Chapter 4

Minimal reducing subspaces of
operator pseudo shifts of type I

4.1 Introduction

If S is a scalar weighted unilateral shift on (2 (C), then S is irreducible, as al-
ready mentioned earlier. For N > 1, if we consider weighted unilateral shifts
So,S1, ..., Sn-1 on (3(C), then Sy ® S; ® -+ @ Sy_1 on the direct sum of N
copies of (2(C) is unitarily equivalent to MY on H?(3), as discussed in Section
2.3. Therefore, by [50] we get a complete description of the reducing subspaces of
So® S1d---® Sy_1. Again, instead of a finite N, if we consider a countable direct
sum of weighted unilateral shifts i.e, Sy & S; & ..., then this operator is unitarily
equivalent to the operator weighted shift S on ¢34 (K) with weights {A, },en,, where
each A, is invertible diagonal on K. Now, from [20], we get a description of the

reducing subspaces of Sy & S1 P . ...

Thus, we have a fairly good idea of the reducing and minimal reducing subspace of
a direct sum of scalar weighted unilateral shifts on ¢2 (C). However, we do not know
much about the reducing subspaces for a direct sum of operator weighted unilateral

shifts on (2 (K).

o1
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Question: “If S} and S, are operator weighted shifts on H?(K'), what are the reduc-
ing subspaces for S; @ Sy 77

To address this question, we first propose the definition of an operator weighted
pseudo shift on (2 (K). The motivation for the definition comes from that of a

scalar weighted pseudo shift as given first in [12].

Definition 4.1.1. [12] Let X and Y be topological sequence spaces over I and
J respectively. Then a continuous linear operator 7': X — Y is called a weighted
pseudo shift if there is a sequence (b;) ;e of non-zero scalars and an injective mapping

¢ :J — I such that
T(xi)ier = (bjTy())jer
for (z;) € X. T is denoted as Tj,, and (b;) e, is called the weight sequence.
Thus, taking I = J =Ny and ¢(j) = j + 1 for all j € Ny in Definition 4.1.1, we get
T(xo,x1,...) = (box1, bixa,...),

which is the backward unilateral weighted shift on (3 (C) with weights {b, }nen,.-
Similarly, every backward bilateral weighted shift is a weighted pseudo shift. These

operators are further studied in [35, 52, 53, 54].

Motivated by Definition 4.1.1, we propose the definition of an operator weighted

pseudo shift on (2 (K) as follows:

Definition 4.1.2. Let ¢ : Ny — Ny be an injective map, and {A,},en, be a
sequence of bounded linear operators on K such that there exists m, M > 0 with

m < ||A,|| < M for all n € Ny. Then the operator T': 2 (K) — (% (K) defined by

T(fo, fr,---) = (Aofoo)s Arfors - - -)

is called the operator pseudo shift induced by ¢, usually denoted by 7.
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We consider each A,, to be positive invertible and to have a diagonal matrix repre-
sentation with respect to basis {e;}ien, of K. Hence, for each n € Ny there exists a

(n)

sequence of positive scalars {aE“’}iGNO such that A,e; = a; e;.
For i,j € Ny, let g;; := (0,...,€;,0,...) with e; occuring at the jth place. Then
{gi;}ijen, is an orthonormal basis for €% (K). Thus, if R(p) denotes the range of

the injective map ¢ on Ny, then for each 7, 7 € Ny,

(™) s .
(o) .0 i) lf E R 9
T,g:; = i Jio=1() J (‘P) (4.1.1)
0, otherwise.
In particular,
T3 Gi o) = agk)gi,k for all i, k € N. (4.1.2)

In Theorem 4.3.14 of this chapter, we show that T}, can be identified with a direct
sum of copies of unilateral (backward) operator weighted shifts, circulant operators

and bilateral operator weighted shifts.

4.2 Preliminaries

Lemma 4.2.1. Let T}, be an operator pseudo shift on (2 (K) with uniformly bounded
invertible positive diagonal operator weights { A, fnen,- Then fork >0 andi,j € Ny,
we have

—1/ —2/ —ky( X .
Tkgij _ al(so (J))al(so (J))mal(so (J))gi,wk(j)a if j e R(gok);
L 0, otherwise.

The proof follows from repeated applications of Equation 4.1.1.

Lemma 4.2.2. Let T, be an operator pseudo shift on (2(K) with uniformly bounded

invertible positive diagonal operator weights {An}nen,. For i,5 € Ny, Trgi; =

)
(4)
O‘ij Fie(5)-
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Proof. For f = (f;) € °.(K), we have

(T f, 9150 = (Ajfet), €i)
= (fot), Ajei)
= o (foi €i)
= (£, 9:00)

- <f> az(])giv<ﬂ(j)>'
Therefore, T;gi,j = aﬁj)gwuy -

Lemma 4.2.3. Let T,, be an operator pseudo shift on (2 (K) with uniformly bounded
invertible positive diagonal operator weights { Ay tnen,- For k >0 and i,j € Ny, we
have the following:

(i) Tg(T;)kgi,j _ (az(j)az(“p(j)) N ‘Oél(so’“l(j)))zgi’j; and

—1/. —2/ v . .
(i) (T)F T g, = (az@ (J))az(so @) .az(eo (])))292',]', if j € R(¢");
o 0, otherwise.

The result follows immediately from Lemma 4.2.1 and Lemma 4.2.2.

Lemma 4.2.4. Let T, be an operator pseudo shift on (2(K) with uniformly bounded
invertible positive diagonal operator weights {A,}nen,. For f = (fi) € CL(K), the
adjoint of T is defined as T} f = (yo,y1,...) where

g = | Aerplenay 15 € Rlp);
I 0, otherwise.

Proof. Let f = (f;) € (3.(K) and for each j € Ny, define

w:{A;mhwmiUERW%

0, otherwise.
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Then y = (y;) € (2(K) and for any h = (h;) € (2(K), we have

1€Np

= (hy, AL f3)

1€Np

= > (A o)

JER(p)

= (h,y).
Thus, T f = y. O

Lemma 4.2.5. Let T, be an operator pseudo shift on (2 (K) with uniformly bounded
invertible positive diagonal operator weights { A, }nen,. Then T is a pseudo shift if

and only if ¢ is bijective.

Proof. Let ¢ be bijective. Then R(¢) = Ny and so by Lemma 4.2.4, it follows that

for each f = (f;) € (7 (K), the adjoint of T}, is given as

T;f - (14:’;71(0)_]‘1071(0)7 A;71(1)f4p71(1), o )

Let B, = A;,l(n) for all n € Ny and ¢ := ¢~!. Then T is the pseudo shift on
(% (K) with operator weights { B, },en,, induced by the injective map .

Conversely, let, if possible, ¢ is not bijective. Then there exists 7 € Ny which is not
in the range of ¢. So, by Lemma 4.2.4, y; = 0 where T f = (yo, 1, ), and so by

definition 77 cannot be a pseudo shift. O

For example, if 7" is the unilateral backward shift induced by ¢(n) = n + 1 for all
n € Ny, then T™, which is the unilateral forward shift is not a pseudo shift.

However, the bilateral shift and its adjoint are both pseudo shifts.

4.3 ¢ induced partition of Nj.

Definition 4.3.1. For an injective map ¢ on Ny, we define the following subsets of

N(]I
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(i) My ={neNp:n ¢ R(p)}

(ii) My = {n € Ny : n = ¢*(m) for some m € My, k > 0},
(iii) M3 = {n € Ny : n = *(n) for some k > 0}.

(iv) My = No — (M3 UMy UMs).

Here, R(p) denotes the range of ¢.

Remark 4.3.2. (a) For an injective map ¢ on Ny, M; N M; = ¢ if i # j and
1<i,5<4
(b) If ¢ is bijective, then M; = My = ¢ and Ny = M3 U Mj.

(¢) If ¢ is injective but not surjective, then R(¢) = Mo U M3z U M, C Ny.

Example 4.3.3. Let ¢ : Ny — Ny be defined as follows:

p(0) =1, (1) =2, p(2) = 0,

w(2n+1) =2n+3 for alln > 1,

©(4) =6, p(4n) =4(n —1) for alln > 2,

and p(4n+2) =4(n+1) + 2 for alln > 1.

Then R(yp) = Ny — {3} and ¢ is injective. Here, My = {3}, My ={2n+1:n >
2}, M3 ={0,1,2} and My = {2n:n > 2}.

Definition 4.3.4. Let ¢ be an injective map on Ny. For n € Ny, we define the set
[[n]] as follows:

(i) If n € My, then [[n]] := {©*(n) : k > 0}

(ii) If n € My, then [[n]] := {¢*(n) : k > —j, where n = ¢’/(m) for m € M;}

(iii) If n € M3 U My, then [[n]] := {©*(n) : k € Z}.

Lemma 4.3.5. If j € [[n]], then [[j]] = [[n]] and vice-versa.

Proof. Let j € [[n]]. Then j = ¢*(n) for some k € Z.
If t € [[4]], then t = ¢"(j) for some 1 € Z, so that t = ©"**(n) which implies that

t € [[n]]. Thus, [[j]] < [[n]]
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Again, if A € [[n]], then A\ = ¢7(n) for some 7 € Z which implies that A = ™ *(4),
so that A € [[]]. Thus [[n]] C [[j]]- O

In view of Lemma 4.3.5, we now propose the following definition:

Definition 4.3.6. Let ¢ be an injective map on Ny. Let Ay := 0 and forn € N, let \,
be defined as the smallest positive integer not belonging to [[Ao]]U[[A1]]U- - -U[[An—1]]-
Then, we have \g < A1 < ..., and Ng = [J;cy, [[Ai]]- Ap := {0, A1, ... } is called the
¢ induced partition of Ny. Note that depending on the map ¢, A, may also be a

finite set.

Example 4.3.7. In Example 4.3.3, we have A, = {\g = 0, \; = 3, Ay = 4}, where
Ao € M3, A\ € My, Ay € My.

Definition 4.3.8. Let ¢ be an injective map on Ny and A, = {Ao, A1, - -} be the
¢ induced partition of Ny. For A, € A, we define order of \,,, denoted by o(),,) as
follows:

(i) If A\, € My, then o()\,) := 0.

(ii) If A, € My, then o(\,) :=r, where A, = ¢"(m) for some m € M.

(iii) If \,, € M3, then o()\,) := r, where r is the smallest positive integer such that
An = @ ().

(iv) If \,, € My, then o()\,) := oc.

Theorem 4.3.9. Let ¢ be an injective map on Ny and A, = {Xo, M1,...} be the ¢
induced partition of No. For n € Ny, let K,, be the closed linear span of {g;; : i €
No,j € [MJ]}. If T, is the operator pseudo shift on (2.(K) with uniformly bounded
invertible positive diagonal operator weights { Ay }nen,, then the following must hold:

(a) T, reduces each K,.
(b) LK) =3 en, B
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Proof. For n € Ny, it follows from Lemmas 4.2.1, 4.2.2 and 4.3.5 that T, reduces

K,. Now (b) follows from (a) together with Definition 4.3.6. O

Theorem 4.3.10. Let ¢ be an injective map on Ny and Ay, = {Xg, A1, ...} be the ¢
induced partition of No. Let T, be the operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights { A, Yneny- If A € My U Mo,
then T, |k, is unitarily equivalent to a unilateral backward operator weighted shift on

2 (K).

Proof. Let A, € M;U M, for some n € Ny, arbitrarily fixed. If r = o(A,), then
M)l = {¢"( W) + k > —r}. As K, is the closed linear span of {g;; : i € Ny, j €
[[An]]}, so for @ = (zo, x1,...) € K, we have z; = 0 for all j € No\[[A,]].

For i € Ny, let P : K,, — K be defined as P;x = zi-—r(y,) for z = (xo, 21,...) € K,.
If H, :={(FPox, Piz,...): z € K,}, then H, is isomorphic to K.

Let W be the backward shift on H,, with operator weights {W, }ien,, where W; =
Agi-r(ny for all i € Ny ie, W(FPzx, Piw,...) = (WoPiz, WPz, ... ) for all v € K,,.

Then W is unitarily equivalent to T, |, . O

Definition 4.3.11. Let K be a separable complex Hilbert space, and for n € N,
let H, ==K @+ @ K (n copies). For bounded linear operators {W;}1} on K, we
define W : H, — H,, as

Wy, y1s- - Un—1) = Woyr, Wiy, - . -, Waa¥n—1, Wn_1%0).
The operator W is called a weighted circulant operator on H,.
Note: For n =1, Wyo = Woyo for all yo € Hy = K.

Theorem 4.3.12. Let ¢ be an injective map on Ny and Ay, = {Xg, A1, ...} be the ¢
induced partition of No. Let T, be the operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights {A, }nen,- If A\n € Mg, then

T, |k, ts unitarily equivalent to a weighted circulant operator on H,, where r = o(\,).
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Proof. Let r = o(\,). Then r is the smallest positive integer such that ¢"(\,) = A,
so that [An]] = {An, e M), -, @ H(A)}. Fori =0,1,...,r—1, define P; : K,, =+ K
as Pix = xgion,y. If H, := {(Pox, Pz, ..., P._iz) : @ € Ky}, then H, is isomorphic
to K,,. Also if W; := AW-()\”) for all 0 < ¢ <r —1 and W be the circulant operator
on H, defined as W (yo,y1,--.,¥r—1) = Woy1, Wiye, ..., Wi_ay,—1, Wi_1%0), then W

on H, is unitarily equivalent to T, |f,. O

Theorem 4.3.13. Let ¢ be an injective map on Ny and A, = {Xg, A1, ...} be the ¢
induced partition of No. Let T, be the operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights {A, }nen,- If An € My, then

T,|k, is unitarily equivalent to a bilateral backward operator weighted shift on (*(K).

Proof. Let A\, € My for some n € Ny, arbitrarily fixed. For i € Z, let Pix := x,i(»,)
for v = (29, 21,...) € K, and let H, = {(..., Pz, [Pozx], Piz,...) : © € K,}.
Then H, is isomorhic to K,. Also if W; := A, for all i € Z and W be the
bilateral (backward) operator weighted shift on H,, with weight sequence {W;};cz
e, W(...,y_1,[vol,y1,---) = (- ., W_ryo, [Wouyi], Wiye, ... ), then W is unitarily

equivalent to Ty, |k, O
From Theorems 4.3.9, 4.3.10, 4.3.12 and 4.3.13 we can thus conclude the following:

Theorem 4.3.14. Let T, be an operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights {Ap}tnen, and induced by an
injective map ¢ on Ny. Then T, is a countable (or finite) direct sum of unilateral

backward shift, circulant operators and bilateral shifts.

Definition 4.3.15. The operator weighted shift T, on ¢% (K) is classified as follows:
(i) T, is of type I if M3 and M, are empty.
(ii) T}, is of type II if My, My and M3 are empty.

(iii) T, is of type III if My, My and M, are empty.
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In view of Theorem 4.3.14, we can say that if 7, is of type I, then it is a countable (or
finite) direct sum of unilateral backward operator weighted shifts. We now proceed
to determine the necessary and sufficient conditions for a reducing subspace Xp of

T, to be minimal.

4.4 Transparent sequences.

Definition 4.4.1. Let ¢ be an injective map on Ny and {A, },en, be a uniformly

bounded sequence of invertible operators on K, such that A,e; = agn)ei for all
i,n € Ng. Let T'=T,, be the operator pseudo shift on (2 (K') with weight sequence
{A, }nen,. For each n € Ny, two non-negative integers p and ¢ are said to be

RT-related, denoted as pRZq, if o) = o) for all j € [[n]].

Remark 4.4.2. (i) For each n € Ny, RT is an equivalence relation on Ny. For p € N,
we denote the equivalence class of p as [p,. Thus [p], = {q € Ny : pRL¢}. For each
n € Ny, we define Qg") = [0],,, and for m > 0, Qi = [p]n, where p is the smallest
positive integer such that p ¢ U;”:_Ol an).

(ii) For n € Ny, let w,, := {k € Ny : ng") # ¢}

(iii) If j € [[n]], then by Lemma 4.3.5, the set of equivalence classes of R} and R}

are identical. Hence for j € [[n]], we have w; = w,,, and Qg ) = Q,(C") for all k € w,,.

Definition 4.4.3. For an injective map ¢ on Ny, we define a relation ~% on Ny as

follows:
Forp,q € No, p ~* qifw, = w, andQ,(f) = Q,(f) for allk € w,.

Remark 4.4.4. If ¢ be an injective map on Ny and A, ~% A, for all A\, A, € Ay,

then Q,(f") = Q,(CAO) for all k € w),. Hence, in this case, we denote Q,(;‘O) simply as €.

Definition 4.4.5. Let f = ZZENO a;e; be a non-zero linear expression in K. Let r
be the smallest non-negative integer such that «,. # 0. The order of f is defined to

be r and denoted as o(f) = r.
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Definition 4.4.6. Let F = (fy, f1,...) be a nonzero element in (2 (K). If there
exists a nonnegative integer m such that

(i) o(f;) > m for each nonzero f;, and

(ii) there exists at least one f; such that o(f;) = m

then m is defined to be the order of F', denoted as o(F).

Definition 4.4.7. Let Y be a nonzero nonempty subset of any separable Hilbert
space H. Then order of Y, denoted as o(Y), is defined to be the nonnegative integer
m satisfying the following conditions:

(i) o(f) > m for all nonzero f in Y, and

(i) there exists f € Y such that o(f) = m.

Definition 4.4.8. Let X be a nonzero subset of ¢ (K). Then for each j € Ny,
define X; to be the set {f; : (fo, fr,...) € X}.

Remark 4.4.9. X is a non zero subset implies that the set X; is also non zero for

some j € Ny.

Lemma 4.4.10. Let T, be the operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights {A,}nen, induced by the in-
jective map ¢ on No. If T, is of type I and X is a nonzero reducing subspace of T,

then there exists j € My such that X; # 0.

Proof. Let, if possible, X; = 0 for all j € M;. Thus X # 0 implies that there
exists j € My with X; # 0. This in turn implies that there exists » > 0 such that
e "(j) € M.

Let f; € Xj, fj # 0 and F = (fo, f1,...) € X. Suppose f; = >, Biei- Then
f; # 0 implies there exist at least one §; which is not zero. Now by Lemma 4.2.1,
we have T F = (yo,y1,...) € X where

Yoory = 3 Bulaf DO T O, 20,

i€Np
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This means X,-»¢;) # 0 which implies ¢~"(j) € M,. But this is a contradiction as
MiNMsy = ¢. Thus, X # 0 implies that there exists j € M; such that X; 0. O

Definition 4.4.11. If X is a nonzero reducing subspace of T,,, then
(Ml)X = {] € Ml : Xj 7é O}

Definition 4.4.12. Let X be a nonzero reducing subspace of the operator pseudo

shift T,,. If (My)x # ¢, then X is said to be an Mj-reducing subspace of T,,.

Lemma 4.4.13. Let T, be the operator pseudo shift on (% (K) with uniformly
bounded invertible positive diagonal operator weights { A, }nen, and induced by the
injective map ¢ on No. Let T, be of type I and X be a non zero reducing subspace
of T, with o(X) = r. Then X is My reducing subspace of T, and there exists
J € (My)x such that o(X;) =r.

Proof. By Lemma 4.4.10, (M;)x # ¢ if T, is of type L. Hence, X is an M, reducing
subspace of T,,. Clearly, o(X) = r implies o(X;) > r for all j € (M;)x. Also
o(X) = r implies there exists f = (fo, f1,...) € X such that o(f) = r. This in
turn implies that there exists j € Ny with o(f;) = r. Thus if f; = ZZENO a; je;, then
a,; #0and a;; =0 for all © < 7.

If j € My, then f; € X; with o(f;) = r. Thus o(X,) = r = o(X) and we are done.
If j ¢ M, then since T}, be of type I, we must have j € My, so that ¢*(n) = j for
some n € M; and k € N.

If T;ff = (90,91, -.), then g, = At Ay ... Age-1(y for(p) for all t € Ny. In particular,

9n = AnAp) - - Agr-1m) for(n)
= Ag-rg) - Apmr S

= a0l a0,
i€Np

with a,; # 0 and a; ; = 0 for all ¢ < r. Thus, o(g,) = r where g, € X,,. This implies
n € (Mi)x and o(X,,) = r. O
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Definition 4.4.14. Let T}, be the operator pseudo shift on ¢% (K) with uniformly
bounded invertible positive diagonal operator weights { A, },en, and induced by the

injective map ¢ on Ny. Let T}, be of type I and X be a nonzero reducing subspace

of T,, with o(X) =r. Then 0;(X) :=inf{j € (M1)x : o(X;) =r}.

Definition 4.4.15. Let T}, be the operator pseudo shift on ¢% (K) with uniformly
bounded invertible positive diagonal operator weights { A, },en, and induced by the
injective map ¢ on Ng. Let A, = {Ag, A1, ...} be the ¢ induced partition of Ny, and
consider a non-zero linear expression f = >, «a;e; in K such that o(f) = r. If
there exists A, € A, such that i € [r],, for each non-zero o; in f, then f is said to

be n-transparent in K of order r.

Example 4.4.16. Consider the injective map ¢ given by ¢(2n) = 2(n + 1) and
w2n +1) = 2n+ 3 for all n € Ny. Then, My = {0,1}, My = {2,3,...},
Mg = My = ¢ and A, = {Xo, \}, where \y = 0 and Ny = 1. Let f =
ases + auey + ases + ageg € K and a; # 0 for all i € {3,4,5,6}. For each n € Ny,

let A,e; = ozz(")ei, where the scalars ozl(") take the following values:

(2n) _ L, Zf0§71§6; (2n+1) 3, ZfOSZSG;
i _{2, ifi> 6. N A

Let T =T, be the operator pseudo shift on (% (K) with operator weights { A, }nen,

induced by the injective map ¢ on Ny. Then, the equivalence classes of Rzo are
Q0 =1[0],, = {0,1,...,6}, and Q1 =[7],, = {7.8,...}.

Also, the equivalence classes of Rfl are
QM =10],, = {0,1,...,6}, and Q™ =[7],, = {7.8,...}.

Clearly, in this case we have Ao ~% A\1. Now, if r = o(f), then r = 3. Here,

75 = [r]n, =90,1,...,6}.
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Therefore, f is O-transparent as well as 1-transparent in K of order 3.

Theorem 4.4.17. Let f be non-zero n-transparent in K of order r. If m € Ny is

such that \, ~% X\, then [ is m-transparent in K of order r.

Proof. Let f = )y, i€ with o(f) = r. Then i € [r],, for all i € Ny such that
a; # 0. Now A\, ~# \,, implies [r]), = [r]x,,. Therefore, i € [r],, for all i € Ny such

that «; # 0. Hence, f is m-transparent in K. O

Remark 4.4.18. Converse of the above is not true. Suppose f = ZZENO a;e; such
that o(f) = r and f is both n-transparent and m-transparent in K. This means
i € [r]n, and @ € [r],,, for all i € Ny such that «; # 0. However, this does not

n

necessarily imply that [r|y, = [r]s,,. In fact, \,, ~% A, if and only if [p|y, = [p]s

m

for all p € N.

Example 4.4.19. Consider ¢ and f in K as defined in Example 4.4.16. For each

(n

n € Ny, let A,e; = agn)ei, where the scalars o'V take the following values:

@y _ | 1, if0<i<6; @) [ 3, if0<i<T;
i _{2, ifi > 6. e A

Then, the equivalence classes of Rfo are

Q0 = (0], = {0,1,...,6}, and QP =[7],, = {7.8,...}.
Also, the equivalence classes of Rfl are

QM =1[0],, ={0,1,...,7}, and QP =[8],, = {8,9,...}.

Here, Q,(c’\‘)) + Q,(c’\l) for k=0,1 and so \g =¥ \. However, [ is O-transparent since

3,4,5,6 € [r]n, = QU and f is 1-transparent since 3,4,5,6 € [r],, = Q).

Definition 4.4.20. For j € Ny, let F' = EZENO @;g; ; be a non-zero linear expression

in (2 (K). Let ¢ be an injective map on Ny and A, = {Xg, A1, ...} be the y-induced
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partition of No. If f =}, aue; is n-transparent in K of order r and j € [[A,]],

then F is said to be n-transparent in /2 (K). In view of Definition 4.4.6, o(F") = o(f).

Lemma 4.4.21. If F' = ), \ «igi; is n-transparent of order r for j € Ny, then

> ien, Qidi 18 n-transparent of order v for all t € [[7]].
The proof follows immediately from Lemma 4.3.5.

Lemma 4.4.22. Let ¢ be an injective map on Ny and A, = {Ao, A1,...} be the ¢
induced partition of Ng. Also let F = ZieNO a;g;; be n-transparent with o(F) = r.

Ift ~% j and t € [[A\n]], then G =", . ®igir is m-transparent with o(G) = r.

i€No
Proof. Since t ~¥ j, so A, ~¥ X,. This implies [r]), = [r]x,. Now, since F
is n-transparent in (% (K), so f = 7.\ e; is n-transparent in K. Therefore,
i € [r]x, = [r]a,, for each non-zero «; in f. This means f is m-transparent in K
which in turn implies G =

ieN, @it 18 m-transparent. O

Definition 4.4.23. Let the operator pseudo shift 7, be of type I. Then F =
D jeNy DieN, Ui,j¥i; 18 said to be transparent if for each j € Ny, 3, @ijgi; is
n-transparent for some n € Ny depending on j. If there exists n € Ny such
that >, y, @ijgi; is n-transparent for all j € Ny, then F' is said to be jointly

n-transparent.

Remark 4.4.24. Let t € Ny and F = Zje[[tﬂ ZZENO @; jg; ;. If F' is transparent, then

it is jointly n-transparent, where ¢ € [[A,]] for A, € A,.

Definition 4.4.25. Let T}, be an operator pseudo shift on ¢ (K), and let S be
a vector space consisting of all finite linear combinations of finite products of the
operators T, and T7;. For any non zero F € 4 (K), SF := {(TF : T € S}. The
closure of SF' in (2 (K) is a reducing subspace of T}, and is denoted by Xp. Xp is
called the subspace generated by F'. Clearly, X is the smallest reducing subspace

of T,, containing F'.
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Definition 4.4.26. Let T, be an operator pseudo shift of type I and and let the
function F' = 37,y D en, Xijgij e transparent in (3 (K). For j € My, let f;
be defined as f; := 3,y Do @itdir- Then each f; is jointly n-transparent in

(% (K), for some n depending on j. Dropping those f;’s which are zero, we list the

remaining ones as fg, fi,... in such a way that f; is jointly gj;-transparent with
g0 <91 <g2<.... Then F =) ieNo [ is called the transparent decomposition of
F.

Definition 4.4.27. Let ¢ be an injective map on Ny. Also let A, = {Ao, \1,...} be
the ¢ induced partition of Ny such that A\, ~% \,, for all n,m € Ny. Consider F =
ZZENO ZJ.GNO a; ;9. For k € wy,, let ¢, be defined as ¢ := Zimk ZJ.GNO Q;;Gi
Dropping those ¢;.’s which are zero, the remaining g;’s are arranged as f, & .. in
such a way that o( f*®)) < o( f*+1)). The resulting decomposition F' = fM+f@ 4
is called the canonical decomposition of I with respect to T,. Clearly each f*) s
transparent in (% (K). If there exists a finite positive integer n such that F =

O 4 f@ o fO then F is said to have a finite canonical decomposition.

In the above definition, we observe that o( f¥1)) = o(f*2)) is not possible for distinct

elements ky, ko € w), since Q, N, = ¢ in this case.

Lemma 4.4.28. Let T, be the operator pseudo shift induced by the injective map ¢
and with uniformly bounded invertible diagonal operator weights { Ay, }nen,. Let T, be
of type I and X, ~% Ay, for all A\, A, € Ay Let Qq,Qo, ... be the disjoint equivalence
classes under R} . Let F'= 37, >0y, @ijgij € (3(K) have a finite canonical
decomposition F = fO 4+ f@ ...+ £ where o( f@) = r; for all 1 < i <n. If for
each k € N and every £,mn € My, aﬁ*ﬂt(ﬁ” = al@t(m) for all i € Q and for all t > 0,

then f € Xp for all1 <i <n.

Proof. Without loss of generality, we may assume that for each £ = 1,2,...,n,
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k. . o . o .
) = Zieﬂk ZjeMl @; ;gij- Let m = minyepq, t and wy, = mingeq, t.

Step . As N2, = ¢, so for & € M we can choose the smallest nonnegative integer
, such that alf"© 2 GO A QGO _ 41 g (1@ _ e
Wn - Wn, wi - Fw )

we have a(p (m) az(uﬂl(m)). Forn>0andi€ Q (k=1,2,...,n), we have

TEH(T;)"HQZ-J _ (al(j)al(so(j)) B .az(so"(j)))2gi’j

() o, (0(7)) (so”’( )
_ L aln)?

wk wk

g’l,]

Hence,

TTH-l (T* 77+1f Z Z wk wk N -Oéq(yin(j)))%éi,jgi,j

1€Q jEMy
= (Ml e m)2 b

Therefore, we get

T T F = (afMal) | o Y20 Lo g (afmaletm) | ol em))? g,

w1 w1 T Twy Wn —Wn : Wn,

As ozq(fltl(m)) =+ ozz(,ﬁtl (m) , and ayg eo ) _ Oéq(un ) for all 0 <t<ty,s0

= I:(Oé T: @(m . O{gf:l(m)))2 _ T;1+1(T;<)t1+1i|F
n—1
[(almalem) | et m)2  (qmaeom) | o 1m2] 1) ¢ X,

Wn, cee Qo wy, Qg e Qg
k=1

So if ﬁ,gl) = (aﬁu”,j’a{ui( m) .a%l(m))f — (az(unz)az(ui( ™). afﬁtl(m))f for 1 < k < n,

then Fy = Y 7} ,gl)f(k) € Xr where ﬁfl) # 0.

Step II. As Q1 N Qn_l = ¢, so there exists a smallest nonnegative integer ty such

that o020 £ o) Therefore

Fy = [(al? alet™) a(wtz(m))f — TEHN(T) = Ry

Wnp—1  "Wn—1 Wn—1

n—2
=> 87800 e X,
k=1
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where 57 = (a5}, alf" . af21) — (oo™ af?) and B # 0.

Repeating the above argument n—1 times, we get F,_; = fl)ﬁfz) . .Bfn_l)f(l) € Xp
with %) £ 0 for all 1 < k < n—1. This implies that fU) € Xp. Similarly, f® € Xp

for 1 <i<n. O

Theorem 4.4.29. Extremal Theorem for T, of type I .

Let T,, be the operator pseudo shift induced by the injective map ¢ and with uniformly
bounded invertible diagonal operator weights {Ay}nen,. Let T, be of type I and X
be a nonzero reducing subspace of T, with o(X) = m, and 0,(X) = j. Then the
extremal problem

sup{Re a5 : F = (fo. f1,...) EX|F| <1, /5= a;e;}
i€Ng
has a unique solution G = Zje(Ml)X > ien, Biggig with |G| = 1 and o(G) = m =

o(g;), where g; = >, cn, Bijéi-

Proof. Note that as T, is of type I, so M; is a nonempty set. Define n: X — C
as n(F) = a,,5 where F' = (fo, fi,...) and f; = >, @5 with j = 0(X) =

m,j
min{j € (M) : o(X;) = m}.
o(X>) = m and so there exists 0 # F = (fo, f1,...) € X such that f; #0,0(f;) = m.

J

Thus 7 is a nonzero bounded linear functional on X. Hence, from [8] there exists a

unique G € X such that n(G) > 0, |G| = 1 and

n(G) =sup{Re n(F) : F € X, [[F|| <1}

=sup{Re a,,5: F = (fo, f1,...) € X, IF| <1, /5= a,5e:}.

i€Np
We will show that G = Zje(Ml)X > ien, Bijgi; and o(G) = m. For this we consider

G = (go,gl, .. ) with gj = ZiENo Bmei.
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Claim L. If FF € X and ||F|| < 1, then Re n(F) < n(G). Let, if possible, Re n(F) =

then H € X, | H|| = 1 and Re n(H) = R0 = 18 - ),

n(Q). If H ==

IIFII

contradicting the maximality of G. Hence, claim I holds.

Now for each ' € X, Re n(G + T3 F) = n(G), and so by claim I, we must have
|G + T3 F|| > 1 which implies G L T;F. In particular, (G,T;T,G) = 0. Since
G = (90,91, ), 80 T;T,G = (yo, Y1, - .. ) where

A Aepgs 1T € R(p);
Yi - 0, otherwise.

Therefore, (G,T3T,G) = 0 implies A,-1(;9; = 0 for all j € R(p). As A,

invertible, so g; = 0 for all j € R(y). Equivalently, we must have g; = 0 for all

Jj ¢ M. Hence, we have G = Zje(Ml)X ZieNO Bi,j9ij-

By Lemma 4.4.13, o(X;) = m and so o(g;) > m. As g; = > ..y, Bij€is 50 0(g;) = m
gives ;5 = 0 for all i < m. Again n(G) > 0 implies 3, 5 # 0. Thus, o(g;) =m
Also, 0o(X;) > m for all j € (M;). This implies that o(g;) > m for all j € (M) .

Hence, o(G) = m. O

Remark 4.4.30. The function G in Theorem 4.4.29 is called the extremal function of

the nonzero reducing subspace X of T,.

Theorem 4.4.31. Let T, be the operator pseudo shift induced by the injective map
¢ and with uniformly bounded invertible diagonal operator weights {Ap}nen,- Let
T, be of type I and N, ~% X, for all n,m € Ny. Let €1,Qy,... are the disjoint
equivalence classes of R and let for each k € N, agwt@) = eo ) for all i €
and for allt > 0, §,n € M. Let X be a non zero reducing subspace of T, with
o(X) = m. If the extremal function of X has a finite canonical decomposition, then

it must be transparent.
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Proof. Let j = 01(X) = min{j € (M), : o(X;) = m} and G be the extremal
function of X with finite canonical decomposition G = g™ + ¢® + ... 4+ ¢ Then
by Lemma 4.4.28, ¢ € X for all 1 <i < n.

By Lemma 4.4.29, we have G = Zje(Ml)X g; with o(G) = m = o(g;), where g; =
> ism Biggiy for all j € (My) . As o(g;) =m, so B, 5 # 0.

For each g™, there exists (2,, such that g*) = ZZEQ% > jeMy),, ii9i and o(g™) <
o(g®+) forall k =1,2,...,n — 1.

As G = gW+g@ 4.4 g™ with o(g®) < o(g+Y), s0 o(G) = m implies o(gM) =m
which gives us m € Q,, and «,,; = ﬁm5 # 0. Also, [[¢V| < ||G]| = 1. So, by
extremality of G, we must have G = ¢(M. As g™ by definition is transparent, so G

is transparent. O

4.5 Minimal reducing subspaces

Lemma 4.5.1. Let T' = T, be the operator pseudo shift induced by the injective
map ¢ and with uniformly bounded invertible diagonal operator weights { Ay }nen, -
Let T, be of type I and X\, ~¢ A, for all A\, A\, € Ay Let Q4,89, ... be the disjoint
equivalence classes under RT . Assume that for each k € N and every £,n € My,
a&”t@” = q, @) for all i € Qp, and for allt > 0. Let F be a transparent function in

(2 (K) of the form F'= 3.\ D ien, Qii9ig- If G € Xp such that G # 0 and is of

the form G =3, g, Dien, Bij i, then G = AF' for some nonzero scalar .

Proof. As 0 # G € Xp, so by Definition 4.4.25 we have G = Y, .\ MT5(T5)FF
for scalars Ay, not all zero. As ' = ZjeMl ZZENO @; ;i ;, SO it can be written
as F'= 3 icu, fi where f; = 37 @i;gi;. For each j € My and n > 0, let

@n(] = Bn(j) for all p such that ay,; # 0. Now,

2
kps\k £ ._ i Oéi7'5'ﬁ ; 5 k=1(3)) Gijs 1fk‘>()’
Tso(Tso) fi= { > €No ]( iPe() © (J)) J o

7
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Since A, ~% A, for all n,m > 0, s0 Byn(j) = Benir) = Tn(say) for all j,7 € M;.
Therefore for all j € My, k> 1, T*(T*)* f; = (v - - .fyk_l)zfj and so

2
TH TV (vovi -+ 1) F, for k> 0;
“0( “0) { F, for k = 0.

LG =) NTHTY)MF
keNp
= N+ MY+ N(yon)i+ .. F

= \F,
where A = \g + \172 + Aae(yom1)? + - .. O

Lemma 4.5.2. Let T, be the operator pseudo shift induced by the injective map
¢ and with uniformly bounded invertible diagonal operator weights {An}nen,. Let
T, be of type I and X\, ~% X\, for all A\, N\, € Ay Let 21,8, ... be the disjoint
equivalence classes under R;FO. Assume that for each k € N and every £,n € My,
a?t@” = az(“”t(”” for all i € Q and for allt > 0. Let F''= 3 i\ D ien, QijYinj
with o(F) = my. If G € Xp such that G # 0 and G = 3.y, D ien, Bii9ij, then

o(G) > my.

Proof. Let F = f0) 4+ f® 4 . be the canonical decomposition of F. Then, as in
Definition 4.4.27, o(f®) < o(f@*V) for all i € N, and f) = D teqy, 2ojem; Yl
Let m; = o(f®) so that m; € Q,, for all i € N; and for j € My, oy ; = 0 for all
teQy,t<m; Forje Mjandie N, ifa,; #0fort €, then a?k“” = aﬁ,iff(j”
for all &k > 0.

Also by assumption, ozt(wk(j ) = ozt(“ok(m)) for all t € Ny and j € My, where m = inf{¢ :
¢ € (Mi)x}. Thus ag@k(j)) =l ™ for all t € Qg and j € M.

Fort e Q, and j € My, k> 1,

Tj(Tﬂkgt,j _ (aga)ags@u)) - .agso (]))) i

= (alMaletm) ol 2y

mi My TrTmy
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and so T;f(T;)kf(i) _ (a%)a%(m)) y -Oég,fikil(m)))zf(i)‘

For i € N and k € Ny, let

ik = (a%)agfi(m)) . .aﬁfffl(m”){ for k > 0;
Z7k . 1) fOI' k: - O

So Tj(T;)kf(i) = yixf@ for all k € Ny, and i € N. Now G € X implies that there
exist Ax’s, not all zero, such that G =3, .y MT5(T5)*F.

LG = MO TR )

keNp €N

. Z )\k(z Yirf ™)

keNg 1€EN

= Z(Z Meyi) fO.

€N keNg

Thus, o(G) > o(fV) = o( F). O

Theorem 4.5.3. Let T' = T, be the operator pseudo shift induced by the injective
map ¢ and with uniformly bounded invertible diagonal operator weights {Ap}nen,-
Let T, be of type I and X, ~¥ A, for all Ay, A, € Ay Let Q1,Q9, ... be the disjoint
equivalence classes under Rfo. Assume that for each k € N and every &,m € My,
al? ) = o) for all i € Qp and for all t > 0. Let X be a minimal reducing

subspace of T,,. If F' = ZjeMl ZZENO a;;gi; € X, then F' must be transparent.

Proof. Let, if possible, F' is not transparent. Then the canonical decomposition of
F=fW4 @4 will have at least two components f0) and f®. Let o f) = m;.
Then o(F) = my and my € Q,, my € Q.

As Q1NQy = ¢, so there exists the smallest nonnegative integer k such that a%f (m) +
aﬁfj(m)), where m = min{t : t € (M;)x}. For i € N and k € Ny, let

- (a%)agfi(m)) . .aﬁ,fikil(m)))z, for k > 0;
ne 1, for k = 0.
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Then for k € Ny,

G =TT F =y e F

o

=Y (Yipr1 — Va0 fD € X

i=

[\

Since Y2541 — V1441 # 0, s0 0o(G) = o(f®) = my. Thus, there exists 0 # G € X
such that o(F) < o(G). Also X¢ is a nonzero reducing subspace of T, contained in
X. So by minimality of X, we must have X; = X. But this implies F' € X so
that by Lemma 4.5.2, we must have o(F') > o(G), which is a contradiction. Thus,

F' must be transparent. O

Corollary 4.5.4. Let T' = T, be the operator pseudo shift induced by the injective
map ¢ and with uniformly bounded invertible diagonal operator weights {Ap}nen,-
Let T, be of type I and X, ~% N, for all Ay, A, € Ay Let Q1,Q9, ... be the disjoint
equivalence classes under Rfo. Assume that for each k € N and every &,m € My,
az(“pt(g)) = a,(“”t("” for all i € Q; and for allt > 0. Then the extremal function of a
mainimal reducing subspace of T is always transparent.
Theorem 4.5.5. Let T' = T, be the operator pseudo shift induced by the injective
map ¢ and with uniformly bounded invertible diagonal operator weights { Ay }nen, -
Let T, be of type I and X\, ~¥ A, for all A\, A, € Ay Let Q1,$9, ... be the disjoint
equivalence classes under Rfo. Assume that for each k € N and every &,m € My,
(¥*(€) (' (n

a = q

i ) for all v € Qp and for all t > 0. Let X be a nonzero reducing
subspace of T,. Then X is minimal if and only if X = Xp, where F' € X s

transparent and is of the form F =3 . > icn, ®ijGi;-

Proof. Let X be minimal. Then by Corollary 4.5.4, the extremal function G of X is
transparent and by minimality of X, we must have X = Xg. Also G has the form
G =2 ic(My)x Quien, Dij9i; as shown in Theorem 4.4.29.

Conversely, let X = Xp. Here F' = ) jeMy > @;;0i; is a transparent function.

i€Ng
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Since X is a reducing subspace of T,, we only need to show that Xp is minimal
reducing.

Let, if possible, Y be a non-zero reducing subspace of T' contained in Xp. If G is
the extremal function of Y, then G € X and so by Lemma 4.5.1, G = AF' for some
non zero scalar A. This implies that F' € Y. Therefore Y = Xp, which shows that

X is minimal. OJ

4.6 Necessary and sufficient conditions for mini-
mality.

Theorem 4.6.1. Let T, be an operator pseudo shift of type I with A, ~% X\, for
all n,m € Ny, and F € (2 (K) be transparent. Let F' = > ken, Ji be the transparent
decomposition of F' so that each f; is jointly ny-transparent with ng < n; < .... If
for each k € Ny , we have f, = 3., Bijuig. with jx € My and o(f;) = 7y, then

(so Ur) _  (9*(do))

X is a minimal reducing subspace of T, if and only if we have oy = Qu,

for all t, k € Ny.

Proof. Let Xr be a minimal reducing subspace of T,,. By Lemma 4.2.1 and Lemma

4.2.2, for any t > 0, we have

i} . . o
T(T)) fi = (a%k)afns:(m) - ﬁf (Jk))) fi (4.6.1)
To show ozﬁ“o Ur)) — o 00D for all ¢, k € Ny, we apply induction to t.

Taking ¢ = 1 in Equation 4.6.1 we get T, T f; = (aﬁff )2 f;, and so
T,TSF — (a2’ F =) [(alW)? = ()] fi € X
keN

Thus, for Xr to be a minimal reducing subspace, we must have oz(]’“) = ozm ) for all

k € Ny, showing that the result holds for ¢ = 0.

Suppose the result holds for ¢ < N, that is oq(fo k) — aﬁf ) for all k € Ny and
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0 <t < N. We will show that it holds for t = N + 1.
We have

TNP(T)NPF — (alio)a(eb) _ag%oN“(jo))fF

o

_ Z (]k (so ) .a(eoN“(jk)))2 _ (a(jo)a(eo(jo)) (SDNH(JO))) ]fk

Tk T0 To o 7‘0
keN
—(alaeio) gsoo%o))) Z [(OszN+1(j’“))2 _ (afON“U'O’)Q}f];.
keN
which is in Xp. So, for X to be minimal we must have a(p k) aﬁfNH(jO)) for
all k£ € Np.
Thus by induction on ¢ we can conclude that a'? ) = o #100) for all £,k € N,
Converse follows immediately from Theorem 4.5.5. 0J

Theorem 4.6.2. Let T,, be an operator weighted pseudo shift of type I with A\, ~%
Am for all n,m € Ny, and F € (3 (K) be transparent. Let F' = Y7, . f; be the
transparent decomposition of F' so that each f; is jointly ny-transparent with ng <
ny < .... If for each k € Ny , we have f; = EieNO BijeGie with jr € My and
o(fy) = 7k, then Xp is a minimal reducing subspace of T,, if and only if the following
conditions hold

(i) there exists p > 0 and t, € My such that p*(t;) = ji for all k

(ii) ol = {20 for ali k>0 and t > —p.

Proof. Let, if possible, there exist g > v > 0 such that ¢=7(jo) € My and p™#(j;) €
M. Then T fy = 0 and T f; # 0. Thus, G = T7"' F is a linear combination of
fi’s for k > 1. Clearly, X¢ C Xp. Since f; ¢ X¢, so F' ¢ X and consequently X
is a non-zero reducing subspace properly contained in Xp. Hence, in this case Xpg
cannot be a minimal reducing subspace. Therefore, we must have a unique pu > 0
such that ¢ *(ji) € M, for all £ > 0.

Next we show that a(“o ) — o' 00) for all k > 0 and t > —p.

For k,t € Ny, the result follows exactly as in Theorem 4.6.1. To show that it holds
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for —p <t < 0, we proceed as follows:
Since by (i) there exists p > 0 and ¢, € M; such that ¢#(t;) = jj, for all k, so for

0 <t < p, by Theorem 4.2.3, we have

(T2)'TLf, = (@l G20 (et Gy p, (4.6.2)

k Tk

Using Equation 4.6.2 we get
TiT,F — (afofl(jo)fp - Z ((afkfl(jk)y _ (afofl(jO))Q)fl; € Xp
keN
and so for Xy to be minimal we must have af, % = af "9 for all k € N.

Repeating this argument successively for ¢t = 2,..., u, we get

P UR) = o P700)) for all k € Ny, 0<t<p

Tk 70

=a'0) = o("00) for all k € No, 0>t > —p. (4.6.3)
Conversely, we have to show that X is minimal reducing. Now, for each k € N,

TEf =Y Bis Th g

i€Ng

1y _2/- _ .
— ol I e ) ) S g g
1€Np

Therefore

1y 2/ _ .
THF = aﬁ,‘g (JO))aﬁf (JO))...aﬁf #(j0)) Z Zﬂi,w(tk)gi,tk.

teM1 i€Ng

So if Fii= 37, ey Dieny Bivon(t)9iny, and 6 = aﬁfﬁl(j‘)))agfiz(j‘))) a0 then
TgF = 0F) where § # 0. Hence F} € X which implies that Xz C Xp.

Similarly, we can show that (T7)*T4F = §*F which implies that (T5)"Fy = §F. So,
F e Xp and Xp C Xp. Thus, Xp = Xp .

Let Y be a nonzero reducing subspace contained in Xp. If G is the extremal function
of Y, then G € Xy, which implies that G € Xp,. So by Lemma 4.5.1, G = \F} for
some non-zero scalar A\. This implies F} € Y which gives Y = Xp = Xp. Thus Xp

is a minimal reducing subspace of 7. O
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Theorem 4.6.3. Let T, be an operator pseudo shift of type I with A, ~% X\, for
all n,m € Ny, and F € (2 (K) be transparent. Let F' = > rwen, Ji be the transparent
decomposition of F' so that each f; is jointly ny-transparent with ny < ny < ....
For each k € N let fi = > .o, Bign9i. for some ji € No. If there exist distinct
k1, ko € Ng such that 5z, € My and ji, € Ma, then Xp cannot be a minimal reducing

subspace of T,,.

Proof. Without loss of generality, we assume that F' = f; + f; , where ji, €
My, jr, € My and o(fy,) = iy, 0(f3,) = Thy- AS jr, € My, so there exists > 0
and to € M; such that ¢*(t3) = jr,. Now as Tofy, = 0, 50 T,F ="1T,f; =

(7 (iky))
ZZENQ Blu]kQ 7 "2 gi75071(jk2).

Therefore, if F} :=T,F, then we have

L
TP = Z Biin, [aﬁ*” (]kz))}2gi7jk2

1€Np

= (a£k2 ka)) ) fk;z
=0f,-
Thus we have Iy € Xp such that f; € Xp and f; ¢ Xp. Therefore, ' ¢ Xp,

so that Xp is a proper reducing subspace of Xp. Hence, though X is a reducing

subspace of T,,, it cannot be a minimal reducing subspace of T,. O

4.7 Conclusion

Theorems 4.6.1, 4.6.2 and 4.6.3, can be summarized as the following result:

Theorem 4.7.1. Let ¢ be an injective map on Ny. Also let A, = {Xo, M,...} be
the ¢ induced partition of Ny such that A\, ~% A, for all n,m € Ny. Let T, be an
operator pseudo shift of type I with uniformly bounded invertible operator weights
{A, }nen, given by Aye; = a Ve, for all i € Ny. Let F € (2 (K) be transparent

and F =), .y, [ be the transparent decomposition of F' so that each Iy, is jointly
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ng-transparent with ng < my < ... If f; = ZieNO Bije e With o(f;) = T, then
Xr is a minimal reducing subspace of T,, if and only if one of the following sets of
conditions hold:
(1) (i) jr € My for all k € Ny,

(i) ') = o0 for qli ¢,k € N,.
(1) (i) jx € My for all k € Ny,

(ii) there exists p > 0 and t,, € My such that " (ty) = jx for all k € Ny,

(iii) ol = o0 for all k€ Ny and t > —pu.
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