
Chapter 4

Minimal reducing subspaces of
operator pseudo shifts of type I

4.1 Introduction

If S is a scalar weighted unilateral shift on ℓ2+(C), then S is irreducible, as al-

ready mentioned earlier. For N > 1, if we consider weighted unilateral shifts

S0, S1, . . . , SN−1 on ℓ2+(C), then S0 ⊕ S1 ⊕ · · · ⊕ SN−1 on the direct sum of N

copies of ℓ2+(C) is unitarily equivalent to MN
z on H2(β), as discussed in Section

2.3. Therefore, by [50] we get a complete description of the reducing subspaces of

S0 ⊕ S1 ⊕ · · ·⊕ SN−1. Again, instead of a finite N , if we consider a countable direct

sum of weighted unilateral shifts i.e, S0 ⊕ S1 ⊕ . . . , then this operator is unitarily

equivalent to the operator weighted shift S on ℓ2+(K) with weights {An}n∈N0, where

each An is invertible diagonal on K. Now, from [20], we get a description of the

reducing subspaces of S0 ⊕ S1 ⊕ . . . .

Thus, we have a fairly good idea of the reducing and minimal reducing subspace of

a direct sum of scalar weighted unilateral shifts on ℓ2+(C). However, we do not know

much about the reducing subspaces for a direct sum of operator weighted unilateral

shifts on ℓ2+(K).
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Question: “If S1 and S2 are operator weighted shifts on H2(K), what are the reduc-

ing subspaces for S1 ⊕ S2 ?”

To address this question, we first propose the definition of an operator weighted

pseudo shift on ℓ2+(K). The motivation for the definition comes from that of a

scalar weighted pseudo shift as given first in [12].

Definition 4.1.1. [12] Let X and Y be topological sequence spaces over I and

J respectively. Then a continuous linear operator T : X → Y is called a weighted

pseudo shift if there is a sequence (bj)j∈J of non-zero scalars and an injective mapping

ϕ : J → I such that

T (xi)i∈I = (bjxϕ(j))j∈J

for (xi) ∈ X . T is denoted as Tb,ϕ and (bj)j∈J is called the weight sequence.

Thus, taking I = J = N0 and ϕ(j) = j + 1 for all j ∈ N0 in Definition 4.1.1, we get

T (x0, x1, . . . ) = (b0x1, b1x2, . . . ),

which is the backward unilateral weighted shift on ℓ2+(C) with weights {bn}n∈N0.

Similarly, every backward bilateral weighted shift is a weighted pseudo shift. These

operators are further studied in [35, 52, 53, 54].

Motivated by Definition 4.1.1, we propose the definition of an operator weighted

pseudo shift on ℓ2+(K) as follows:

Definition 4.1.2. Let ϕ : N0 → N0 be an injective map, and {An}n∈N0 be a

sequence of bounded linear operators on K such that there exists m,M > 0 with

m ≤ ‖An‖ ≤M for all n ∈ N0. Then the operator T : ℓ2+(K) → ℓ2+(K) defined by

T (f0, f1, . . . ) = (A0fϕ(0), A1fϕ(1), . . . )

is called the operator pseudo shift induced by ϕ, usually denoted by Tϕ.
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We consider each An to be positive invertible and to have a diagonal matrix repre-

sentation with respect to basis {ei}i∈N0 of K. Hence, for each n ∈ N0 there exists a

sequence of positive scalars {α
(n)
i }i∈N0 such that Anei = α

(n)
i ei.

For i, j ∈ N0, let gi,j := (0, . . . , ei, 0, . . . ) with ei occuring at the jth place. Then

{gi,j}i,j∈N0 is an orthonormal basis for ℓ2+(K). Thus, if R(ϕ) denotes the range of

the injective map ϕ on N0, then for each i, j ∈ N0,

Tϕgi,j :=

{

α
(ϕ−1(j))
i gi,ϕ−1(j), if j ∈ R(ϕ);

0, otherwise.
(4.1.1)

In particular,

Tϕgi,ϕ(k) = α
(k)
i gi,k for all i, k ∈ N0. (4.1.2)

In Theorem 4.3.14 of this chapter, we show that Tϕ can be identified with a direct

sum of copies of unilateral (backward) operator weighted shifts, circulant operators

and bilateral operator weighted shifts.

4.2 Preliminaries

Lemma 4.2.1. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0. Then for k > 0 and i, j ∈ N0,

we have

T kϕgi,j :=

{

α
(ϕ−1(j))
i α

(ϕ−2(j))
i ...α

(ϕ−k(j))
i gi,ϕ−k(j), if j ∈ R(ϕk);

0, otherwise.

The proof follows from repeated applications of Equation 4.1.1.

Lemma 4.2.2. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0. For i, j ∈ N0, T
∗
ϕgi,j =

α
(j)
i gi,ϕ(j).
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Proof. For f = (fi) ∈ ℓ2+(K), we have

〈Tϕf, gi,j〉 = 〈Ajfϕ(j), ei〉

= 〈fϕ(j), A
∗
jei〉

= α
(j)
i 〈fϕ(j), ei〉

= α
(j)
i 〈f, gi,ϕ(j)〉

= 〈f, α
(j)
i gi,ϕ(j)〉.

Therefore, T ∗
ϕgi,j = α

(j)
i gi,ϕ(j).

Lemma 4.2.3. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0. For k > 0 and i, j ∈ N0, we

have the following:

(i) T kϕ(T
∗
ϕ)
kgi,j = (α

(j)
i α

(ϕ(j))
i . . . α

(ϕk−1(j))
i )2gi,j, and

(ii)(T ∗
ϕ)
kT kϕgi,j :=

{

(α
(ϕ−1(j))
i α

(ϕ−2(j))
i . . . α

(ϕ−k(j))
i )2gi,j, if j ∈ R(ϕk);

0, otherwise.

The result follows immediately from Lemma 4.2.1 and Lemma 4.2.2.

Lemma 4.2.4. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0. For f = (fi) ∈ ℓ2+(K), the

adjoint of T is defined as T ∗
ϕf = (y0, y1, . . . ) where

yj :=

{

A∗
ϕ−1(j)fϕ−1(j), if j ∈ R(ϕ);

0, otherwise.

Proof. Let f = (fi) ∈ ℓ2+(K) and for each j ∈ N0, define

yj :=

{

A∗
ϕ−1(j)fϕ−1(j), if j ∈ R(ϕ);

0, otherwise.
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Then y = (yj) ∈ ℓ2+(K) and for any h = (hi) ∈ ℓ2+(K), we have

〈Tϕh, f〉 =
∑

i∈N0

〈Aihϕ(i), fi〉

=
∑

i∈N0

〈hϕ(i), A
∗
i fi〉

=
∑

j∈R(ϕ)

〈hj, A
∗
ϕ−1(j)fϕ−1(j)〉

= 〈h, y〉.

Thus, T ∗
ϕf = y.

Lemma 4.2.5. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0. Then T
∗
ϕ is a pseudo shift if

and only if ϕ is bijective.

Proof. Let ϕ be bijective. Then R(ϕ) = N0 and so by Lemma 4.2.4, it follows that

for each f = (fi) ∈ ℓ2+(K), the adjoint of Tϕ is given as

T ∗
ϕf = (A∗

ϕ−1(0)fϕ−1(0), A
∗
ϕ−1(1)fϕ−1(1), . . . ).

Let Bn := A∗
ϕ−1(n) for all n ∈ N0 and ψ := ϕ−1. Then T ∗

ϕ is the pseudo shift on

ℓ2+(K) with operator weights {Bn}n∈N0 , induced by the injective map ψ.

Conversely, let, if possible, ϕ is not bijective. Then there exists j ∈ N0 which is not

in the range of ϕ. So, by Lemma 4.2.4, yj = 0 where T ∗
ϕf = (y0, y1, . . . ), and so by

definition T ∗
ϕ cannot be a pseudo shift.

For example, if T is the unilateral backward shift induced by ϕ(n) = n + 1 for all

n ∈ N0, then T
∗, which is the unilateral forward shift is not a pseudo shift.

However, the bilateral shift and its adjoint are both pseudo shifts.

4.3 ϕ induced partition of N0.

Definition 4.3.1. For an injective map ϕ on N0, we define the following subsets of

N0:
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(i) M1 = {n ∈ N0 : n /∈ R(ϕ)}.

(ii) M2 = {n ∈ N0 : n = ϕk(m) for some m ∈ M1, k > 0}.

(iii) M3 = {n ∈ N0 : n = ϕk(n) for some k > 0}.

(iv) M4 = N0 − (M1 ∪M2 ∪M3).

Here, R(ϕ) denotes the range of ϕ.

Remark 4.3.2. (a) For an injective map ϕ on N0, Mi ∩ Mj = φ if i 6= j and

1 ≤ i, j ≤ 4.

(b) If ϕ is bijective, then M1 = M2 = φ and N0 = M3 ∪M4.

(c) If ϕ is injective but not surjective, then R(ϕ) = M2 ∪M3 ∪M4 ( N0.

Example 4.3.3. Let ϕ : N0 → N0 be defined as follows:

ϕ(0) = 1, ϕ(1) = 2, ϕ(2) = 0,

ϕ(2n+ 1) = 2n+ 3 for all n ≥ 1,

ϕ(4) = 6, ϕ(4n) = 4(n− 1) for all n ≥ 2,

and ϕ(4n+ 2) = 4(n + 1) + 2 for all n ≥ 1.

Then R(ϕ) = N0 − {3} and ϕ is injective. Here, M1 = {3}, M2 = {2n + 1 : n ≥

2}, M3 = {0, 1, 2} and M4 = {2n : n ≥ 2}.

Definition 4.3.4. Let ϕ be an injective map on N0. For n ∈ N0, we define the set

[[n]] as follows:

(i) If n ∈ M1, then [[n]] := {ϕk(n) : k ≥ 0}

(ii) If n ∈ M2, then [[n]] := {ϕk(n) : k ≥ −j, where n = ϕj(m) for m ∈ M1}

(iii) If n ∈ M3 ∪M4, then [[n]] := {ϕk(n) : k ∈ Z}.

Lemma 4.3.5. If j ∈ [[n]], then [[j]] = [[n]] and vice-versa.

Proof. Let j ∈ [[n]]. Then j = ϕk(n) for some k ∈ Z.

If t ∈ [[j]], then t = ϕη(j) for some η ∈ Z, so that t = ϕη+k(n) which implies that

t ∈ [[n]]. Thus, [[j]] ⊆ [[n]].
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Again, if λ ∈ [[n]], then λ = ϕτ (n) for some τ ∈ Z which implies that λ = ϕτ−k(j),

so that λ ∈ [[j]]. Thus [[n]] ⊆ [[j]].

In view of Lemma 4.3.5, we now propose the following definition:

Definition 4.3.6. Let ϕ be an injective map on N0. Let λ0 := 0 and for n ∈ N, let λn

be defined as the smallest positive integer not belonging to [[λ0]]∪[[λ1]]∪· · ·∪[[λn−1]].

Then, we have λ0 < λ1 < . . . , and N0 =
⋃

i∈N0
[[λi]]. Λϕ := {λ0, λ1, . . . } is called the

ϕ induced partition of N0. Note that depending on the map ϕ, Λϕ may also be a

finite set.

Example 4.3.7. In Example 4.3.3, we have Λϕ = {λ0 = 0, λ1 = 3, λ2 = 4}, where

λ0 ∈ M3, λ1 ∈ M1, λ2 ∈ M4.

Definition 4.3.8. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, · · ·} be the

ϕ induced partition of N0. For λn ∈ Λϕ, we define order of λn, denoted by o(λn) as

follows:

(i) If λn ∈ M1, then o(λn) := 0.

(ii) If λn ∈ M2, then o(λn) := r, where λn = ϕr(m) for some m ∈ M1.

(iii) If λn ∈ M3, then o(λn) := r, where r is the smallest positive integer such that

λn = ϕr(λn).

(iv) If λn ∈ M4, then o(λn) := ∞.

Theorem 4.3.9. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ

induced partition of N0. For n ∈ N0, let Kn be the closed linear span of {gi,j : i ∈

N0, j ∈ [[λn]]}. If Tϕ is the operator pseudo shift on ℓ2+(K) with uniformly bounded

invertible positive diagonal operator weights {An}n∈N0, then the following must hold:

(a) Tϕ reduces each Kn.

(b) ℓ2+(K) =
∑

n∈N0
⊕Kn.
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Proof. For n ∈ N0, it follows from Lemmas 4.2.1, 4.2.2 and 4.3.5 that Tϕ reduces

Kn. Now (b) follows from (a) together with Definition 4.3.6.

Theorem 4.3.10. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ

induced partition of N0. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0. If λn ∈ M1 ∪M2,

then Tϕ|Kn is unitarily equivalent to a unilateral backward operator weighted shift on

ℓ2+(K).

Proof. Let λn ∈ M1 ∪ M2 for some n ∈ N0, arbitrarily fixed. If r = o(λn), then

[[λn]] = {ϕk(λn) : k ≥ −r}. As Kn is the closed linear span of {gi,j : i ∈ N0, j ∈

[[λn]]}, so for x = (x0, x1, . . . ) ∈ Kn we have xj = 0 for all j ∈ N0\[[λn]].

For i ∈ N0, let Pi : Kn → K be defined as Pix = xϕi−r(λn) for x = (x0, x1, . . . ) ∈ Kn.

If Hn := {(P0x, P1x, . . . ) : x ∈ Kn}, then Hn is isomorphic to Kn.

Let W be the backward shift on Hn with operator weights {Wi}i∈N0, where Wi :=

Aϕi−r(λn) for all i ∈ N0 i.e, W (P0x, P1x, . . . ) = (W0P1x,W1P2x, . . . ) for all x ∈ Kn.

Then W is unitarily equivalent to Tϕ|Kn.

Definition 4.3.11. Let K be a separable complex Hilbert space, and for n ∈ N,

let Hn := K ⊕ · · · ⊕K (n copies). For bounded linear operators {Wi}
n−1
i=0 on K, we

define W̃ : Hn → Hn as

W̃ (y0, y1, . . . , yn−1) = (W0y1,W1y2, . . . ,Wn−2yn−1,Wn−1y0).

The operator W̃ is called a weighted circulant operator on Hn.

Note: For n = 1, W̃y0 :=W0y0 for all y0 ∈ H0 = K.

Theorem 4.3.12. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ

induced partition of N0. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0. If λn ∈ M3, then

Tϕ|Kn is unitarily equivalent to a weighted circulant operator on Hr, where r = o(λn).
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Proof. Let r = o(λn). Then r is the smallest positive integer such that ϕr(λn) = λn,

so that [[λn]] = {λn, ϕ(λn), . . . , ϕ
r−1(λn)}. For i = 0, 1, . . . , r−1, define Pi : Kn → K

as Pix = xϕi(λn). If Hr := {(P0x, P1x, . . . , Pr−1x) : x ∈ Kn}, then Hr is isomorphic

to Kn. Also if Wi := Aϕi(λn) for all 0 ≤ i ≤ r − 1 and W be the circulant operator

on Hr defined asW (y0, y1, . . . , yr−1) = (W0y1,W1y2, . . . ,Wr−2yr−1,Wr−1y0), then W

on Hr is unitarily equivalent to Tϕ|Kn.

Theorem 4.3.13. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ

induced partition of N0. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0. If λn ∈ M4, then

Tϕ|Kn is unitarily equivalent to a bilateral backward operator weighted shift on ℓ2(K).

Proof. Let λn ∈ M4 for some n ∈ N0, arbitrarily fixed. For i ∈ Z, let Pix := xϕi(λn)

for x = (x0, x1, . . . ) ∈ Kn, and let Hn := {(. . . , P−1x, [P0x], P1x, . . . ) : x ∈ Kn}.

Then Hn is isomorhic to Kn. Also if Wi := Aϕi(λn) for all i ∈ Z and W be the

bilateral (backward) operator weighted shift on Hn with weight sequence {Wi}i∈Z

i.e, W (. . . , y−1, [y0], y1, . . . ) = (. . . ,W−1y0, [W0y1],W1y2, . . . ), then W is unitarily

equivalent to Tϕ|Kn.

From Theorems 4.3.9, 4.3.10, 4.3.12 and 4.3.13 we can thus conclude the following:

Theorem 4.3.14. Let Tϕ be an operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0 and induced by an

injective map ϕ on N0. Then Tϕ is a countable (or finite) direct sum of unilateral

backward shift, circulant operators and bilateral shifts.

Definition 4.3.15. The operator weighted shift Tϕ on ℓ2+(K) is classified as follows:

(i) Tϕ is of type I if M3 and M4 are empty.

(ii) Tϕ is of type II if M1, M2 and M3 are empty.

(iii) Tϕ is of type III if M1, M2 and M4 are empty.
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In view of Theorem 4.3.14, we can say that if Tϕ is of type I, then it is a countable (or

finite) direct sum of unilateral backward operator weighted shifts. We now proceed

to determine the necessary and sufficient conditions for a reducing subspace XF of

Tϕ to be minimal.

4.4 Transparent sequences.

Definition 4.4.1. Let ϕ be an injective map on N0 and {An}n∈N0 be a uniformly

bounded sequence of invertible operators on K, such that Anei = α
(n)
i ei for all

i, n ∈ N0. Let T = Tϕ be the operator pseudo shift on ℓ2+(K) with weight sequence

{An}n∈N0 . For each n ∈ N0, two non-negative integers p and q are said to be

RT
n -related, denoted as pRT

n q, if α
(j)
p = α

(j)
q for all j ∈ [[n]].

Remark 4.4.2. (i) For each n ∈ N0, R
T
n is an equivalence relation on N0. For p ∈ N0,

we denote the equivalence class of p as [p]n. Thus [p]n = {q ∈ N0 : pR
T
n q}. For each

n ∈ N0, we define Ω
(n)
0 = [0]n, and for m > 0, Ω

(n)
m := [p]n, where p is the smallest

positive integer such that p /∈
⋃m−1
j=0 Ω

(n)
j .

(ii) For n ∈ N0, let ωn := {k ∈ N0 : Ω
(n)
k 6= φ}.

(iii) If j ∈ [[n]], then by Lemma 4.3.5, the set of equivalence classes of RT
n and RT

j

are identical. Hence for j ∈ [[n]], we have ωj = ωn, and Ω
(j)
k = Ω

(n)
k for all k ∈ ωn.

Definition 4.4.3. For an injective map ϕ on N0, we define a relation ∼ϕ on N0 as

follows:

For p, q ∈ N0, p ∼
ϕ q ifωp = ωq andΩ

(p)
k = Ω

(q)
k for all k ∈ ωp.

Remark 4.4.4. If ϕ be an injective map on N0 and λn ∼ϕ λm for all λn, λm ∈ Λϕ,

then Ω
(λn)
k = Ω

(λ0)
k for all k ∈ ωλ0 . Hence, in this case, we denote Ω

(λ0)
k simply as Ωk.

Definition 4.4.5. Let f =
∑

i∈N0
αiei be a non-zero linear expression in K. Let r

be the smallest non-negative integer such that αr 6= 0. The order of f is defined to

be r and denoted as o(f) = r.
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Definition 4.4.6. Let F = (f0, f1, . . . ) be a nonzero element in ℓ2+(K). If there

exists a nonnegative integer m such that

(i) o(fi) ≥ m for each nonzero fi, and

(ii) there exists at least one fi such that o(fi) = m

then m is defined to be the order of F , denoted as o(F ).

Definition 4.4.7. Let Y be a nonzero nonempty subset of any separable Hilbert

space H . Then order of Y , denoted as o(Y ), is defined to be the nonnegative integer

m satisfying the following conditions:

(i) o(f) ≥ m for all nonzero f in Y , and

(ii) there exists f̃ ∈ Y such that o(f̃) = m.

Definition 4.4.8. Let X be a nonzero subset of ℓ2+(K). Then for each j ∈ N0,

define Xj to be the set {fj : (f0, f1, . . . ) ∈ X}.

Remark 4.4.9. X is a non zero subset implies that the set Xj is also non zero for

some j ∈ N0.

Lemma 4.4.10. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0 induced by the in-

jective map ϕ on N0. If Tϕ is of type I and X is a nonzero reducing subspace of Tϕ,

then there exists j ∈ M1 such that Xj 6= 0.

Proof. Let, if possible, Xj = 0 for all j ∈ M1. Thus X 6= 0 implies that there

exists j ∈ M2 with Xj 6= 0. This in turn implies that there exists r > 0 such that

ϕ−r(j) ∈ M1.

Let fj ∈ Xj , fj 6= 0 and F = (f0, f1, . . . ) ∈ X . Suppose fj =
∑

i∈N0
βiei. Then

fj 6= 0 implies there exist at least one βi which is not zero. Now by Lemma 4.2.1,

we have T rϕF = (y0, y1, . . . ) ∈ X where

yϕ−r(j) =
∑

i∈N0

βi(α
(ϕ−1(j))
i α

(ϕ−2(j))
i . . . α

(ϕ−r(j))
i )ei 6= 0.
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This means Xϕ−r(j) 6= 0 which implies ϕ−r(j) ∈ M2. But this is a contradiction as

M1∩M2 = φ. Thus, X 6= 0 implies that there exists j ∈ M1 such that Xj 6= 0.

Definition 4.4.11. If X is a nonzero reducing subspace of Tϕ, then

(M1)X := {j ∈ M1 : Xj 6= 0}.

Definition 4.4.12. Let X be a nonzero reducing subspace of the operator pseudo

shift Tϕ. If (M1)X 6= φ, then X is said to be an M1-reducing subspace of Tϕ.

Lemma 4.4.13. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0 and induced by the

injective map ϕ on N0. Let Tϕ be of type I and X be a non zero reducing subspace

of Tϕ with o(X) = r. Then X is M1 reducing subspace of Tϕ and there exists

j ∈ (M1)X such that o(Xj) = r.

Proof. By Lemma 4.4.10, (M1)X 6= φ if Tϕ is of type I. Hence, X is an M1 reducing

subspace of Tϕ. Clearly, o(X) = r implies o(Xj) ≥ r for all j ∈ (M1)X . Also

o(X) = r implies there exists f = (f0, f1, . . . ) ∈ X such that o(f) = r. This in

turn implies that there exists j ∈ N0 with o(fj) = r. Thus if fj =
∑

i∈N0
ai,jei, then

ar,j 6= 0 and ai,j = 0 for all i < r.

If j ∈ M1, then fj ∈ Xj with o(fj) = r. Thus o(Xj) = r = o(X) and we are done.

If j /∈ M1, then since Tϕ be of type I, we must have j ∈ M2, so that ϕk(n) = j for

some n ∈ M1 and k ∈ N.

If T kϕf = (g0, g1, . . . ), then gt = AtAϕ(t) . . . Aϕk−1(t)fϕk(t) for all t ∈ N0. In particular,

gn = AnAϕ(n) . . . Aϕk−1(n)fϕk(n)

= Aϕ−k(j) . . . Aϕ−1(j)fj

=
∑

i∈N0

ai,jα
(ϕ−k(j))
i . . . α

(ϕ−1(j))
i ei

with ar,j 6= 0 and ai,j = 0 for all i < r. Thus, o(gn) = r where gn ∈ Xn. This implies

n ∈ (M1)X and o(Xn) = r.



Chapter 4 63

Definition 4.4.14. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0 and induced by the

injective map ϕ on N0. Let Tϕ be of type I and X be a nonzero reducing subspace

of Tϕ with o(X) = r. Then o1(X) := inf{j ∈ (M1)X : o(Xj) = r}.

Definition 4.4.15. Let Tϕ be the operator pseudo shift on ℓ2+(K) with uniformly

bounded invertible positive diagonal operator weights {An}n∈N0 and induced by the

injective map ϕ on N0. Let Λϕ = {λ0, λ1, . . . } be the ϕ induced partition of N0, and

consider a non-zero linear expression f =
∑

i∈N0
αiei in K such that o(f) = r. If

there exists λn ∈ Λϕ such that i ∈ [r]λn for each non-zero αi in f , then f is said to

be n-transparent in K of order r.

Example 4.4.16. Consider the injective map ϕ given by ϕ(2n) = 2(n + 1) and

ϕ(2n + 1) = 2n + 3 for all n ∈ N0. Then, M1 = {0, 1}, M2 = {2, 3, . . . },

M3 = M4 = φ and Λϕ = {λ0, λ1}, where λ0 = 0 and λ1 = 1. Let f =

α3e3 + α4e4 + α5e5 + α6e6 ∈ K and αi 6= 0 for all i ∈ {3, 4, 5, 6}. For each n ∈ N0,

let Anei = α
(n)
i ei, where the scalars α

(n)
i take the following values:

α
(2n)
i =

{

1, if 0 ≤ i ≤ 6;
2, if i > 6.

and α
(2n+1)
i =

{

3, if 0 ≤ i ≤ 6;
4, if i > 6.

Let T = Tϕ be the operator pseudo shift on ℓ2+(K) with operator weights {An}n∈N0

induced by the injective map ϕ on N0. Then, the equivalence classes of RT
λ0

are

Ω
(λ0)
0 = [0]λ0 = {0, 1, . . . , 6}, and Ω

(λ0)
1 = [7]λ0 = {7, 8, . . . }.

Also, the equivalence classes of RT
λ1

are

Ω
(λ1)
0 = [0]λ1 = {0, 1, . . . , 6}, and Ω

(λ1)
1 = [7]λ1 = {7, 8, . . . }.

Clearly, in this case we have λ0 ∼
ϕ λ1. Now, if r = o(f), then r = 3. Here,

[r]λ0 = [r]λ1 = {0, 1, . . . , 6}.
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Therefore, f is 0-transparent as well as 1-transparent in K of order 3.

Theorem 4.4.17. Let f be non-zero n-transparent in K of order r. If m ∈ N0 is

such that λn ∼ϕ λm, then f is m-transparent in K of order r.

Proof. Let f =
∑

i∈N0
αiei with o(f) = r. Then i ∈ [r]λn for all i ∈ N0 such that

αi 6= 0. Now λn ∼ϕ λm implies [r]λn = [r]λm . Therefore, i ∈ [r]λm for all i ∈ N0 such

that αi 6= 0. Hence, f is m-transparent in K.

Remark 4.4.18. Converse of the above is not true. Suppose f =
∑

i∈N0
αiei such

that o(f) = r and f is both n-transparent and m-transparent in K. This means

i ∈ [r]λn and i ∈ [r]λm for all i ∈ N0 such that αi 6= 0. However, this does not

necessarily imply that [r]λn = [r]λm . In fact, λm ∼ϕ λn if and only if [p]λn = [p]λm

for all p ∈ N0.

Example 4.4.19. Consider ϕ and f in K as defined in Example 4.4.16. For each

n ∈ N0, let Anei = α
(n)
i ei, where the scalars α

(n)
i take the following values:

α
(2n)
i =

{

1, if 0 ≤ i ≤ 6;
2, if i > 6.

and α
(2n+1)
i =

{

3, if 0 ≤ i ≤ 7;
4, if i > 7.

Then, the equivalence classes of RT
λ0

are

Ω
(λ0)
0 = [0]λ0 = {0, 1, . . . , 6}, and Ω

(λ0)
1 = [7]λ0 = {7, 8, . . . }.

Also, the equivalence classes of RT
λ1

are

Ω
(λ1)
0 = [0]λ1 = {0, 1, . . . , 7}, and Ω

(λ1)
1 = [8]λ1 = {8, 9, . . . }.

Here, Ω
(λ0)
k 6= Ω

(λ1)
k for k = 0, 1 and so λ0 ≁ϕ λ1. However, f is 0-transparent since

3, 4, 5, 6 ∈ [r]λ0 = Ω
(λ0)
0 and f is 1-transparent since 3, 4, 5, 6 ∈ [r]λ1 = Ω

(λ1)
0 .

Definition 4.4.20. For j ∈ N0, let F =
∑

i∈N0
αigi,j be a non-zero linear expression

in ℓ2+(K). Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ-induced
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partition of N0. If f =
∑

i∈N0
αiei is n-transparent in K of order r and j ∈ [[λn]],

then F is said to be n-transparent in l2+(K). In view of Definition 4.4.6, o(F ) = o(f).

Lemma 4.4.21. If F =
∑

i∈N0
αigi,j is n-transparent of order r for j ∈ N0, then

∑

i∈N0
αigi,t is n-transparent of order r for all t ∈ [[j]].

The proof follows immediately from Lemma 4.3.5.

Lemma 4.4.22. Let ϕ be an injective map on N0 and Λϕ = {λ0, λ1, . . . } be the ϕ

induced partition of N0. Also let F =
∑

i∈N0
αigi,j be n-transparent with o(F ) = r.

If t ∼ϕ j and t ∈ [[λm]], then G =
∑

i∈N0
αigi,t is m-transparent with o(G) = r.

Proof. Since t ∼ϕ j, so λn ∼ϕ λm. This implies [r]λn = [r]λm . Now, since F

is n-transparent in ℓ2+(K), so f =
∑

i∈N0
αiei is n-transparent in K. Therefore,

i ∈ [r]λn = [r]λm for each non-zero αi in f . This means f is m-transparent in K

which in turn implies G =
∑

i∈N0
αigi,t is m-transparent.

Definition 4.4.23. Let the operator pseudo shift Tϕ be of type I. Then F =

∑

j∈N0

∑

i∈N0
αi,jgi,j is said to be transparent if for each j ∈ N0,

∑

i∈N0
αi,jgi,j is

n-transparent for some n ∈ N0 depending on j. If there exists n ∈ N0 such

that
∑

i∈N0
αi,jgi,j is n-transparent for all j ∈ N0, then F is said to be jointly

n-transparent.

Remark 4.4.24. Let t ∈ N0 and F =
∑

j∈[[t]]

∑

i∈N0
αi,jgi,j. If F is transparent, then

it is jointly n-transparent, where t ∈ [[λn]] for λn ∈ Λϕ.

Definition 4.4.25. Let Tϕ be an operator pseudo shift on ℓ2+(K), and let S be

a vector space consisting of all finite linear combinations of finite products of the

operators Tϕ and T ∗
ϕ. For any non zero F ∈ ℓ2+(K), SF := {T̃F : T̃ ∈ S}. The

closure of SF in ℓ2+(K) is a reducing subspace of Tϕ and is denoted by XF . XF is

called the subspace generated by F . Clearly, XF is the smallest reducing subspace

of Tϕ containing F .
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Definition 4.4.26. Let Tϕ be an operator pseudo shift of type I and and let the

function F =
∑

i∈N0

∑

j∈N0
αi,jgi,j be transparent in ℓ2+(K). For j ∈ M1, let fj

be defined as fj :=
∑

i∈N0

∑

t∈[[j]] αi,tgi,t. Then each fj is jointly n-transparent in

ℓ2+(K), for some n depending on j. Dropping those fj’s which are zero, we list the

remaining ones as f0̂, f1̂, . . . in such a way that fĵ is jointly gj-transparent with

g0 < g1 < g2 < . . . . Then F =
∑

j∈N0
fĵ is called the transparent decomposition of

F .

Definition 4.4.27. Let ϕ be an injective map on N0. Also let Λϕ = {λ0, λ1, . . . } be

the ϕ induced partition of N0 such that λn ∼ϕ λm for all n,m ∈ N0. Consider F =

∑

i∈N0

∑

j∈N0
αi,jgi,j. For k ∈ ωλ0 , let qk be defined as qk :=

∑

i∈Ωk

∑

j∈N0
αi,jgi,j.

Dropping those qk’s which are zero, the remaining qk’s are arranged as f (1), f (2), . . . in

such a way that o(f (k)) < o(f (k+1)). The resulting decomposition F = f (1)+f (2)+. . .

is called the canonical decomposition of F with respect to Tϕ. Clearly each f (k) is

transparent in ℓ2+(K). If there exists a finite positive integer n such that F =

f (1) + f (2) + · · ·+ f (n), then F is said to have a finite canonical decomposition.

In the above definition, we observe that o(f (k1)) = o(f (k2)) is not possible for distinct

elements k1, k2 ∈ ωλ0 since Ωk1 ∩ Ωk2 = φ in this case.

Lemma 4.4.28. Let Tϕ be the operator pseudo shift induced by the injective map ϕ

and with uniformly bounded invertible diagonal operator weights {An}n∈N0. Let Tϕ be

of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint equivalence

classes under RT
λ0
. Let F =

∑

i∈N0

∑

j∈M1
αi,jgi,j ∈ ℓ2+(K) have a finite canonical

decomposition F = f (1) + f (2) + · · ·+ f (n) where o(f (i)) = ri for all 1 ≤ i ≤ n. If for

each k ∈ N and every ξ, η ∈ M1, α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0,

then f (i) ∈ XF for all 1 ≤ i ≤ n.

Proof. Without loss of generality, we may assume that for each k = 1, 2, . . . , n,
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f (k) =
∑

i∈Ωk

∑

j∈M1
αi,jgi,j. Let m = mint∈M1 t and wk = mint∈Ωk t.

Step I. As Ω1∩Ωn = φ, so for ξ ∈ M1 we can choose the smallest nonnegative integer

t1 such that α
(ϕt1 (ξ))
w1 6= α

(ϕt1(ξ))
wn . As α

(ϕt1 (ξ))
wn = α

(ϕt1(m))
wn and α

(ϕt1 (ξ))
w1 = α

(ϕt1(m))
w1 , so

we have α
(ϕt1(m))
w1 6= α

(ϕt1 (m))
wn . For η ≥ 0 and i ∈ Ωk (k = 1, 2, . . . , n), we have

T η+1
ϕ (T ∗

ϕ)
η+1gi,j =

(

α
(j)
i α

(ϕ(j))
i . . . α

(ϕη(j))
i

)2
gi,j

=
(

α(j)
wk
α(ϕ(j))
wk

. . . α(ϕη(j))
wk

)2
gi,j.

Hence,

T η+1
ϕ (T ∗

ϕ)
η+1f (k) =

∑

i∈Ωk

∑

j∈M1

(

α(j)
wk
α(ϕ(j))
wk

. . . α(ϕη(j))
wk

)2
αi,jgi,j

=
(

α(m)
wk
α(ϕ(m))
wk

. . . α(ϕη(m))
wk

)2
f (k).

Therefore, we get

T η+1
ϕ (T ∗

ϕ)
η+1F =

(

α(m)
w1
α(ϕ(m))
w1

. . . α(ϕη(m))
w1

)2
f (1) + · · ·+

(

α(m)
wn
α(ϕ(m))
wn

. . . α(ϕη(m))
wn

)2
f (n).

As α
(ϕt1 (m))
w1 6= α

(ϕt1 (m))
wn , and α

(ϕt(m))
w1 = α

(ϕt(m))
wn for all 0 ≤ t < t1, so

F1 =
[(

α(m)
wn
α(ϕ(m))
wn

. . . α(ϕt1(m))
wn

)2
− T t1+1

ϕ (T ∗
ϕ)
t1+1

]

F

=
n−1
∑

k=1

[(

α(m)
wn
α(ϕ(m))
wn

. . . α(ϕt1 (m))
wn

)2
−

(

α(m)
wk
α(ϕ(m))
wk

. . . α(ϕt1 (m))
wk

)2]
f (k) ∈ XF .

So if β
(1)
k :=

(

α
(m)
wn α

(ϕ(m))
wn . . . α

(ϕt1 (m))
wn

)2
−

(

α
(m)
wk α

(ϕ(m))
wk . . . α

(ϕt1(m))
wk

)2
for 1 ≤ k < n,

then F1 =
∑n−1

k=1 β
(1)
k f (k) ∈ XF where β

(1)
1 6= 0.

Step II. As Ω1 ∩ Ωn−1 = φ, so there exists a smallest nonnegative integer t2 such

that ϕ
(t2(m))
w1 6= ϕ

(t2(m))
wn−1 . Therefore

F2 =
[(

α(m)
wn−1

α(ϕ(m))
wn−1

. . . α(ϕt2(m))
wn−1

)2
− T t2+1

ϕ (T ∗
ϕ)
t2+1

]

F1

=
n−2
∑

k=1

β
(2)
k β

(1)
k f (k) ∈ XF ,
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where β
(2)
k =

(

α
(m)
wn−1α

(ϕ(m))
wn−1 . . . α

(ϕt2 (m))
wn−1

)2
−

(

α
(m)
wk α

(ϕ(m))
wk . . . α

(ϕt2 (m))
wk

)2
and β

(2)
1 6= 0.

Repeating the above argument n−1 times, we get Fn−1 = β
(1)
1 β

(2)
1 . . . β

(n−1)
1 f (1) ∈ XF

with β
(k)
1 6= 0 for all 1 ≤ k ≤ n−1. This implies that f (1) ∈ XF . Similarly, f (i) ∈ XF

for 1 < i ≤ n.

Theorem 4.4.29. Extremal Theorem for Tϕ of type I .

Let Tϕ be the operator pseudo shift induced by the injective map ϕ and with uniformly

bounded invertible diagonal operator weights {An}n∈N0. Let Tϕ be of type I and X

be a nonzero reducing subspace of Tϕ with o(X) = m, and o1(X) = j̃. Then the

extremal problem

sup{Re αm,j̃ : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, fj̃ =
∑

i∈N0

αi,j̃ei}

has a unique solution G =
∑

j∈(M1)X

∑

i∈N0
βi,jgi,j with ‖G‖ = 1 and o(G) = m =

o(gj̃), where gj̃ =
∑

i∈N0
βi,j̃ei.

Proof. Note that as Tϕ is of type I, so M1 is a nonempty set. Define η : X → C

as η(F ) = αm,j̃ where F = (f0, f1, . . . ) and fj̃ =
∑

i∈N0
αi,j̃ei with j̃ = o1(X) =

min{j ∈ (M1)X : o(Xj) = m}.

o(Xj̃) = m and so there exists 0 6= F̃ = (f0, f1, . . . ) ∈ X such that fj̃ 6= 0, o(fj̃) = m.

Thus η is a nonzero bounded linear functional on X . Hence, from [8] there exists a

unique G ∈ X such that η(G) > 0, ‖G‖ = 1 and

η(G) = sup{Re η(F ) : F ∈ X, ‖F‖ ≤ 1}

=sup{Re αm,j̃ : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, fj̃ =
∑

i∈N0

αi,j̃ei}.

We will show that G =
∑

j∈(M1)X

∑

i∈N0
βi,jgi,j and o(G) = m. For this we consider

G = (g0, g1, . . . ) with gj =
∑

i∈N0
βi,jei.
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Claim I. If F ∈ X and ‖F‖ < 1, then Re η(F ) < η(G). Let, if possible, Re η(F ) =

η(G). If H := F
‖F‖

, then H ∈ X , ‖H‖ = 1 and Re η(H) = Re η(F )
‖F‖

= η(G)
‖F‖

> η(G),

contradicting the maximality of G. Hence, claim I holds.

Now for each F ∈ X , Re η(G + T ∗
ϕF ) = η(G), and so by claim I, we must have

‖G + T ∗
ϕF‖ ≥ 1 which implies G ⊥ T ∗

ϕF . In particular, 〈G, T ∗
ϕTϕG〉 = 0. Since

G = (g0, g1, . . . ), so T
∗
ϕTϕG = (y0, y1, . . . ) where

yj :=

{

A∗
ϕ−1(j)Aϕ−1(j)gj , if j ∈ R(ϕ);

0, otherwise.

Therefore, 〈G, T ∗
ϕTϕG〉 = 0 implies Aϕ−1(j)gj = 0 for all j ∈ R(ϕ). As Aϕ−1(j) is

invertible, so gj = 0 for all j ∈ R(ϕ). Equivalently, we must have gj = 0 for all

j /∈ M1. Hence, we have G =
∑

j∈(M1)X

∑

i∈N0
βi,jgi,j.

By Lemma 4.4.13, o(Xj̃) = m and so o(gj̃) ≥ m. As gj̃ =
∑

i∈N0
βi,j̃ei, so o(gj̃) ≥ m

gives βi,j̃ = 0 for all i < m. Again η(G) > 0 implies βm,j̃ 6= 0. Thus, o(gj̃) = m.

Also, o(Xj) ≥ m for all j ∈ (M1)X . This implies that o(gj) ≥ m for all j ∈ (M1)X .

Hence, o(G) = m.

Remark 4.4.30. The function G in Theorem 4.4.29 is called the extremal function of

the nonzero reducing subspace X of Tϕ.

Theorem 4.4.31. Let Tϕ be the operator pseudo shift induced by the injective map

ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0. Let

Tϕ be of type I and λn ∼ϕ λm for all n,m ∈ N0. Let Ω1,Ω2, . . . are the disjoint

equivalence classes of RT
λ0

and let for each k ∈ N, α(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk

and for all t ≥ 0, ξ, η ∈ M1. Let X be a non zero reducing subspace of Tϕ with

o(X) = m. If the extremal function of X has a finite canonical decomposition, then

it must be transparent.
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Proof. Let j̃ = o1(X) = min{j ∈ (M1)X : o(Xj) = m} and G be the extremal

function of X with finite canonical decomposition G = g(1) + g(2) + · · ·+ g(n). Then

by Lemma 4.4.28, g(i) ∈ X for all 1 ≤ i ≤ n.

By Lemma 4.4.29, we have G =
∑

j∈(M1)X
gj with o(G) = m = o(gj̃), where gj =

∑

i≥m βi,jgi,j for all j ∈ (M1)X . As o(gj̃) = m, so βm,j̃ 6= 0.

For each g(k), there exists Ωτk such that g(k) =
∑

i∈Ωτk

∑

j∈(M1)X
αi,jgi,j and o(g

(k)) <

o(g(k+1)) for all k = 1, 2, . . . , n− 1.

As G = g(1)+g(2)+· · ·+g(n) with o(g(i)) < o(g(i+1)), so o(G) = m implies o(g(1)) = m

which gives us m ∈ Ωτ1 and αm,j̃ = βm,j̃ 6= 0. Also, ‖g(1)‖ ≤ ‖G‖ = 1. So, by

extremality of G, we must have G = g(1). As g(1) by definition is transparent, so G

is transparent.

4.5 Minimal reducing subspaces

Lemma 4.5.1. Let T = Tϕ be the operator pseudo shift induced by the injective

map ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0.

Let Tϕ be of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint

equivalence classes under RT
λ0
. Assume that for each k ∈ N and every ξ, η ∈ M1,

α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0. Let F be a transparent function in

ℓ2+(K) of the form F =
∑

j∈M1

∑

i∈N0
αi,jgi,j. If G ∈ XF such that G 6= 0 and is of

the form G =
∑

j∈M1

∑

i∈N0
βi,jgi,j, then G = λF for some nonzero scalar λ.

Proof. As 0 6= G ∈ XF , so by Definition 4.4.25 we have G =
∑

k∈N0
λkT

k
ϕ(T

∗
ϕ)
kF

for scalars λk, not all zero. As F =
∑

j∈M1

∑

i∈N0
αi,jgi,j, so it can be written

as F =
∑

j∈M1
fj where fj =

∑

i∈N0
αi,jgi,j. For each j ∈ M1 and η > 0, let

α
(ϕη(j))
p = βϕη(j) for all p such that αp,j 6= 0. Now,

T kϕ(T
∗
ϕ)
kfj :=

{

∑

i∈N0
αi,j

(

βjβϕ(j) . . . βϕk−1(j)

)2
gi,j, if k > 0;

fj , if k = 0.
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Since λn ∼ϕ λm for all n,m ≥ 0, so βϕη(j) = βϕη(τ) = γn(say) for all j, τ ∈ M1.

Therefore for all j ∈ M1, k > 1, T k(T ∗)kfj =
(

γ0γ1 . . . γk−1

)2
fj and so

T kϕ(T
∗
ϕ)
kF :=

{
(

γ0γ1 · · · γk−1

)2
F, for k > 0;

F, for k = 0.

∴ G =
∑

k∈N0

λkT
k
ϕ(T

∗
ϕ)
kF

= (λ0 + λ1γ
2
0 + λ2(γ0γ1)

2 + . . . )F

= λF,

where λ = λ0 + λ1γ
2
0 + λ2(γ0γ1)

2 + . . . .

Lemma 4.5.2. Let Tϕ be the operator pseudo shift induced by the injective map

ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0. Let

Tϕ be of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint

equivalence classes under RT
λ0
. Assume that for each k ∈ N and every ξ, η ∈ M1,

α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0. Let F =

∑

j∈M1

∑

i∈N0
αi,jgi,j

with o(F ) = m1. If G ∈ XF such that G 6= 0 and G =
∑

j∈M1

∑

i∈N0
βi,jgi,j, then

o(G) ≥ m1.

Proof. Let F = f (1) + f (2) + . . . be the canonical decomposition of F . Then, as in

Definition 4.4.27, o(f (i)) < o(f (i+1)) for all i ∈ N, and f (i) =
∑

t∈Ωgi

∑

j∈M1
αt,jgt,j.

Let mi = o(f (i)) so that mi ∈ Ωgi for all i ∈ N; and for j ∈ M1, αt,j = 0 for all

t ∈ Ωgi , t < mi. For j ∈ M1 and i ∈ N, if αt,j 6= 0 for t ∈ Ωgi, then α
(ϕk(j))
t = α

(ϕk(j))
mi

for all k ≥ 0.

Also by assumption, α
(ϕk(j))
t = α

(ϕk(m))
t for all t ∈ N0 and j ∈ M1, where m = inf{ξ :

ξ ∈ (M1)X}. Thus α
(ϕk(j))
t = α

(ϕk(m))
mi for all t ∈ Ωgi and j ∈ M1.

For t ∈ Ωgi and j ∈ M1, k ≥ 1,

T kϕ(T
∗
ϕ)
kgt,j =

(

α
(j)
t α

(ϕ(j))
t . . . α

(ϕk−1(j))
t

)2
gt,j

=
(

α(m)
mi
α(ϕ(m))
mi

. . . α(ϕk−1(m))
mi

)2
gt,j
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and so T kϕ(T
∗
ϕ)
kf (i) =

(

α
(m)
mi α

(ϕ(m))
mi . . . α

(ϕk−1(m))
mi

)2
f (i).

For i ∈ N and k ∈ N0, let

γi,k :=

{

(

α
(m)
mi α

(ϕ(m))
mi . . . α

(ϕk−1(m))
mi

)2
, for k > 0;

1, for k = 0.

So T kϕ(T
∗
ϕ)
kf (i) = γi,kf

(i) for all k ∈ N0, and i ∈ N. Now G ∈ XF implies that there

exist λk’s, not all zero, such that G =
∑

k∈N0
λkT

k
ϕ(T

∗
ϕ)
kF .

∴ G =
∑

k∈N0

λk(
∑

i∈N

T kϕ(T
∗
ϕ)
kf (i))

=
∑

k∈N0

λk(
∑

i∈N

γi,kf
(i))

=
∑

i∈N

(
∑

k∈N0

λkγi,k)f
(i).

Thus, o(G) ≥ o(f (1)) = o(F ).

Theorem 4.5.3. Let T = Tϕ be the operator pseudo shift induced by the injective

map ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0.

Let Tϕ be of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint

equivalence classes under RT
λ0
. Assume that for each k ∈ N and every ξ, η ∈ M1,

α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0. Let X be a minimal reducing

subspace of Tϕ. If F =
∑

j∈M1

∑

i∈N0
αi,jgi,j ∈ X, then F must be transparent.

Proof. Let, if possible, F is not transparent. Then the canonical decomposition of

F = f (1)+f (2)+. . . will have at least two components f (1) and f (2). Let o(f (i)) = mi.

Then o(F ) = m1 and m1 ∈ Ωg1 , m2 ∈ Ωg2 .

As Ω1∩Ω2 = φ, so there exists the smallest nonnegative integer k such that α
(ϕk(m))
m1 6=

α
(ϕk(m))
m2 , where m = min{t : t ∈ (M1)X}. For i ∈ N and k ∈ N0, let

γi,k :=

{

(

α
(m)
mi α

(ϕ(m))
mi . . . α

(ϕk−1(m))
mi

)2
, for k > 0;

1, for k = 0.
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Then for k ∈ N0,

G := T k+1
ϕ (T ∗

ϕ)
k+1F − γ1,k+1F

=

∞
∑

i=2

(γi,k+1 − γ1,k+1)f
(i) ∈ X.

Since γ2,k+1 − γ1,k+1 6= 0, so o(G) = o(f (2)) = m2. Thus, there exists 0 6= G ∈ X

such that o(F ) < o(G). Also XG is a nonzero reducing subspace of Tϕ contained in

X . So by minimality of X , we must have XG = X . But this implies F ∈ XG so

that by Lemma 4.5.2, we must have o(F ) ≥ o(G), which is a contradiction. Thus,

F must be transparent.

Corollary 4.5.4. Let T = Tϕ be the operator pseudo shift induced by the injective

map ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0.

Let Tϕ be of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint

equivalence classes under RT
λ0
. Assume that for each k ∈ N and every ξ, η ∈ M1,

α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0. Then the extremal function of a

minimal reducing subspace of T is always transparent.

Theorem 4.5.5. Let T = Tϕ be the operator pseudo shift induced by the injective

map ϕ and with uniformly bounded invertible diagonal operator weights {An}n∈N0.

Let Tϕ be of type I and λn ∼ϕ λm for all λn, λm ∈ Λϕ. Let Ω1,Ω2, . . . be the disjoint

equivalence classes under RT
λ0
. Assume that for each k ∈ N and every ξ, η ∈ M1,

α
(ϕt(ξ))
i = α

(ϕt(η))
i for all i ∈ Ωk and for all t ≥ 0. Let X be a nonzero reducing

subspace of Tϕ. Then X is minimal if and only if X = XF , where F ∈ X is

transparent and is of the form F =
∑

j∈M1

∑

i∈N0
αi,jgi,j.

Proof. Let X be minimal. Then by Corollary 4.5.4, the extremal function G of X is

transparent and by minimality of X , we must have X = XG. Also G has the form

G =
∑

j∈(M1)X

∑

i∈N0
βi,jgi,j as shown in Theorem 4.4.29.

Conversely, let X = XF . Here F =
∑

j∈M1

∑

i∈N0
αi,jgi,j is a transparent function.
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Since XF is a reducing subspace of Tϕ, we only need to show that XF is minimal

reducing.

Let, if possible, Y be a non-zero reducing subspace of T contained in XF . If G is

the extremal function of Y , then G ∈ XF and so by Lemma 4.5.1, G = λF for some

non zero scalar λ. This implies that F ∈ Y . Therefore Y = XF , which shows that

XF is minimal.

4.6 Necessary and sufficient conditions for mini-

mality.

Theorem 4.6.1. Let Tϕ be an operator pseudo shift of type I with λn ∼ϕ λm for

all n,m ∈ N0, and F ∈ ℓ2+(K) be transparent. Let F =
∑

k∈N0
fk̂ be the transparent

decomposition of F so that each fk̂ is jointly nk-transparent with n0 < n1 < . . . . If

for each k ∈ N0 , we have fk̂ =
∑

i∈N0
βi,jkgi,jk with jk ∈ M1 and o(fk̂) = rk, then

XF is a minimal reducing subspace of Tϕ if and only if we have α
(ϕt(jk))
rk = α

(ϕt(j0))
r0

for all t, k ∈ N0.

Proof. Let XF be a minimal reducing subspace of Tϕ. By Lemma 4.2.1 and Lemma

4.2.2, for any t > 0, we have

T tϕ(T
∗
ϕ)
tfk̂ =

(

α(jk)
rk

α(ϕ(jk))
rk

. . . α(ϕt−1(jk))
rk

)2
fk̂. (4.6.1)

To show α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all t, k ∈ N0, we apply induction to t.

Taking t = 1 in Equation 4.6.1 we get TϕT
∗
ϕfk̂ = (α

(jk)
rk )2fk̂, and so

TϕT
∗
ϕF − (α(j0)

r0
)2F =

∑

k∈N

[

(α(jk)
rk

)2 − (α(j0)
r0

)2
]

fk̂ ∈ XF

Thus, for XF to be a minimal reducing subspace, we must have α
(jk)
rk = α

(j0)
r0 for all

k ∈ N0, showing that the result holds for t = 0.

Suppose the result holds for t ≤ N , that is α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all k ∈ N0 and
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0 ≤ t ≤ N . We will show that it holds for t = N + 1.

We have

TN+2
ϕ (T ∗

ϕ)
N+2F −

(

α(j0)
r0
α(ϕ(j0))
r0

. . . α(ϕN+1(j0))
r0

)2
F

=
∑

k∈N

[(

α(jk)
rk
α(ϕ(jk))
rk

. . . α(ϕN+1(jk))
rk

)2
−
(

α(j0)
r0
α(ϕ(j0))
r0

. . . α(ϕN+1(j0))
r0

)2]
fk̂

=
(

α(j0)
r0
α(ϕ(j0))
r0

. . . α(ϕN (j0))
r0

)2
∑

k∈N

[(

αϕ
N+1(jk)

rk

)2
−
(

αϕ
N+1(j0)

r0

)2]
fk̂.

which is in XF . So, for XF to be minimal we must have α
(ϕN+1(jk))
rk = α

(ϕN+1(j0))
r0 for

all k ∈ N0.

Thus by induction on t we can conclude that α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all t, k ∈ N0.

Converse follows immediately from Theorem 4.5.5.

Theorem 4.6.2. Let Tϕ be an operator weighted pseudo shift of type I with λn ∼ϕ

λm for all n,m ∈ N0, and F ∈ ℓ2+(K) be transparent. Let F =
∑

k∈N0
fk̂ be the

transparent decomposition of F so that each fk̂ is jointly nk-transparent with n0 <

n1 < . . . . If for each k ∈ N0 , we have fk̂ =
∑

i∈N0
βi,jkgi,jk with jk ∈ M2 and

o(fk̂) = rk, then XF is a minimal reducing subspace of Tϕ if and only if the following

conditions hold

(i) there exists µ > 0 and tk ∈ M1 such that ϕµ(tk) = jk for all k

(ii) α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all k ≥ 0 and t ≥ −µ.

Proof. Let, if possible, there exist µ > γ > 0 such that ϕ−γ(j0) ∈ M1 and ϕ
−µ(j1) ∈

M1. Then T
γ+1
ϕ f0̂ = 0 and T γ+1

ϕ f1̂ 6= 0. Thus, G = T γ+1F is a linear combination of

fk̂’s for k ≥ 1. Clearly, XG ⊆ XF . Since f0̂ /∈ XG, so F /∈ XG and consequently XG

is a non-zero reducing subspace properly contained in XF . Hence, in this case XF

cannot be a minimal reducing subspace. Therefore, we must have a unique µ > 0

such that ϕ−µ(jk) ∈ M1 for all k ≥ 0.

Next we show that α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all k ≥ 0 and t ≥ −µ.

For k, t ∈ N0, the result follows exactly as in Theorem 4.6.1. To show that it holds
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for −µ ≤ t < 0, we proceed as follows:

Since by (i) there exists µ > 0 and tk ∈ M1 such that ϕµ(tk) = jk for all k, so for

0 < t ≤ µ, by Theorem 4.2.3, we have

(T ∗
ϕ)
tT tϕfk̂ = (α(ϕ−1(jk))

rk
α(ϕ−2(jk))
rk

. . . α(ϕ−t(jk))
rk

)2fk̂. (4.6.2)

Using Equation 4.6.2 we get

T ∗
ϕTϕF −

(

αϕ
−1(j0)

r0

)2
F =

∑

k∈N

(

(αϕ
−1(jk)

rk
)2 − (αϕ

−1(j0)
r0

)2
)

fk̂ ∈ XF

and so for XF to be minimal we must have α
ϕ−1(jk)
rk = α

ϕ−1(j0)
r0 for all k ∈ N.

Repeating this argument successively for t = 2, . . . , µ, we get

α(ϕ−t(jk))
rk

= α(ϕ−t(j0))
r0

for all k ∈ N0, 0 < t ≤ µ

⇒α(ϕt(jk))
rk

= α(ϕt(j0))
r0

for all k ∈ N0, 0 > t ≥ −µ. (4.6.3)

Conversely, we have to show that XF is minimal reducing. Now, for each k ∈ N0,

T µϕfk̂ =
∑

i∈N0

βi,jkT
µ
ϕ gi,jk

= α(ϕ−1(j0))
r0

α(ϕ−2(j0))
r0

. . . α(ϕ−µ(j0))
r0

∑

i∈N0

βi,ϕµ(tk)gi,tk .

Therefore

T µϕF = α(ϕ−1(j0))
r0

α(ϕ−2(j0))
r0

. . . α(ϕ−µ(j0))
r0

∑

tk∈M1

∑

i∈N0

βi,ϕµ(tk)gi,tk .

So if F1 :=
∑

tk∈M1

∑

i∈N0
βi,ϕµ(tk)gi,tk and δ = α

(ϕ−1(j0))
r0 α

(ϕ−2(j0))
r0 . . . α

(ϕ−µ(j0))
r0 , then

T µϕF = δF1 where δ 6= 0. Hence F1 ∈ XF which implies that XF1 ⊆ XF .

Similarly, we can show that (T ∗
ϕ)
µT µϕF = δ2F which implies that (T ∗

ϕ)
µF1 = δF . So,

F ∈ XF1 and XF ⊆ XF1. Thus, XF = XF1 .

Let Y be a nonzero reducing subspace contained in XF . If G is the extremal function

of Y , then G ∈ XF , which implies that G ∈ XF1 . So by Lemma 4.5.1, G = λF1 for

some non-zero scalar λ. This implies F1 ∈ Y which gives Y = XF1 = XF . Thus XF

is a minimal reducing subspace of Tϕ.
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Theorem 4.6.3. Let Tϕ be an operator pseudo shift of type I with λn ∼ϕ λm for

all n,m ∈ N0, and F ∈ ℓ2+(K) be transparent. Let F =
∑

k∈N0
fk̂ be the transparent

decomposition of F so that each fk̂ is jointly nk-transparent with n0 < n1 < . . . .

For each k ∈ N0 let fk̂ =
∑

i∈N0
βi,jkgi,jk for some jk ∈ N0. If there exist distinct

k1, k2 ∈ N0 such that jk1 ∈ M1 and jk2 ∈ M2, then XF cannot be a minimal reducing

subspace of Tϕ.

Proof. Without loss of generality, we assume that F = fk̂1 + fk̂2 , where jk1 ∈

M1, jk2 ∈ M2 and o(fk̂1) = rk1 , o(fk̂2) = rk2. As jk2 ∈ M2, so there exists µ > 0

and t2 ∈ M1 such that ϕµ(t2) = jk2. Now as Tϕfk̂1 = 0, so TϕF = Tϕfk̂2 =

∑

i∈N0
βi,jk2α

(ϕ−1(jk2 ))

i gi,ϕ−1(jk2 )
.

Therefore, if F1 := TϕF , then we have

T ∗
ϕF1 =

∑

i∈N0

βi,jk2
[

α
(ϕ−1(jk2 ))

i

]2
gi,jk2

= (α
(ϕ−1(jk2))
rk2

)2fk̂2

= δfk̂2.

Thus we have F1 ∈ XF such that fk̂2 ∈ XF1 and fk̂1 /∈ XF1. Therefore, F /∈ XF1

so that XF1 is a proper reducing subspace of XF . Hence, though XF is a reducing

subspace of Tϕ, it cannot be a minimal reducing subspace of Tϕ.

4.7 Conclusion

Theorems 4.6.1, 4.6.2 and 4.6.3, can be summarized as the following result:

Theorem 4.7.1. Let ϕ be an injective map on N0. Also let Λϕ = {λ0, λ1, . . . } be

the ϕ induced partition of N0 such that λn ∼ϕ λm for all n,m ∈ N0. Let Tϕ be an

operator pseudo shift of type I with uniformly bounded invertible operator weights

{An}n∈N0 given by Anei = α
(n)
i ei for all i ∈ N0. Let F ∈ ℓ2+(K) be transparent

and F =
∑

k∈N0
fk̂ be the transparent decomposition of F so that each Fk̂ is jointly
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nk-transparent with n0 < n1 < . . . If fk̂ =
∑

i∈N0
βi,jkgi,jk with o(fk̂) = rk, then

XF is a minimal reducing subspace of Tϕ if and only if one of the following sets of

conditions hold:

(I) (i) jk ∈ M1 for all k ∈ N0,

(ii) α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all t, k ∈ N0.

(II)(i) jk ∈ M2 for all k ∈ N0,

(ii) there exists µ > 0 and tk ∈ M1 such that ϕµ(tk) = jk for all k ∈ N0,

(iii) α
(ϕt(jk))
rk = α

(ϕt(j0))
r0 for all k ∈ N0 and t ≥ −µ.
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