le 6; \\ 2, & \text{if } i > 6. \end{cases} \text{ and } \alpha_i^{(2n+1)} = \begin{cases} 3, & \text{if } 0 \le i \le 7; \\ 4, & \text{if } i > 7. \end{cases}$$

Then, the equivalence classes of $R_{\lambda_0}^T$ are

$$\Omega_0^{(\lambda_0)} = [0]_{\lambda_0} = \{0, 1, \dots, 6\}, \text{ and } \Omega_1^{(\lambda_0)} = [7]_{\lambda_0} = \{7, 8, \dots\}.$$

Also, the equivalence classes of $R_{\lambda_1}^T$ are

$$\Omega_0^{(\lambda_1)} = [0]_{\lambda_1} = \{0, 1, \dots, 7\}, \text{ and } \Omega_1^{(\lambda_1)} = [8]_{\lambda_1} = \{8, 9, \dots\}.$$

Here, $\Omega_k^{(\lambda_0)} \neq \Omega_k^{(\lambda_1)}$ for k = 0, 1 and so $\lambda_0 \not\sim^{\varphi} \lambda_1$. However, f is 0-transparent since $3, 4, 5, 6 \in [r]_{\lambda_0} = \Omega_0^{(\lambda_0)}$ and f is 1-transparent since $3, 4, 5, 6 \in [r]_{\lambda_1} = \Omega_0^{(\lambda_1)}$.

Definition 4.4.20. For $j \in \mathbb{N}_0$, let $F = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,j}$ be a non-zero linear expression in $\ell^2_+(K)$. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \dots\}$ be the φ -induced

partition of \mathbb{N}_0 . If $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ is *n*-transparent in K of order r and $j \in [[\lambda_n]]$, then F is said to be *n*-transparent in $l^2_+(K)$. In view of Definition 4.4.6, o(F) = o(f).

Lemma 4.4.21. If $F = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,j}$ is n-transparent of order r for $j \in \mathbb{N}_0$, then $\sum_{i \in \mathbb{N}_0} \alpha_i g_{i,t}$ is n-transparent of order r for all $t \in [[j]]$.

The proof follows immediately from Lemma 4.3.5.

Lemma 4.4.22. Let φ be an injective map on \mathbb{N}_0 and $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \dots\}$ be the φ induced partition of \mathbb{N}_0 . Also let $F = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,j}$ be n-transparent with o(F) = r. If $t \sim^{\varphi} j$ and $t \in [[\lambda_m]]$, then $G = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,t}$ is m-transparent with o(G) = r.

Proof. Since $t \sim^{\varphi} j$, so $\lambda_n \sim^{\varphi} \lambda_m$. This implies $[r]_{\lambda_n} = [r]_{\lambda_m}$. Now, since F is *n*-transparent in $\ell^2_+(K)$, so $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ is *n*-transparent in K. Therefore, $i \in [r]_{\lambda_n} = [r]_{\lambda_m}$ for each non-zero α_i in f. This means f is *m*-transparent in K which in turn implies $G = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,t}$ is *m*-transparent.

Definition 4.4.23. Let the operator pseudo shift T_{φ} be of type I. Then $F = \sum_{j \in \mathbb{N}_0} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ is said to be transparent if for each $j \in \mathbb{N}_0$, $\sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ is *n*-transparent for some $n \in \mathbb{N}_0$ depending on j. If there exists $n \in \mathbb{N}_0$ such that $\sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ is *n*-transparent for all $j \in \mathbb{N}_0$, then F is said to be jointly *n*-transparent.

Remark 4.4.24. Let $t \in \mathbb{N}_0$ and $F = \sum_{j \in [[t]]} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$. If F is transparent, then it is jointly *n*-transparent, where $t \in [[\lambda_n]]$ for $\lambda_n \in \Lambda_{\varphi}$.

Definition 4.4.25. Let T_{φ} be an operator pseudo shift on $\ell^2_+(K)$, and let S be a vector space consisting of all finite linear combinations of finite products of the operators T_{φ} and T^*_{φ} . For any non zero $F \in \ell^2_+(K)$, $SF := \{\tilde{T}F : \tilde{T} \in S\}$. The closure of SF in $\ell^2_+(K)$ is a reducing subspace of T_{φ} and is denoted by X_F . X_F is called the subspace generated by F. Clearly, X_F is the smallest reducing subspace of T_{φ} containing F. **Definition 4.4.26.** Let T_{φ} be an operator pseudo shift of type I and and let the function $F = \sum_{i \in \mathbb{N}_0} \sum_{j \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ be transparent in $\ell_+^2(K)$. For $j \in \mathcal{M}_1$, let f_j be defined as $f_j := \sum_{i \in \mathbb{N}_0} \sum_{t \in [[j]]} \alpha_{i,t} g_{i,t}$. Then each f_j is jointly *n*-transparent in $\ell_+^2(K)$, for some *n* depending on *j*. Dropping those f_j 's which are zero, we list the remaining ones as f_0, f_1, \ldots in such a way that f_j is jointly g_j -transparent with $g_0 < g_1 < g_2 < \ldots$. Then $F = \sum_{j \in \mathbb{N}_0} f_j$ is called the transparent decomposition of *F*.

Definition 4.4.27. Let φ be an injective map on \mathbb{N}_0 . Also let $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, \ldots\}$ be the φ induced partition of \mathbb{N}_0 such that $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$. Consider $F = \sum_{i \in \mathbb{N}_0} \sum_{j \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$. For $k \in \omega_{\lambda_0}$, let q_k be defined as $q_k := \sum_{i \in \Omega_k} \sum_{j \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$. Dropping those q_k 's which are zero, the remaining q_k 's are arranged as $f^{(1)}, f^{(2)}, \ldots$ in such a way that $o(f^{(k)}) < o(f^{(k+1)})$. The resulting decomposition $F = f^{(1)} + f^{(2)} + \ldots$ is called the *canonical decomposition* of F with respect to T_{φ} . Clearly each $f^{(k)}$ is transparent in $\ell^2_+(K)$. If there exists a finite positive integer n such that $F = f^{(1)} + f^{(2)} + \cdots + f^{(n)}$, then F is said to have a *finite canonical decomposition*.

In the above definition, we observe that $o(f^{(k_1)}) = o(f^{(k_2)})$ is not possible for distinct elements $k_1, k_2 \in \omega_{\lambda_0}$ since $\Omega_{k_1} \cap \Omega_{k_2} = \phi$ in this case.

Lemma 4.4.28. Let T_{φ} be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Let $F = \sum_{i\in\mathbb{N}_0} \sum_{j\in\mathcal{M}_1} \alpha_{i,j} g_{i,j} \in \ell^2_+(K)$ have a finite canonical decomposition $F = f^{(1)} + f^{(2)} + \cdots + f^{(n)}$ where $o(f^{(i)}) = r_i$ for all $1 \leq i \leq n$. If for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1, \alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \geq 0$, then $f^{(i)} \in X_F$ for all $1 \leq i \leq n$.

Proof. Without loss of generality, we may assume that for each k = 1, 2, ..., n,

$$f^{(k)} = \sum_{i \in \Omega_k} \sum_{j \in \mathcal{M}_1} \alpha_{i,j} g_{i,j}$$
. Let $m = \min_{t \in \mathcal{M}_1} t$ and $w_k = \min_{t \in \Omega_k} t$.

Step I. As $\Omega_1 \cap \Omega_n = \phi$, so for $\xi \in \mathcal{M}_1$ we can choose the smallest nonnegative integer t_1 such that $\alpha_{w_1}^{(\varphi^{t_1}(\xi))} \neq \alpha_{w_n}^{(\varphi^{t_1}(\xi))}$. As $\alpha_{w_n}^{(\varphi^{t_1}(\xi))} = \alpha_{w_n}^{(\varphi^{t_1}(m))}$ and $\alpha_{w_1}^{(\varphi^{t_1}(\xi))} = \alpha_{w_1}^{(\varphi^{t_1}(m))}$, so we have $\alpha_{w_1}^{(\varphi^{t_1}(m))} \neq \alpha_{w_n}^{(\varphi^{t_1}(m))}$. For $\eta \ge 0$ and $i \in \Omega_k$ (k = 1, 2, ..., n), we have

$$T_{\varphi}^{\eta+1}(T_{\varphi}^{*})^{\eta+1}g_{i,j} = \left(\alpha_{i}^{(j)}\alpha_{i}^{(\varphi(j))}\dots\alpha_{i}^{(\varphi^{\eta}(j))}\right)^{2}g_{i,j}$$
$$= \left(\alpha_{w_{k}}^{(j)}\alpha_{w_{k}}^{(\varphi(j))}\dots\alpha_{w_{k}}^{(\varphi^{\eta}(j))}\right)^{2}g_{i,j}.$$

Hence,

$$T_{\varphi}^{\eta+1}(T_{\varphi}^{*})^{\eta+1}f^{(k)} = \sum_{i\in\Omega_{k}}\sum_{j\in\mathcal{M}_{1}} \left(\alpha_{w_{k}}^{(j)}\alpha_{w_{k}}^{(\varphi(j))}\dots\alpha_{w_{k}}^{(\varphi^{\eta}(j))}\right)^{2}\alpha_{i,j}g_{i,j}$$
$$= \left(\alpha_{w_{k}}^{(m)}\alpha_{w_{k}}^{(\varphi(m))}\dots\alpha_{w_{k}}^{(\varphi^{\eta}(m))}\right)^{2}f^{(k)}.$$

Therefore, we get

$$T_{\varphi}^{\eta+1}(T_{\varphi}^{*})^{\eta+1}F = \left(\alpha_{w_{1}}^{(m)}\alpha_{w_{1}}^{(\varphi(m))}\dots\alpha_{w_{1}}^{(\varphi^{\eta}(m))}\right)^{2}f^{(1)} + \dots + \left(\alpha_{w_{n}}^{(m)}\alpha_{w_{n}}^{(\varphi(m))}\dots\alpha_{w_{n}}^{(\varphi^{\eta}(m))}\right)^{2}f^{(n)}.$$

As $\alpha_{w_{1}}^{(\varphi^{t_{1}}(m))} \neq \alpha_{w_{n}}^{(\varphi^{t_{1}}(m))}$, and $\alpha_{w_{1}}^{(\varphi^{t}(m))} = \alpha_{w_{n}}^{(\varphi^{t}(m))}$ for all $0 \le t < t_{1}$, so

$$F_{1} = \left[\left(\alpha_{w_{n}}^{(m)} \alpha_{w_{n}}^{(\varphi(m))} \dots \alpha_{w_{n}}^{(\varphi^{t_{1}}(m))} \right)^{2} - T_{\varphi}^{t_{1}+1} (T_{\varphi}^{*})^{t_{1}+1} \right] F$$

$$= \sum_{k=1}^{n-1} \left[\left(\alpha_{w_{n}}^{(m)} \alpha_{w_{n}}^{(\varphi(m))} \dots \alpha_{w_{n}}^{(\varphi^{t_{1}}(m))} \right)^{2} - \left(\alpha_{w_{k}}^{(m)} \alpha_{w_{k}}^{(\varphi(m))} \dots \alpha_{w_{k}}^{(\varphi^{t_{1}}(m))} \right)^{2} \right] f^{(k)} \in X_{F}.$$

So if $\beta_k^{(1)} := \left(\alpha_{w_n}^{(m)} \alpha_{w_n}^{(\varphi(m))} \dots \alpha_{w_n}^{(\varphi^{t_1}(m))}\right)^2 - \left(\alpha_{w_k}^{(m)} \alpha_{w_k}^{(\varphi(m))} \dots \alpha_{w_k}^{(\varphi^{t_1}(m))}\right)^2$ for $1 \le k < n$, then $F_1 = \sum_{k=1}^{n-1} \beta_k^{(1)} f^{(k)} \in X_F$ where $\beta_1^{(1)} \ne 0$.

Step II. As $\Omega_1 \cap \Omega_{n-1} = \phi$, so there exists a smallest nonnegative integer t_2 such that $\varphi_{w_1}^{(t_2(m))} \neq \varphi_{w_{n-1}}^{(t_2(m))}$. Therefore

$$F_{2} = \left[\left(\alpha_{w_{n-1}}^{(m)} \alpha_{w_{n-1}}^{(\varphi(m))} \dots \alpha_{w_{n-1}}^{(\varphi^{t_{2}}(m))} \right)^{2} - T_{\varphi}^{t_{2}+1} (T_{\varphi}^{*})^{t_{2}+1} \right] F_{1}$$
$$= \sum_{k=1}^{n-2} \beta_{k}^{(2)} \beta_{k}^{(1)} f^{(k)} \in X_{F},$$

where
$$\beta_k^{(2)} = \left(\alpha_{w_{n-1}}^{(m)} \alpha_{w_{n-1}}^{(\varphi(m))} \dots \alpha_{w_{n-1}}^{(\varphi^{t_2}(m))}\right)^2 - \left(\alpha_{w_k}^{(m)} \alpha_{w_k}^{(\varphi(m))} \dots \alpha_{w_k}^{(\varphi^{t_2}(m))}\right)^2$$
 and $\beta_1^{(2)} \neq 0$.

Repeating the above argument n-1 times, we get $F_{n-1} = \beta_1^{(1)} \beta_1^{(2)} \dots \beta_1^{(n-1)} f^{(1)} \in X_F$ with $\beta_1^{(k)} \neq 0$ for all $1 \le k \le n-1$. This implies that $f^{(1)} \in X_F$. Similarly, $f^{(i)} \in X_F$ for $1 < i \le n$.

Theorem 4.4.29. Extremal Theorem for T_{φ} of type I.

Let T_{φ} be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and X be a nonzero reducing subspace of T_{φ} with o(X) = m, and $o_1(X) = \tilde{j}$. Then the extremal problem

$$\sup\{Re \ \alpha_{m,\tilde{j}}: F = (f_0, f_1, \dots) \in X, \|F\| \le 1, f_{\tilde{j}} = \sum_{i \in \mathbb{N}_0} \alpha_{i,\tilde{j}} e_i\}$$

has a unique solution $G = \sum_{j \in (\mathcal{M}_1)_X} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$ with ||G|| = 1 and $o(G) = m = o(g_{\tilde{j}})$, where $g_{\tilde{j}} = \sum_{i \in \mathbb{N}_0} \beta_{i,\tilde{j}} e_i$.

Proof. Note that as T_{φ} is of type I, so \mathcal{M}_1 is a nonempty set. Define $\eta : X \to \mathbb{C}$ as $\eta(F) = \alpha_{m,\tilde{j}}$ where $F = (f_0, f_1, \dots)$ and $f_{\tilde{j}} = \sum_{i \in \mathbb{N}_0} \alpha_{i,\tilde{j}} e_i$ with $\tilde{j} = o_1(X) = \min\{j \in (\mathcal{M}_1)_X : o(X_j) = m\}.$

 $o(X_{\tilde{j}}) = m$ and so there exists $0 \neq \tilde{F} = (f_0, f_1, \dots) \in X$ such that $f_{\tilde{j}} \neq 0$, $o(f_{\tilde{j}}) = m$. Thus η is a nonzero bounded linear functional on X. Hence, from [8] there exists a unique $G \in X$ such that $\eta(G) > 0$, ||G|| = 1 and

$$\eta(G) = \sup\{ \text{Re } \eta(F) : F \in X, \|F\| \le 1 \}$$
$$= \sup\{ \text{Re } \alpha_{m,\tilde{j}} : F = (f_0, f_1, \dots) \in X, \|F\| \le 1, f_{\tilde{j}} = \sum_{i \in \mathbb{N}_0} \alpha_{i,\tilde{j}} e_i \}.$$

We will show that $G = \sum_{j \in (\mathcal{M}_1)_X} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$ and o(G) = m. For this we consider $G = (g_0, g_1, \dots)$ with $g_j = \sum_{i \in \mathbb{N}_0} \beta_{i,j} e_i$.

Claim I. If $F \in X$ and ||F|| < 1, then Re $\eta(F) < \eta(G)$. Let, if possible, Re $\eta(F) = \eta(G)$. If $H := \frac{F}{||F||}$, then $H \in X$, ||H|| = 1 and Re $\eta(H) = \frac{\operatorname{Re} \eta(F)}{||F||} = \frac{\eta(G)}{||F||} > \eta(G)$, contradicting the maximality of G. Hence, claim I holds.

Now for each $F \in X$, Re $\eta(G + T_{\varphi}^*F) = \eta(G)$, and so by claim I, we must have $\|G + T_{\varphi}^*F\| \ge 1$ which implies $G \perp T_{\varphi}^*F$. In particular, $\langle G, T_{\varphi}^*T_{\varphi}G \rangle = 0$. Since $G = (g_0, g_1, \ldots)$, so $T_{\varphi}^*T_{\varphi}G = (y_0, y_1, \ldots)$ where

$$y_j := \begin{cases} A^*_{\varphi^{-1}(j)} A_{\varphi^{-1}(j)} g_j, & \text{if } j \in R(\varphi); \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, $\langle G, T_{\varphi}^*T_{\varphi}G \rangle = 0$ implies $A_{\varphi^{-1}(j)}g_j = 0$ for all $j \in R(\varphi)$. As $A_{\varphi^{-1}(j)}$ is invertible, so $g_j = 0$ for all $j \in R(\varphi)$. Equivalently, we must have $g_j = 0$ for all $j \notin \mathcal{M}_1$. Hence, we have $G = \sum_{j \in (\mathcal{M}_1)_X} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$.

By Lemma 4.4.13, $o(X_{\tilde{j}}) = m$ and so $o(g_{\tilde{j}}) \ge m$. As $g_{\tilde{j}} = \sum_{i \in \mathbb{N}_0} \beta_{i,\tilde{j}} e_i$, so $o(g_{\tilde{j}}) \ge m$ gives $\beta_{i,\tilde{j}} = 0$ for all i < m. Again $\eta(G) > 0$ implies $\beta_{m,\tilde{j}} \ne 0$. Thus, $o(g_{\tilde{j}}) = m$. Also, $o(X_j) \ge m$ for all $j \in (\mathcal{M}_1)_X$. This implies that $o(g_j) \ge m$ for all $j \in (\mathcal{M}_1)_X$. Hence, o(G) = m.

Remark 4.4.30. The function G in Theorem 4.4.29 is called the *extremal function* of the nonzero reducing subspace X of T_{φ} .

Theorem 4.4.31. Let T_{φ} be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$. Let $\Omega_1, \Omega_2, \ldots$ are the disjoint equivalence classes of $R_{\lambda_0}^T$ and let for each $k \in \mathbb{N}$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \geq 0$, $\xi, \eta \in \mathcal{M}_1$. Let X be a non zero reducing subspace of T_{φ} with o(X) = m. If the extremal function of X has a finite canonical decomposition, then it must be transparent.

Proof. Let $\tilde{j} = o_1(X) = \min\{j \in (\mathcal{M}_1)_X : o(X_j) = m\}$ and G be the extremal function of X with finite canonical decomposition $G = g^{(1)} + g^{(2)} + \dots + g^{(n)}$. Then by Lemma 4.4.28, $g^{(i)} \in X$ for all $1 \leq i \leq n$. By Lemma 4.4.29, we have $G = \sum_{j \in (\mathcal{M}_1)_X} g_j$ with $o(G) = m = o(g_{\tilde{j}})$, where $g_j = \sum_{i \geq m} \beta_{i,j} g_{i,j}$ for all $j \in (\mathcal{M}_1)_X$. As $o(g_{\tilde{j}}) = m$, so $\beta_{m,\tilde{j}} \neq 0$. For each $g^{(k)}$, there exists Ω_{τ_k} such that $g^{(k)} = \sum_{i \in \Omega_{\tau_k}} \sum_{j \in (\mathcal{M}_1)_X} \alpha_{i,j} g_{i,j}$ and $o(g^{(k)}) < o(g^{(k+1)})$ for all $k = 1, 2, \dots, n-1$. As $G = g^{(1)} + g^{(2)} + \dots + g^{(n)}$ with $o(g^{(i)}) < o(g^{(i+1)})$, so o(G) = m implies $o(g^{(1)}) = m$ which gives us $m \in \Omega_{\tau_1}$ and $\alpha_{m,\tilde{j}} = \beta_{m,\tilde{j}} \neq 0$. Also, $||g^{(1)}|| \leq ||G|| = 1$. So, by extremality of G, we must have $G = g^{(1)}$. As $g^{(1)}$ by definition is transparent, so G is transparent.

4.5 Minimal reducing subspaces

Lemma 4.5.1. Let $T = T_{\varphi}$ be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Assume that for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \ge 0$. Let F be a transparent function in $\ell_+^2(K)$ of the form $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$. If $G \in X_F$ such that $G \neq 0$ and is of the form $G = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$, then $G = \lambda F$ for some nonzero scalar λ .

Proof. As $0 \neq G \in X_F$, so by Definition 4.4.25 we have $G = \sum_{k \in \mathbb{N}_0} \lambda_k T_{\varphi}^k (T_{\varphi}^*)^k F$ for scalars λ_k , not all zero. As $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$, so it can be written as $F = \sum_{j \in \mathcal{M}_1} f_j$ where $f_j = \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$. For each $j \in \mathcal{M}_1$ and $\eta > 0$, let $\alpha_p^{(\varphi^\eta(j))} = \beta_{\varphi^\eta(j)}$ for all p such that $\alpha_{p,j} \neq 0$. Now,

$$T_{\varphi}^{k}(T_{\varphi}^{*})^{k}f_{j} := \begin{cases} \sum_{i \in \mathbb{N}_{0}} \alpha_{i,j} \left(\beta_{j}\beta_{\varphi(j)} \dots \beta_{\varphi^{k-1}(j)}\right)^{2} g_{i,j}, & \text{if } k > 0;\\ f_{j}, & \text{if } k = 0. \end{cases}$$

Since $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \ge 0$, so $\beta_{\varphi^{\eta}(j)} = \beta_{\varphi^{\eta}(\tau)} = \gamma_n(\text{say})$ for all $j, \tau \in \mathcal{M}_1$. Therefore for all $j \in \mathcal{M}_1, k > 1, T^k(T^*)^k f_j = (\gamma_0 \gamma_1 \dots \gamma_{k-1})^2 f_j$ and so

$$T_{\varphi}^{k}(T_{\varphi}^{*})^{k}F := \begin{cases} \left(\gamma_{0}\gamma_{1}\cdots\gamma_{k-1}\right)^{2}F, & \text{for } k > 0; \\ F, & \text{for } k = 0. \end{cases}$$
$$\therefore G = \sum_{k \in \mathbb{N}_{0}} \lambda_{k}T_{\varphi}^{k}(T_{\varphi}^{*})^{k}F$$
$$= (\lambda_{0} + \lambda_{1}\gamma_{0}^{2} + \lambda_{2}(\gamma_{0}\gamma_{1})^{2} + \dots)F$$
$$= \lambda F,$$

where $\lambda = \lambda_0 + \lambda_1 \gamma_0^2 + \lambda_2 (\gamma_0 \gamma_1)^2 + \dots$

Lemma 4.5.2. Let T_{φ} be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Assume that for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \ge 0$. Let $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ with $o(F) = m_1$. If $G \in X_F$ such that $G \neq 0$ and $G = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$, then $o(G) \ge m_1$.

Proof. Let $F = f^{(1)} + f^{(2)} + \ldots$ be the canonical decomposition of F. Then, as in Definition 4.4.27, $o(f^{(i)}) < o(f^{(i+1)})$ for all $i \in \mathbb{N}$, and $f^{(i)} = \sum_{t \in \Omega_{g_i}} \sum_{j \in \mathcal{M}_1} \alpha_{t,j} g_{t,j}$. Let $m_i = o(f^{(i)})$ so that $m_i \in \Omega_{g_i}$ for all $i \in \mathbb{N}$; and for $j \in \mathcal{M}_1$, $\alpha_{t,j} = 0$ for all $t \in \Omega_{g_i}, t < m_i$. For $j \in \mathcal{M}_1$ and $i \in \mathbb{N}$, if $\alpha_{t,j} \neq 0$ for $t \in \Omega_{g_i}$, then $\alpha_t^{(\varphi^k(j))} = \alpha_{m_i}^{(\varphi^k(j))}$ for all $k \ge 0$.

Also by assumption, $\alpha_t^{(\varphi^k(j))} = \alpha_t^{(\varphi^k(m))}$ for all $t \in \mathbb{N}_0$ and $j \in \mathcal{M}_1$, where $m = \inf\{\xi : \xi \in (\mathcal{M}_1)_X\}$. Thus $\alpha_t^{(\varphi^k(j))} = \alpha_{m_i}^{(\varphi^k(m))}$ for all $t \in \Omega_{g_i}$ and $j \in \mathcal{M}_1$. For $t \in \Omega_{g_i}$ and $j \in \mathcal{M}_1$, $k \ge 1$,

$$T_{\varphi}^{k}(T_{\varphi}^{*})^{k}g_{t,j} = \left(\alpha_{t}^{(j)}\alpha_{t}^{(\varphi(j))}\dots\alpha_{t}^{(\varphi^{k-1}(j))}\right)^{2}g_{t,j}$$
$$= \left(\alpha_{m_{i}}^{(m)}\alpha_{m_{i}}^{(\varphi(m))}\dots\alpha_{m_{i}}^{(\varphi^{k-1}(m))}\right)^{2}g_{t,j}$$

and so $T_{\varphi}^{k}(T_{\varphi}^{*})^{k}f^{(i)} = \left(\alpha_{m_{i}}^{(m)}\alpha_{m_{i}}^{(\varphi(m))}\dots\alpha_{m_{i}}^{(\varphi^{k-1}(m))}\right)^{2}f^{(i)}.$ For $i \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$, let

$$\gamma_{i,k} := \begin{cases} \left(\alpha_{m_i}^{(m)} \alpha_{m_i}^{(\varphi(m))} \dots \alpha_{m_i}^{(\varphi^{k-1}(m))} \right)^2, & \text{for } k > 0; \\ 1, & \text{for } k = 0. \end{cases}$$

So $T_{\varphi}^{k}(T_{\varphi}^{*})^{k}f^{(i)} = \gamma_{i,k}f^{(i)}$ for all $k \in \mathbb{N}_{0}$, and $i \in \mathbb{N}$. Now $G \in X_{F}$ implies that there exist λ_{k} 's, not all zero, such that $G = \sum_{k \in \mathbb{N}_{0}} \lambda_{k}T_{\varphi}^{k}(T_{\varphi}^{*})^{k}F$.

$$\therefore G = \sum_{k \in \mathbb{N}_0} \lambda_k (\sum_{i \in \mathbb{N}} T_{\varphi}^k (T_{\varphi}^*)^k f^{(i)})$$
$$= \sum_{k \in \mathbb{N}_0} \lambda_k (\sum_{i \in \mathbb{N}} \gamma_{i,k} f^{(i)})$$
$$= \sum_{i \in \mathbb{N}} (\sum_{k \in \mathbb{N}_0} \lambda_k \gamma_{i,k}) f^{(i)}.$$

Thus, $o(G) \ge o(f^{(1)}) = o(F)$.

Theorem 4.5.3. Let $T = T_{\varphi}$ be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Assume that for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \ge 0$. Let X be a minimal reducing subspace of T_{φ} . If $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j} \in X$, then F must be transparent.

Proof. Let, if possible, F is not transparent. Then the canonical decomposition of $F = f^{(1)} + f^{(2)} + \ldots$ will have at least two components $f^{(1)}$ and $f^{(2)}$. Let $o(f^{(i)}) = m_i$. Then $o(F) = m_1$ and $m_1 \in \Omega_{g_1}, m_2 \in \Omega_{g_2}$.

As $\Omega_1 \cap \Omega_2 = \phi$, so there exists the smallest nonnegative integer k such that $\alpha_{m_1}^{(\varphi^k(m))} \neq \alpha_{m_2}^{(\varphi^k(m))}$, where $m = \min\{t : t \in (\mathcal{M}_1)_X\}$. For $i \in \mathbb{N}$ and $k \in \mathbb{N}_0$, let

$$\gamma_{i,k} := \begin{cases} \left(\alpha_{m_i}^{(m)} \alpha_{m_i}^{(\varphi(m))} \dots \alpha_{m_i}^{(\varphi^{k-1}(m))}\right)^2, & \text{for } k > 0;\\ 1, & \text{for } k = 0. \end{cases}$$

Then for $k \in \mathbb{N}_0$,

$$G := T_{\varphi}^{k+1} (T_{\varphi}^{*})^{k+1} F - \gamma_{1,k+1} F$$
$$= \sum_{i=2}^{\infty} (\gamma_{i,k+1} - \gamma_{1,k+1}) f^{(i)} \in X$$

Since $\gamma_{2,k+1} - \gamma_{1,k+1} \neq 0$, so $o(G) = o(f^{(2)}) = m_2$. Thus, there exists $0 \neq G \in X$ such that o(F) < o(G). Also X_G is a nonzero reducing subspace of T_{φ} contained in X. So by minimality of X, we must have $X_G = X$. But this implies $F \in X_G$ so that by Lemma 4.5.2, we must have $o(F) \ge o(G)$, which is a contradiction. Thus, F must be transparent.

Corollary 4.5.4. Let $T = T_{\varphi}$ be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Assume that for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \ge 0$. Then the extremal function of a minimal reducing subspace of T is always transparent.

Theorem 4.5.5. Let $T = T_{\varphi}$ be the operator pseudo shift induced by the injective map φ and with uniformly bounded invertible diagonal operator weights $\{A_n\}_{n\in\mathbb{N}_0}$. Let T_{φ} be of type I and $\lambda_n \sim^{\varphi} \lambda_m$ for all $\lambda_n, \lambda_m \in \Lambda_{\varphi}$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes under $R_{\lambda_0}^T$. Assume that for each $k \in \mathbb{N}$ and every $\xi, \eta \in \mathcal{M}_1$, $\alpha_i^{(\varphi^t(\xi))} = \alpha_i^{(\varphi^t(\eta))}$ for all $i \in \Omega_k$ and for all $t \ge 0$. Let X be a nonzero reducing subspace of T_{φ} . Then X is minimal if and only if $X = X_F$, where $F \in X$ is transparent and is of the form $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$.

Proof. Let X be minimal. Then by Corollary 4.5.4, the extremal function G of X is transparent and by minimality of X, we must have $X = X_G$. Also G has the form $G = \sum_{j \in (\mathcal{M}_1)_X} \sum_{i \in \mathbb{N}_0} \beta_{i,j} g_{i,j}$ as shown in Theorem 4.4.29.

Conversely, let $X = X_F$. Here $F = \sum_{j \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \alpha_{i,j} g_{i,j}$ is a transparent function.

Since X_F is a reducing subspace of T_{φ} , we only need to show that X_F is minimal reducing.

Let, if possible, Y be a non-zero reducing subspace of T contained in X_F . If G is the extremal function of Y, then $G \in X_F$ and so by Lemma 4.5.1, $G = \lambda F$ for some non zero scalar λ . This implies that $F \in Y$. Therefore $Y = X_F$, which shows that X_F is minimal.

4.6 Necessary and sufficient conditions for minimality.

Theorem 4.6.1. Let T_{φ} be an operator pseudo shift of type I with $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$, and $F \in \ell^2_+(K)$ be transparent. Let $F = \sum_{k \in \mathbb{N}_0} f_k$ be the transparent decomposition of F so that each f_k is jointly n_k -transparent with $n_0 < n_1 < \dots$ If for each $k \in \mathbb{N}_0$, we have $f_k = \sum_{i \in \mathbb{N}_0} \beta_{i,j_k} g_{i,j_k}$ with $j_k \in \mathcal{M}_1$ and $o(f_k) = r_k$, then X_F is a minimal reducing subspace of T_{φ} if and only if we have $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $t, k \in \mathbb{N}_0$.

Proof. Let X_F be a minimal reducing subspace of T_{φ} . By Lemma 4.2.1 and Lemma 4.2.2, for any t > 0, we have

$$T_{\varphi}^{t}(T_{\varphi}^{*})^{t}f_{\hat{k}} = \left(\alpha_{r_{k}}^{(j_{k})}\alpha_{r_{k}}^{(\varphi(j_{k}))}\dots\alpha_{r_{k}}^{(\varphi^{t-1}(j_{k}))}\right)^{2}f_{\hat{k}}.$$
(4.6.1)

To show $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $t, k \in \mathbb{N}_0$, we apply induction to t. Taking t = 1 in Equation 4.6.1 we get $T_{\varphi}T_{\varphi}^*f_{\hat{k}} = (\alpha_{r_k}^{(j_k)})^2 f_{\hat{k}}$, and so

$$T_{\varphi}T_{\varphi}^{*}F - (\alpha_{r_{0}}^{(j_{0})})^{2}F = \sum_{k \in \mathbb{N}} \left[(\alpha_{r_{k}}^{(j_{k})})^{2} - (\alpha_{r_{0}}^{(j_{0})})^{2} \right] f_{\hat{k}} \in X_{F}$$

Thus, for X_F to be a minimal reducing subspace, we must have $\alpha_{r_k}^{(j_k)} = \alpha_{r_0}^{(j_0)}$ for all $k \in \mathbb{N}_0$, showing that the result holds for t = 0.

Suppose the result holds for $t \leq N$, that is $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $k \in \mathbb{N}_0$ and

 $0 \le t \le N$. We will show that it holds for t = N + 1. We have

$$T_{\varphi}^{N+2}(T_{\varphi}^{*})^{N+2}F - \left(\alpha_{r_{0}}^{(j_{0})}\alpha_{r_{0}}^{(\varphi(j_{0}))}\dots\alpha_{r_{0}}^{(\varphi^{N+1}(j_{0}))}\right)^{2}F$$

= $\sum_{k\in\mathbb{N}}\left[\left(\alpha_{r_{k}}^{(j_{k})}\alpha_{r_{k}}^{(\varphi(j_{k}))}\dots\alpha_{r_{k}}^{(\varphi^{N+1}(j_{k}))}\right)^{2} - \left(\alpha_{r_{0}}^{(j_{0})}\alpha_{r_{0}}^{(\varphi(j_{0}))}\dots\alpha_{r_{0}}^{(\varphi^{N+1}(j_{0}))}\right)^{2}\right]f_{\hat{k}}$
= $\left(\alpha_{r_{0}}^{(j_{0})}\alpha_{r_{0}}^{(\varphi(j_{0}))}\dots\alpha_{r_{0}}^{(\varphi^{N}(j_{0}))}\right)^{2}\sum_{k\in\mathbb{N}}\left[\left(\alpha_{r_{k}}^{\varphi^{N+1}(j_{k})}\right)^{2} - \left(\alpha_{r_{0}}^{\varphi^{N+1}(j_{0})}\right)^{2}\right]f_{\hat{k}}.$

which is in X_F . So, for X_F to be minimal we must have $\alpha_{r_k}^{(\varphi^{N+1}(j_k))} = \alpha_{r_0}^{(\varphi^{N+1}(j_0))}$ for all $k \in \mathbb{N}_0$.

Thus by induction on t we can conclude that $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $t, k \in \mathbb{N}_0$. Converse follows immediately from Theorem 4.5.5.

Theorem 4.6.2. Let T_{φ} be an operator weighted pseudo shift of type I with $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$, and $F \in \ell^2_+(K)$ be transparent. Let $F = \sum_{k \in \mathbb{N}_0} f_k$ be the transparent decomposition of F so that each f_k is jointly n_k -transparent with $n_0 < n_1 < \ldots$. If for each $k \in \mathbb{N}_0$, we have $f_k = \sum_{i \in \mathbb{N}_0} \beta_{i,j_k} g_{i,j_k}$ with $j_k \in \mathcal{M}_2$ and $o(f_k) = r_k$, then X_F is a minimal reducing subspace of T_{φ} if and only if the following conditions hold

(i) there exists $\mu > 0$ and $t_k \in \mathcal{M}_1$ such that $\varphi^{\mu}(t_k) = j_k$ for all k(ii) $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $k \ge 0$ and $t \ge -\mu$.

Proof. Let, if possible, there exist $\mu > \gamma > 0$ such that $\varphi^{-\gamma}(j_0) \in \mathcal{M}_1$ and $\varphi^{-\mu}(j_1) \in \mathcal{M}_1$. Then $T_{\varphi}^{\gamma+1}f_0 = 0$ and $T_{\varphi}^{\gamma+1}f_1 \neq 0$. Thus, $G = T^{\gamma+1}F$ is a linear combination of f_k 's for $k \ge 1$. Clearly, $X_G \subseteq X_F$. Since $f_0 \notin X_G$, so $F \notin X_G$ and consequently X_G is a non-zero reducing subspace properly contained in X_F . Hence, in this case X_F cannot be a minimal reducing subspace. Therefore, we must have a unique $\mu > 0$ such that $\varphi^{-\mu}(j_k) \in \mathcal{M}_1$ for all $k \ge 0$.

Next we show that $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $k \ge 0$ and $t \ge -\mu$.

For $k, t \in \mathbb{N}_0$, the result follows exactly as in Theorem 4.6.1. To show that it holds

for $-\mu \leq t < 0$, we proceed as follows:

Since by (i) there exists $\mu > 0$ and $t_k \in \mathcal{M}_1$ such that $\varphi^{\mu}(t_k) = j_k$ for all k, so for $0 < t \leq \mu$, by Theorem 4.2.3, we have

$$(T_{\varphi}^{*})^{t} T_{\varphi}^{t} f_{\hat{k}} = (\alpha_{r_{k}}^{(\varphi^{-1}(j_{k}))} \alpha_{r_{k}}^{(\varphi^{-2}(j_{k}))} \dots \alpha_{r_{k}}^{(\varphi^{-t}(j_{k}))})^{2} f_{\hat{k}}.$$
(4.6.2)

Using Equation 4.6.2 we get

$$T_{\varphi}^{*}T_{\varphi}F - \left(\alpha_{r_{0}}^{\varphi^{-1}(j_{0})}\right)^{2}F = \sum_{k \in \mathbb{N}} \left((\alpha_{r_{k}}^{\varphi^{-1}(j_{k})})^{2} - (\alpha_{r_{0}}^{\varphi^{-1}(j_{0})})^{2} \right) f_{\hat{k}} \in X_{F}$$

and so for X_F to be minimal we must have $\alpha_{r_k}^{\varphi^{-1}(j_k)} = \alpha_{r_0}^{\varphi^{-1}(j_0)}$ for all $k \in \mathbb{N}$. Repeating this argument successively for $t = 2, \ldots, \mu$, we get

$$\alpha_{r_k}^{(\varphi^{-t}(j_k))} = \alpha_{r_0}^{(\varphi^{-t}(j_0))} \text{ for all } k \in \mathbb{N}_0, \ 0 < t \le \mu$$
$$\Rightarrow \alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))} \text{ for all } k \in \mathbb{N}_0, \ 0 > t \ge -\mu.$$
(4.6.3)

Conversely, we have to show that X_F is minimal reducing. Now, for each $k \in \mathbb{N}_0$,

$$T^{\mu}_{\varphi}f_{\hat{k}} = \sum_{i \in \mathbb{N}_{0}} \beta_{i,j_{k}}T^{\mu}_{\varphi}g_{i,j_{k}}$$
$$= \alpha^{(\varphi^{-1}(j_{0}))}_{r_{0}}\alpha^{(\varphi^{-2}(j_{0}))}_{r_{0}}\dots\alpha^{(\varphi^{-\mu}(j_{0}))}_{r_{0}}\sum_{i \in \mathbb{N}_{0}} \beta_{i,\varphi^{\mu}(t_{k})}g_{i,t_{k}}.$$

Therefore

$$T^{\mu}_{\varphi}F = \alpha^{(\varphi^{-1}(j_0))}_{r_0} \alpha^{(\varphi^{-2}(j_0))}_{r_0} \dots \alpha^{(\varphi^{-\mu}(j_0))}_{r_0} \sum_{t_k \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \beta_{i,\varphi^{\mu}(t_k)} g_{i,t_k}$$

So if $F_1 := \sum_{t_k \in \mathcal{M}_1} \sum_{i \in \mathbb{N}_0} \beta_{i,\varphi^{\mu}(t_k)} g_{i,t_k}$ and $\delta = \alpha_{r_0}^{(\varphi^{-1}(j_0))} \alpha_{r_0}^{(\varphi^{-2}(j_0))} \dots \alpha_{r_0}^{(\varphi^{-\mu}(j_0))}$, then $T_{\varphi}^{\mu}F = \delta F_1$ where $\delta \neq 0$. Hence $F_1 \in X_F$ which implies that $X_{F_1} \subseteq X_F$. Similarly, we can show that $(T^*)^{\mu}T^{\mu}F = \delta^2 F$ which implies that $(T^*)^{\mu}F = \delta F$.

Similarly, we can show that $(T_{\varphi}^*)^{\mu}T_{\varphi}^{\mu}F = \delta^2 F$ which implies that $(T_{\varphi}^*)^{\mu}F_1 = \delta F$. So, $F \in X_{F_1}$ and $X_F \subseteq X_{F_1}$. Thus, $X_F = X_{F_1}$.

Let Y be a nonzero reducing subspace contained in X_F . If G is the extremal function of Y, then $G \in X_F$, which implies that $G \in X_{F_1}$. So by Lemma 4.5.1, $G = \lambda F_1$ for some non-zero scalar λ . This implies $F_1 \in Y$ which gives $Y = X_{F_1} = X_F$. Thus X_F is a minimal reducing subspace of T_{φ} .

Theorem 4.6.3. Let T_{φ} be an operator pseudo shift of type I with $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$, and $F \in \ell^2_+(K)$ be transparent. Let $F = \sum_{k \in \mathbb{N}_0} f_k$ be the transparent decomposition of F so that each f_k is jointly n_k -transparent with $n_0 < n_1 < \ldots$. For each $k \in \mathbb{N}_0$ let $f_k = \sum_{i \in \mathbb{N}_0} \beta_{i,j_k} g_{i,j_k}$ for some $j_k \in \mathbb{N}_0$. If there exist distinct $k_1, k_2 \in \mathbb{N}_0$ such that $j_{k_1} \in \mathcal{M}_1$ and $j_{k_2} \in \mathcal{M}_2$, then X_F cannot be a minimal reducing subspace of T_{φ} .

Proof. Without loss of generality, we assume that $F = f_{\hat{k}_1} + f_{\hat{k}_2}$, where $j_{k_1} \in \mathcal{M}_1, j_{k_2} \in \mathcal{M}_2$ and $o(f_{\hat{k}_1}) = r_{k_1}, o(f_{\hat{k}_2}) = r_{k_2}$. As $j_{k_2} \in \mathcal{M}_2$, so there exists $\mu > 0$ and $t_2 \in \mathcal{M}_1$ such that $\varphi^{\mu}(t_2) = j_{k_2}$. Now as $T_{\varphi}f_{\hat{k}_1} = 0$, so $T_{\varphi}F = T_{\varphi}f_{\hat{k}_2} = \sum_{i \in \mathbb{N}_0} \beta_{i,j_{k_2}} \alpha_i^{(\varphi^{-1}(j_{k_2}))} g_{i,\varphi^{-1}(j_{k_2})}$.

Therefore, if $F_1 := T_{\varphi}F$, then we have

$$T_{\varphi}^{*}F_{1} = \sum_{i \in \mathbb{N}_{0}} \beta_{i,j_{k_{2}}} \left[\alpha_{i}^{(\varphi^{-1}(j_{k_{2}}))}\right]^{2} g_{i,j_{k_{2}}}$$
$$= (\alpha_{r_{k_{2}}}^{(\varphi^{-1}(j_{k_{2}}))})^{2} f_{\hat{k}_{2}}$$
$$= \delta f_{\hat{k}_{2}}.$$

Thus we have $F_1 \in X_F$ such that $f_{\hat{k}_2} \in X_{F_1}$ and $f_{\hat{k}_1} \notin X_{F_1}$. Therefore, $F \notin X_{F_1}$ so that X_{F_1} is a proper reducing subspace of X_F . Hence, though X_F is a reducing subspace of T_{φ} , it cannot be a minimal reducing subspace of T_{φ} .

4.7 Conclusion

Theorems 4.6.1, 4.6.2 and 4.6.3, can be summarized as the following result:

Theorem 4.7.1. Let φ be an injective map on \mathbb{N}_0 . Also let $\Lambda_{\varphi} = \{\lambda_0, \lambda_1, ...\}$ be the φ induced partition of \mathbb{N}_0 such that $\lambda_n \sim^{\varphi} \lambda_m$ for all $n, m \in \mathbb{N}_0$. Let T_{φ} be an operator pseudo shift of type I with uniformly bounded invertible operator weights $\{A_n\}_{n \in \mathbb{N}_0}$ given by $A_n e_i = \alpha_i^{(n)} e_i$ for all $i \in \mathbb{N}_0$. Let $F \in \ell^2_+(K)$ be transparent and $F = \sum_{k \in \mathbb{N}_0} f_k$ be the transparent decomposition of F so that each F_k is jointly

 n_k -transparent with $n_0 < n_1 < \ldots$ If $f_k = \sum_{i \in \mathbb{N}_0} \beta_{i,j_k} g_{i,j_k}$ with $o(f_k) = r_k$, then X_F is a minimal reducing subspace of T_{φ} if and only if one of the following sets of conditions hold:

(I) (i) $j_k \in \mathcal{M}_1$ for all $k \in \mathbb{N}_0$, (ii) $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $t, k \in \mathbb{N}_0$.

(II)(i) $j_k \in \mathcal{M}_2$ for all $k \in \mathbb{N}_0$,

- (ii) there exists $\mu > 0$ and $t_k \in \mathcal{M}_1$ such that $\varphi^{\mu}(t_k) = j_k$ for all $k \in \mathbb{N}_0$,
- (iii) $\alpha_{r_k}^{(\varphi^t(j_k))} = \alpha_{r_0}^{(\varphi^t(j_0))}$ for all $k \in \mathbb{N}_0$ and $t \ge -\mu$.