
Chapter 5

Operator pseudo shifts of types II
and III

5.1 Introduction

In Chapter 4, we have discussed the pseudo shift operator Tϕ,{An} of type I on ℓ
2
+(K),

wherein each An is a positive, invertible, diagonal operator on K. In the first part

of this chapter, we will show that the conclusions of Theorem 4.7.1 holds even if we

consider each An to be invertible, diagonal and not necessarily positive. In fact, we

prove the following theorem:

Theorem 5.1.1. Let {An}n∈N0 be a uniformly bounded sequence of invertible diag-

onal operators on K. Let ϕ be an injective map on N0, and Tϕ,{An} be the weighted

pseudo shift operator on ℓ2+(K) with weights {An}n∈N0. Then there exists a sequence

of positive invertible diagonal operators {Bn}n∈N0 on K such that Tϕ,{An} is unitarily

equivalent to Tϕ,{Bn} provided the following condition holds:

If j ∈ M3 and r is the smallest positive integer such that ϕr(j) = j, then we must

have UjUϕ(j) . . . Uϕr−1(j) = I, where Ak = UkPk is the polar decomposition of Ak as

the product of unitary and positive operators.

In the later part of the chapter, we discuss about the reducing and minimal reducing

subspaces of Tϕ,{An} of types II and III.
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5.2 Unitary equivalence

Lemma 5.2.1. Let Uk be a sequence of unitary operators. Let λn ∈ Λϕ such that

λn ∈ M1 ∪M2 and o(λn) = r. For j ∈ [[λn]], let

Vj :=







I, if j = λn;
UλnUϕ(λn) . . . Uϕk−1(λn), if j = ϕk(λn), k > 0;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk(λn)

, if j = ϕk(λn),−r ≤ k < 0.

Then Vϕ(j) = VjUj.

Proof. Since j ∈ [[λn]] and o(λn) = r, so there exists k ≥ −r such that j = ϕk(λn).

Let, j̃ := ϕ(j). Then j̃ ∈ [[λn]] and j̃ = ϕk+1(λn) where k + 1 ≥ −r + 1. Therefore

Vj̃ :=







I, if j̃ = λn;
UλnUϕ(λn) · · · Uϕk(λn), if k + 1 > 0;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk+1(λn)

, if − r + 1 ≤ k + 1 < 0.

i.e,

Vϕ(j) :=







I, if k = −1;
UλnUϕ(λn) . . . Uϕk(λn), if k > −1;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk+1(λn)

, if − r ≤ k < −1.

To show Vϕ(j) = VjUj .

Case I: For −r ≤ k < −1, we have

Vj = [U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk+1(λn)

]U−1
ϕk(λn)

⇒Vj = Vϕ(j)U
−1
j

⇒Vϕ(j) = VjUj .

Case II: For k = −1, we have j = ϕ−1(λn), Vj = U−1
ϕ−1(λn)

= U−1
j and Vϕ(j) = I.

Therefore Vϕ(j) = I = VjUj .

Case III: For k = 0, we have j = λn, Vj = I and Vϕ(j) = Uλn . Therefore Vϕ(j) =

IUλn = VjUj .

Case IV: For k > 0, we have

Vϕ(j) = [UλnUϕ(λn) . . . Uϕk−1(λn)]Uϕk(λn) = VjUj.

Thus for all j ∈ [[λn]], we have Vϕ(j) = VjUj .
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Lemma 5.2.2. Let {Uk} be a sequence of unitary operators on K, and let λn ∈

Λϕ ∩M4. For j ∈ [[λn]], let

Vj :=







I, if j = λn;
UλnUϕ(λn) . . . Uϕk−1(λn), if j = ϕk(λn), k > 0;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk(λn)

, if j = ϕk(λn), k < 0.

Then Vϕ(j) = VjUj for all j ∈ [[λn]].

The proof being similar to that of Lemma 5.2.1 is omitted.

Lemma 5.2.3. Let {Uk} be a sequence of unitary operators on K, and let λn ∈

Λϕ ∩M3 with o(λn) = r. Let j ∈ [[λn]] = {λnϕ(λn) . . . ϕ
r−1(λn)}. Let

Vj :=

{

I, if j = λn;
UλnUϕ(λn) . . . Uϕk−1(λn), if j = ϕk(λn), 0 < k < r;

Then Vϕ(j) = VjUj if and only if UjUϕ(j) . . . Uϕr−1(j) = I for all j ∈ [[λn]].

Proof. If r = 1, then [[λn]] = {λn}. So j ∈ [[λn]] implies that ϕ(j) = j = λn and

hence Vϕ(j) = VjUj if and only if Uj = I.

Now suppose r > 1. Then for j ∈ [[λn]], there exists an integer k where 0 ≤ k ≤ r−1

such that j = ϕk(λn). Let j̃ := ϕ(j) so that j̃ = ϕk+1(λn).

Case I: For 0 ≤ k < r − 1, we have j̃ = ϕk+1(λn) where 1 ≤ k + 1 ≤ r − 1 and so

Vj̃ = UλnUϕ(λn) . . . Uϕk(λn). i.e,

Vϕ(j) = [UλnUϕ(λn) . . . Uϕk−1(λn)]Uϕk(λn) = VjUj.

Case II: For k = r − 1, we have j = ϕr−1(λn) and j̃ = ϕ(j) = ϕr(λn) = λn (since

o(λn) = r.) Therefore Vj = UλnUϕ(λn) . . . Uϕr−2(λn) and Vj̃ = I. Therefore Vj̃ = VjUj

if and only if I = UλnUϕ(λn) . . . Uϕr−2(λn)Uϕr−1(λn).

The proof of Theorem 5.1.1:

Proof. Let us denote Tϕ,{An} simply as Tϕ. Then

Tϕ(x0, x1, · · ·) = (A0xϕ(0), A1xϕ(1), . . . )

= (Aϕ−1(ϕ(0))xϕ(0), Aϕ−1(ϕ(1))xϕ(1), . . . ).



Chapter 5 82

For each k ∈ N0, let Ak = UkPk be the polar decomposition of Ak as unitary operator

Uk and positive operator Pk respectively. Also for j ∈ N0, let

Ãj :=

{

Aϕ−1(j), if j ∈ R(ϕ);
I, otherwise.

Ũj :=

{

Uϕ−1(j), if j ∈ R(ϕ);
I, otherwise.

P̃j :=

{

Pϕ−1(j), if j ∈ R(ϕ);
I, otherwise.

Then for each j ∈ N0, Ãϕ(j) = Aj , Ũϕ(j) = Uj , and P̃ϕ(j) = Pj.

ŨjP̃j :=

{

Aϕ−1(j), if j ∈ R(ϕ);
I, otherwise,

which implies ŨjP̃j = Ãj.

Define W̃+ on ℓ2+(K) as W̃+(x0, x1, · · ·) = (xϕ(0), xϕ(1), . . . ). Then

W̃+(Ã0x0, Ã1x1, . . . ) = (Ãϕ(0)xϕ(0), Ãϕ(1)xϕ(1), . . . )

= (A0xϕ(0), A1xϕ(1), . . . )

= Tϕ(x0, x1, . . . ).

If U(x0, x1, . . . ) = (Ũ0x0, Ũ1x1, . . . ), and P (x0, x1, . . . ) = (P̃0x0, P̃1x1, . . . ), then

UP (x0, x1, . . . ) = (Ũ0P̃0x0, Ũ1P̃1x1, . . . )

= (Ã0x0, Ã1x1, . . . ).

Therefore W̃+UP = Tϕ.

Let j ∈ N0. Then there exists λn ∈ Λϕ such that j ∈ [[λn]].

(i) If λn ∈ M1∪M2 with o(λn) = r, then there exists k ≥ −r such that ϕk(λn) = j.

Let

Vj :=







I, if k = 0;
UλnUϕ(λn) · · · Uϕk−1(λn), if k > 0;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk(λn)

, if − r ≤ k < 0.
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(ii) If λn ∈ M3 with o(λn) = r, then j ∈ {λn, ϕ(λn), . . . , ϕ
r−1(λn)}. Let

Vj :=

{

I, if j = λn;
UλnUϕ(λn) . . . Uϕk−1(λn), if j = ϕk(λn) for 0 < k < r;

(iii) If λn ∈ M4, then o(λn) = ∞. So there exists k ∈ Z such that ϕk(λn) = j.

Vj :=







I, if k = 0;
UλnUϕ(λn) . . . Uϕk−1(λn), if k > 0;
U−1
ϕ−1(λn)

U−1
ϕ−2(λn)

. . . U−1
ϕk(λn)

, if k < 0.

Clearly, {Vn}n∈N0 is a sequence of unitary operators onK and the operator V defined

as V (x0, x1, . . . ) := (V0x0, V1x1, . . . ) is a unitary operator on ℓ2+(K). Now

W̃+U(x0, x1, . . . ) = W̃+(Ũ0x0, Ũ1x1, . . . )

= (Ũϕ(0)xϕ(0), Ũϕ(1)xϕ(1), . . . )

= (U0xϕ(0), U1xϕ(1), . . . ), and

V ∗W̃+V (x0, x1, . . . ) = V ∗(Vϕ(0)xϕ(0), Vϕ(1)xϕ(1), . . . )

= (V ∗
0 Vϕ(0)xϕ(0), V

∗
1 Vϕ(1)xϕ(1), . . . ).

Thus, V ∗W̃+V = W̃+U if and only if V ∗
k Vϕ(k) = Uk for all k ∈ N0 i.e, if Vϕ(k) = VkUk

for all k ∈ N0.

By Lemmas 5.2.1 and 5.2.2, we have Vϕ(k) = VkUk holds for all k ∈ M1,M2,M4, and

for k ∈ M3, by Lemma 5.2.3, Vϕ(k) = VkUk holds if and only if UkUϕ(k) . . . Uϕr−1(k) =

I, where r is the smallest positive integer such that ϕr(k) = k.

For n ∈ N0, let Dn := VnPnV
∗
n . Then 〈Dnx, x〉 = 〈PnV

∗
n x, V

∗
n x〉 ≥ 0 for all x ∈ K.

This implies Dn ≥ 0. Also Pn is invertible diagonal and Vn is unitary implies each

Dn is diagonal and invertible. Let T = W̃+V PV
∗. Then

T (x0, x1, . . . ) = W̃+(D0x0, D1x1, . . . )

= (Dϕ(0)xϕ(0), Dϕ(1)xϕ(1), . . . ).
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So if Bn := Dϕ(n), then {Bn}n∈N0 is a sequence of positive invertible diagonal oper-

ators and T = Tϕ,{Bn}. Also,

Tϕ = (W̃+U)P = (V ∗W̃+V )P = V ∗(W̃+V PV
∗)V = V ∗TV.

As V is unitary, so Tϕ is unitarily equivalent to T = Tϕ,{Bn}.

5.3 Reducing subspace of bilateral weighted shift

W on ℓ2(C)

Let {λn}n∈Z be a bounded sequence of non-zero scalars, andW be the bilateral shift

on ℓ2(C) with weight sequence {λn}n∈Z. Then for x = (. . . , x−1, [x0], x1, . . . ) ∈ ℓ2(C),

Wx := (. . . , λ−2x−2, [λ−1x−1], λ0x0, . . . ), and so W = UΛ, where U is the un-

weighted bilateral shift and Λ is the diagonal operator with diagonal entries {λn}n∈Z.

The reducing subspaces of W have been studied in [40]. In Theorem 5.3.1 and

Theorem 5.3.3 below, we restate Theorem 4 of [40] for future reference.

Theorem 5.3.1. Let W be the scalar weighted bilateral shift on ℓ2(C) with non-zero

weight sequence {λn}n∈Z. Then the following are equivalent:

(i) W has non-trivial reducing subspaces.

(ii) The set Z divides up into finitely many arithmetic progressions Z1,Z2, . . . ,Zn,

on each of which |λp| (p ∈ Zi, i = 1, 2, . . . , n) is constant.

(iii) There exists a natural number m such that |T |m = rUm, r > 0, where |T | =

U |Λ|, and |Λ| is the operator of multiplication by the sequence {|λn|}n∈Z.

Remark 5.3.2. To say Z divides up into finitely many arithmetic progressions Z1,Z2, . . . ,Zn

means Z =
⋃n
i=1 Zi, where Zi = {kn + i : k ∈ Z}.

Theorem 5.3.3. Let W = UΛ be the scalar weighted bilateral shift on ℓ2(C) with

weight sequence {λn}n∈Z. Let Z1,Z2, . . . ,Zn be disjoint arithmetic progressions with
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difference n and let Z =
⋃n

i=1Zi. If |λk| = ri for all k ∈ Zi, ri > 0, i = 1, 2, . . . , n,

then the following are equivalent:

(i) The space H ⊂ ℓ2(C) reduces the operator W .

(ii) H =MH0, where H0 =
∑n

i=1 PZiH0 ≡
∑n

i=1⊕Hi and UHi = Hi+1 (1 ≤ i ≤ n−

1), UHn = H1, H1 = {{ai}i∈Z : ank = ãk, ai = 0 if i 6= nk, k ∈ Z, and {ãk}k∈Z ∈ H̃}

and H̃ ⊂ ℓ2(C), UH̃ = H̃.

Remark 5.3.4. PZi is the projection of ℓ2(C) onto Hi, which is the closed linear span

of {ek}k∈Zi , where {ek}k∈Z is an orthonormal basis for ℓ2(C). AlsoM is the operator

of multiplication by the sequence {mk}k∈Z in ℓ2(C), where m0 := 1,

mk :=
λ0λ1 . . . λk−1

|λ0λ1 . . . λk−1|
if k ≥ 1, and

mk :=
λ−1λ−2 . . . λk
|λ−1λ−2 . . . λk|

if k < 0.

Definition 5.3.5. Let S be the vector space of all finite linear combinations of finite

products of the operatorsW and W ∗. For any non-zero x ∈ ℓ2(C), Sx := {Tx : T ∈

S}. Then the closure of Sx in ℓ2(C) is a reducing subspace of W , and is denoted by

Xx. Xx is called the subspace generated by x. Clearly, it is the smallest reducing

subspace of W containing x.

Definition 5.3.6. Let x ∈ ℓ2(C) and {ej}j∈Z be an orthonormal basis for ℓ2(C).

Then there exists scalars {αj}j∈Z such that x =
∑

j∈Z αjej. If there exists integers

n1 and n2, n1 ≤ n2 such that αn1 6= 0, αn2 6= 0 and αj = 0 for j < n1 and j > n2,

then we define the length of x as n2 − n1 + 1. Otherwise length of x is defined as

∞. Length of x is denoted as l(x).

Now, let us consider a bilateral shift on ℓ2(C) with positive weight sequence {λn}n∈Z.

In view of Theorems 5.3.1 and 5.3.3,W has a proper reducing subspace if and only if

there exists a positive integer n such that Z = ∪ni=1Zi and Zi = {kn+ i : k ∈ Z} for

all 1 ≤ i ≤ n, and there also exists ri > 0 (1 ≤ i ≤ n) such that λp = ri for all p ∈ Zi.
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In this case, we have W n = rUn where r = r1 . . . rn. Moreover, a subspace M of

ℓ2(C) is reducing forW if and only ifM =M1⊕· · ·⊕Mn, whereMi = PZiM for all i.

We make the following observations:

(1) U(Mi) =Mi+1 for 1 ≤ i ≤ n− 1 and U(Mn) =M1.

(2) If x ∈Mi, then

Wx = riUx ∈Mi+1,

W 2x = riri+1U
2x ∈Mi+2,

· · ·

W nx = rUnx ∈Mi. Similarly,

W ∗x = ri−1U
∗x ∈Mi−1,

(W ∗)2x = ri−1ri−2(U
∗)2x ∈Mi−2,

· · ·

(W ∗)nx = r(U∗)nx ∈Mi.

Thus, (W ∗)nW nx = r2x =W n(W ∗)nx for x ∈Mi (1 ≤ i ≤ n), and

(W ∗)knW knx = r2kx = W kn(W ∗)knx for all k ∈ Z, x ∈Mi (1 ≤ i ≤ n).

(3) If ri = λ for all i ∈ Z, i.e, if Wei = λei+1 for all i ∈ Z, then W will have no eigen

values.

To show this, let if possible, µ be an eigen value of W . Then, there exists a non

zero vector x in ℓ2(C) such that Wx = µx. So if x = (. . . , x−1, [x0], x1, . . . ), then

Wx = µx implies xi+1 =
λ
µ
xi for all i ∈ Z. Without loss of generality, we can assume
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x0 6= 0. Therefore

‖x‖2 =
∞
∑

i=−∞

|xi|
2 = |x0|

2(
∞
∑

i=0

|
λ

µ
|2i +

∞
∑

i=1

|
µ

λ
|2i) ≮ ∞.

This gives us a contradiction.

(4) As above, for any positive integer k, it can be shown that W k also does not have

any eigen value. This also means that for non zero x ∈ ℓ2(C), W kx and x are always

linearly independent.

(5) If x = x1 ⊕ x2 ⊕ · · · ⊕ xn ∈ M with xi ∈ Mi for all 1 ≤ i ≤ n, then xi ∈ M for

each i.

If all the ri’s are equal then n = 1 and so M cannot be reducing for W . Hence, we

cannot have all ri’s equal.

If n = 2, then we must have r1 6= r2. Therefore, r22x −W ∗Wx = (r22 − r21)x1 ∈ M ,

so that x1 ∈M . Similarly, r21x−W ∗Wx = (r21 − r22)x2 implies x2 ∈M .

If n = 3, then we may have two situations:

Case I. ri 6= rj if i 6= j. Then

y := r23x−W ∗Wx = (r23 − r21)x1 + (r23 − r22)x2 ∈M, and

r22y −W ∗Wy = (r22 − r21)(r
2
3 − r21)x1 ∈M.

This implies x1 ∈M . Similarly, x2, x3 ∈M .

Case II. r2 = r3 and r1 6= r3. Then y = r23x −W ∗Wx = (r23 − r21)x1 ∈ H . This

implies x1 ∈ H . Therefore x− x1 = x2 + x3 ∈ H . Again,

(W ∗)2W 2(x2 + x3) = r22r
2
3x2 + r23r

2
1x3

= r22(r
2
3x2 + r21x3) ∈ H.

Therefore, r22r
2
3(x2 + x3) − (W ∗)2W 2(x2 + x3) = r22(r

2
3 − r21)x3 ∈ H . This implies

x3 ∈ H and so x2 ∈ H . Thus each xi ∈ H . The cases for (r3 = r1 and r1 6= r2) and
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(r1 = r2 and r1 6= r3) can be similarly settled.

The cases for n > 3 can be similarly proved.

(6) If x ∈M1 such that l(x) <∞, then

(i) M1 is not minimal reducing for W n.

(ii) M1 does not contain any minimal reducing subspace for W n.

To show this, let y := x+ Unx. Also,

M̃x := span{W kn(W ∗)tnx, (W ∗)knW tnx : t, k ∈ N0}, and

M̃y := span{W kn(W ∗)tny, (W ∗)knW tny : t, k ∈ N0}.

Then y ∈ M̃x which implies M̃y ⊆ M̃x.

Again, l(y) = l(x) + n and for each z ∈ M̃y, l(z) ≥ l(y). Therefore, x /∈ M̃y, which

implies M̃y $ M̃x ⊆M1.

In this context, we raise the following question:

Question: Let x ∈ ℓ2(C) such that l(x) = ∞. If y := x + Ux, then Xy ⊆ Xx. Is

x ∈ Xy ?

An answer to this question would enable us to comment on the existence of minimal

reducing subspaces of W on ℓ2(C). If the answer is “no”, i.e, if x /∈ Xy, then Xx is

not a minimal reducing subspace of W . This together with the observations made

above will imply that W does not have any minimal reducing subspace in ℓ2(C).

However, if the answer to the above question is “yes”, i.e, if x ∈ Xy, then Xx could

possibly be a minimal reducing subspace of W . It is to be mentioned that we could

not answer the above question. Hence, it remains open.
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5.4 Minimal reducing subspaces for Tϕ of type II.

Let λn ∈ Λϕ ∩M4 and Kn := span{gi,j : i ∈ N0, j ∈ [[λn]]}. By Theorem 4.3.13,

Tϕ|Kn is unitarily equivalent to the bilateral backward operator weighted shift on

ℓ2(K). Let us denote Tϕ|Kn as W [λn].

The reducing subspaces of the operator weighted bilateral shift W on ℓ2(K) are

discussed in [44] and [17]. Guyker proved the following result:

Theorem 5.4.1. Let {An}n∈Z be a commuting family of compact, normal opera-

tors with dense range. Let W be the bilateral shift on ℓ2(K) with operator weights

{An}n∈Z. Then W is unitarily equivalent to a countable direct sum
∑

n∈N0
⊕Wn

of bilateral weighted shifts Wn on ℓ2(C) with non-zero scalar weights. Moreover a

subspace M of ℓ2(K) reduces
∑

n∈N0
⊕Wn if and only if M =

∑

n∈N0
⊕Mn, where

Mn reduces Wn for every n ∈ N0.

So, by the above theorem, W [λn] is unitarily equivalent to a countable direct sum

∑

i∈N0
⊕W

[λn]
i of bilateral weighted shiftsW

[λn]
i on ℓ2(C) with non-zero scalar weights.

Also, a subspace M of ℓ2(K) reduces
∑

i∈N0
⊕W

[λn]
i if and only if M =

∑

i∈N0
⊕Mi,

where Mi reduces W
[λn]
i for every i ∈ N0.

Following the above notation, we now propose the following theorem:

Theorem 5.4.2. Let, M =
∑

i∈N0
⊕Mi be a reducing subspace of W [λn]. Also, let

x =
∑

i∈N0
xi be in M , where each xi ∈ Mi, and there exists some i ∈ N0 such that

l(xi) <∞. Then, M cannot be minimal.

Proof. By Theorem 5.4.1, each Mi ⊆ ℓ2(C) is a reducing subspace for W
[λn]
i . Sup-

pose, there exists some i ∈ N0 such that l(xi) < ∞. Then from the observation

6 made in Section 5.3, we can say that the reducing subspace Mi is not minimal

reducing. So there exists a reducing subspace Ni $ Mi. Also, let Nj = Mj for all



Chapter 5 90

j ∈ N0 − {i}, and N =
∑

j∈N0
⊕Nj . Clearly, N $ M , and N is reducing for W [λn].

Hence, M cannot be a minimal reducing subspace.

Remark 5.4.3. In the above theorem, if for each x =
∑

i∈N0
xi in M , we have l(xi) =

∞ for all i ∈ N0, then whetherM is a minimal reducing subspace or not still remains

unresolved.

5.5 Minimal reducing subspaces for Tϕ of type III.

Let λ ∈ Λϕ ∩ M3, and o(λ) = r. Also, let Kλ be the closed linear span of

{gi,j : i ∈ N0, j ∈ [[λ]]}. Then, by Theorem 4.3.12, we have Tϕ|Kλ is a weighted

circulant operator on Hr = K ⊕ · · · ⊕K (r copies).

Again, for i ∈ N0, let K
(i)
λ be the closed linear span of {gi,j : j ∈ [[λ]]}. Then,

Kλ =
∑

i∈N0
⊕K

(i)
λ . As [[λ]] = {λ, ϕ(λ), ϕ2(λ), . . . , ϕr−1(λ)} with ϕr(j) = j for all

j ∈ [[λ]], and An = (α
(n)
i )i∈N0 , so we have Tϕgi,j = α

(ϕ−1(j))
i gi,ϕ−1(j) for all j ∈ [[λ]].

If for i ∈ N0, we define Ci : K
(i)
λ → K

(i)
λ as Cigi,j = α

(ϕ−1(j))
i gi,ϕ−1(j) for all j ∈ [[λ]],

then each Ci is a weighted circulant operator on K
(i)
λ . Also, then Tϕ|Kλ is unitarily

equivalent to the countable direct sum
∑

i∈N0
⊕Ci.

5.5.1 For λ ∈ M3, o(λ) = 1

If o(λ) = 1, then ϕ(λ) = λ, and so for each i ∈ N0, we have Cigi,λ = α
(λ)
i gi,λ, so that

Ci is irreducible, since the only reducing subspaces of Ci are the trivial ones.

Theorem 5.5.1. Let f ∈ Kλ such that f =
∑

i∈Λ ξigi,λ for a subset Λ of N0. Then,

Xf is minimal reducing for Tϕ if and only if α
(λ)
i = α

(λ)
j for all i, j ∈ Λ.
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Proof. We have, Tϕf =
∑

i∈Λ ξiα
(λ)
i gi,λ = T ∗

ϕf .

Condition is sufficient: If α
(λ)
i = α

(λ)
j = η for all i, j ∈ Λ, then Tϕf = ηf = T ∗

ϕf ,

and so Xf = span{f}. Let Y be a non zero reducing subspace of Tϕ such that

Y ⊆ Xf . Then, for 0 6= y ∈ Y , there exists a scalar ξ such that y = ξf . This implies

f = 1
ξ
y ∈ Y , and hence Y = Xf . Thus, Xf is minimal reducing for Tϕ.

Condition is necessary: If i, j ∈ Λ such that α
(λ)
i 6= α

(λ)
j , then let Λ(i) = {t ∈ Λ :

α
(λ)
i 6= α

(λ)
t }. Thus,

α
(λ)
i f − Tϕf =

∑

t∈Λ(i)

(α
(λ)
i − α

(λ)
t )gt,λ = h (say).

Thus, Xh & Xf , and so Xf is not minimal for Tϕ.

5.5.2 For λ ∈ M3, o(λ) = 2

In this case, [[λ]] = {λ, ϕ(λ)}.

Lemma 5.5.2. Let λ ∈ M3 with o(λ) = 2. For i ∈ N0, let x = agi,λ + bgi,ϕ(λ) with

a, b 6= 0. Then Xx is a minimal reducing subspace for Ci if and only if α
(λ)
i = α

(ϕ(λ))
i

and a2 = b2.

Proof. We have the following relations:

Cix =aα
(ϕ−1(λ))
i gi,ϕ−1(λ) + bα

(λ)
i gi,λ

=aα
(ϕ(λ))
i gi,ϕ(λ) + bα

(λ)
i gi,λ. (5.5.1)

C∗
i x =aα

(λ)
i gi,ϕ(λ) + bα

(ϕ(λ))
i gi,λ. (5.5.2)

C∗
i Cix =a(α

(ϕ(λ))
i )2gi,λ + b(α

(λ)
i )2gi,ϕ(λ). (5.5.3)

Case I. Let α
(λ)
i 6= α

(ϕ(λ))
i . Then

(α
(λ)
i )2x− C∗

i Cix = a((α
(ϕ(λ))
i )2 − (α

(λ)
i )2)gi,λ.

This implies gi,λ ∈ Xx. Therefore gi,ϕ(λ) ∈ Xx so that K
(i)
λ = Xx, and hence Xx is

not a proper reducing subspace for Ci.
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Case II. Let α
(λ)
i = α

(ϕ(λ))
i , but a2 6= b2. Then,

x−
b

a
[α

(λ)
i α

(ϕ(λ))
i ]−

1
2Cix = (

a2 − b2

a
)gi,λ,

which implies gi,λ ∈ Xx, and hence again we have K
(i)
λ = Xx.

Case III. Let α
(λ)
i = α

(ϕ(λ))
i , and a2 = b2. Then,

x−
b

a
[α

(λ)
i α

(ϕ(λ))
i ]−

1
2Cix = (

a2 − b2

a
)gi,λ = 0

⇒Cix =
a

b
[α

(λ)
i α

(ϕ(λ))
i ]

1
2x.

Similarly, C∗
i x = a

b
[α

(λ)
i α

(ϕ(λ))
i ]

1
2x. Hence, Xx = span{x} and so Xx is a minimal

reducing subspace of Ci.

Corollary 5.5.3. If i ∈ N0 is such that α
(λ)
i = α

(ϕ(λ))
i , then Ci will have a minimal

reducing subspace Xx for x = agi,λ+ bgi,ϕ(λ) with a, b 6= 0 and a2 = b2. Hence, Tϕ|Kλ

has a minimal reducing subspace Xx.

Theorem 5.5.4. (Sufficiency condition for minimality.)

Let Λ be a subset of N0, and a, b be non zero scalars such that f =
∑

i∈Λ[agi,λ +

bgi,ϕ(λ)] ∈ Kλ, where λ ∈ M3 and o(λ) = 2. Then Xf is a minimal reducing subspace

of Tϕ|Kλ if

(i) a2 = b2, and

(ii) there exists some µ > 0 such that α
(λ)
i = α

(ϕ(λ))
i = µ for all i ∈ Λ.

Proof. For i ∈ Λ, let δi = agi,λ + bgi,ϕ(λ). Then, f =
∑

i∈Λ δi, and since a2 = b2, so

Tϕf =
b

a
(
∑

i∈Λ

α
(λ)
i δi) = (

b

a
µ)f.

Similarly, T ∗
ϕf = (a

b
µ)f = Tϕf (since, a2 = b2 ⇒ a

b
= b

a
). Thus, Xf = span{f} and

so Xf is a minimal reducing subspace of Tϕ.

Remark 5.5.5. Suppose in Theorem 5.5.4, the conditions a2 = b2 and α
(λ)
t = α

(ϕ(λ))
t

for all t ∈ Λ holds. We show below that the condition α
(λ)
i = α

(λ)
j for all i, j ∈ Λ is

necessary for Xf to be a minimal reducing subspace for Tϕ.
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To show this, suppose i, j ∈ Λ such that α
(λ)
i 6= α

(λ)
j . For simplicity, we assume that

Λ = Λ(i) + Λ(j), where

Λ(i) = {t ∈ Λ : α
(λ)
i = α

(λ)
t }

Λ(j) = {t ∈ Λ : α
(λ)
j = α

(λ)
t }.

Then, Tϕf = b
a
(α

(λ)
i

∑

t∈Λ(i) δt + α
(λ)
j

∑

t∈Λ(j) δt), and f =
∑

t∈Λ(i) δt +
∑

t∈Λ(j) δt.

Therefore,

α
(λ)
j f −

a

b
Tϕf = (α

(λ)
j − α

(λ)
i )

∑

t∈Λ(i)

δt = h (say).

So, h ∈ Xf which implies Xh ⊆ Xf . Also,
∑

t∈Λ(j) δt /∈ Xh implies f /∈ Xh. Thus,

Xh $ Xf , and so Xf cannot be minimal.

Remark 5.5.6. All other conditions in Theorem 5.5.4 remaining same, the condition

a2 = b2 is necessary for Xf to be minimal reducing. This can be shown by a method

similar to case II of Lemma 5.5.2.

5.5.3 For λ ∈ M3, o(λ) = 3

Theorem 5.5.7. For i ∈ N0, let x = agi,λ+ bgi,ϕ(λ) with a, b 6= 0, and λ ∈ M3 with

o(λ) = 3. If Xx is a proper minimal reducing subspace of Ci in K
(i)
λ , then there must

exist µ > 0 such that α
(λ)
i = α

(ϕ(λ))
i = α

(ϕ2(λ))
i = µ.

Proof. Here, we have the following relations:

x =agi,λ + bgi,ϕ(λ) (5.5.4)

C∗
i x =aα

(λ)
i gi,ϕ(λ) + bα

(ϕ(λ))
i gi,ϕ2(λ) (5.5.5)

Cix =aα
(ϕ−1(λ))
i gi,ϕ−1(λ) + bα

(λ)
i gi,λ

=aα
(ϕ2(λ))
i gi,ϕ2(λ) + bα

(λ)
i gi,λ (5.5.6)
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CiC
∗
i x =a(α

(λ)
i )2gi,λ + b(α

(ϕ(λ))
i )2gi,ϕ(λ) (5.5.7)

C∗
i Cix =a(α

(ϕ−1(λ))
i )2gi,λ + b(α

(λ)
i )2gi,ϕ(λ)

=a(α
(ϕ2(λ))
i )2gi,λ + b(α

(λ)
i )2gi,ϕ(λ) (5.5.8)

Now, (α
(λ)
i )2 × (5.5.4)− (5.5.7) gives

(α
(λ)
i )2x− CiC

∗
i x = b[(α

(λ)
i )2 − (α

(ϕ(λ))
i )2]gi,ϕ(λ).

This implies gi,ϕ(λ) ∈ Xx if α
(λ)
i 6= α

(ϕ(λ))
i .

Similarly, (α
(ϕ2(λ))
i )2 × (5.5.4)− (5.5.8) gives

(α
(ϕ2(λ))
i )2x− C∗

i Cix = b[(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2]gi,ϕ(λ),

and so, gi,ϕ(λ) ∈ Xx if α
(λ)
i 6= α

(ϕ2(λ))
i .

Thus, if either α
(λ)
i 6= α

(ϕ(λ))
i or α

(λ)
i 6= α

(ϕ2(λ))
i , then gi,ϕ(λ) ∈ Xx. This implies Xx =

span{gi,j : j ∈ [[λ]]} = K
(i)
λ , and hence Xx is not a proper reducing subspace for Ci.

Thus, if Xx is minimal reducing, we must have α
(λ)
i = α

(ϕ(λ))
i = α

(ϕ2(λ))
i = µ.

Theorem 5.5.8. For i ∈ N0, let x = agi,λ + bgi,ϕ(λ) with a, b 6= 0, and λ ∈ M3,

o(λ) = 3. Also, suppose there exists µ > 0 such that α
(λ)
i = α

(ϕ(λ))
i = α

(ϕ2(λ))
i = µ.

Then Xx is a proper reducing subspace for Ci in K
(i)
λ if and only if a3 + b3 = 0.

Proof. We have the following relations:

agi,λ + bgi,ϕ(λ) = x =
1

µ3
C3
i x =

1

µ3
(C∗

i )
3x =

1

µ4
C2
i (C

∗
i )

2x =
1

µ4
(C∗

i )
2C2

i x

=
1

µ2
C∗
i Cix =

1

µ2
CiC

∗
i x. (5.5.9)

agi,ϕ(λ) + bgi,ϕ2(λ) =
1

µ
C∗
i x =

1

µ2
C2
i x (5.5.10)

agi,ϕ2(λ) + bgi,λ =
1

µ2
(C∗

i )
2x =

1

µ
Cix (5.5.11)

Claim: gi,λ /∈ Xx if a3 + b3 = 0. From the above relations, we see that all elements

in Xx are finite linear combinations of the functions agi,λ+ bgi,ϕ(λ), agi,ϕ(λ)+ bgi,ϕ2(λ)
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and agi,ϕ2(λ) + bgi,λ. Let, if possible, gi,λ ∈ Xx. So, there exists A,B,C such that

gi,λ = A(agi,λ + bgi,ϕ(λ)) +B(agi,ϕ(λ) + bgi,ϕ2(λ)) + C(agi,ϕ2(λ) + bgi,λ)

⇒aA + bC − 1 = 0

bA + aB = 0

bB + aC = 0.

This implies PX = Q, where P =





a 0 b
b a 0
0 b a



, X =





A
B
C



 and Q =





1
0
0



.

To solve this system, we consider the augmented matrix

[P |Q] =





a 0 b 1
b a 0 0
0 b a 0





∼





a 0 b 1
0 a2 −b2 −b
0 b a 0



 R2 → aR2 − bR1

∼





a 0 b 1
0 a2 −b2 −b
0 0 a3 + b3 b2



 R3 → a2R3 − bR2.

By assumption, we have a 6= 0, b 6= 0. So, if a3 + b3 = 0, then the system becomes

inconsistent and therefore has no solution. In other words, if a3 + b3 = 0, then

gi,λ /∈ Xx. Hence, Xx $ K
(i)
λ so that Xx is a proper reducing subspace of Ci.

Conversely, suppose a3 + b3 = 0. Then, for A = a2

a3+b3
, B = − ab

a3+b3
, C = b2

a3+b3
, we

get

gi,λ = Ax+
B

µ
C∗
i x+

C

µ2
(C∗

i )
2x,

so that gi,λ ∈ Xx. This implies that gi,ϕ(λ) and gi,ϕ2(λ) are also in Xx, and so

Xx = K
(i)
λ . Thus, Xx is not a proper reducing subspace for Ci if a

3 + b3 6= 0.



Chapter 5 96

Remark 5.5.9. Analogous results can be found if we consider x = agi,λ + bgi,ϕ2(λ)

and x = agi,ϕ(λ) + bgi,ϕ2(λ).

Remark 5.5.10. In Theorem 5.5.8, as Xx is a proper reducing subspace for Ci in K
(i)
λ ,

and dimK
(i)
λ = 3, so dimXx is either 1 or 2. However from (5.5.9) and (5.5.10), we

see that h1 = agi,λ+ bgi,ϕ(λ), and h2 = agi,ϕ(λ)+ bgi,ϕ2(λ), are in Xx, where h1 and h2

are linearly independent in K
(i)
λ .

Also, agi,ϕ2(λ) + bgi,λ = −a2

b
(bh2 − ah1). Hence, Xx = span{h1, h2}, i.e, dimXx = 2.

Thus, if at all we have a minimal reducing subspace for Ci, then it will be of the

form Xy, where y = agi,λ + bgi,ϕ(λ) + cgi,ϕ2(λ) with scalars a, b, c non zero.

Theorem 5.5.11. Let λ ∈ M3 with o(λ) = 3. For i ∈ N0, let x = agi,λ + bgi,ϕ(λ) +

cgi,ϕ2(λ) with a, b, c 6= 0. Then Xx is minimal reducing for Ci if

(i) a
b
= b

c
= c

a
, and

(ii) there exists µ > 0 such that α
(λ)
i = α

(ϕ(λ))
i = α

(ϕ2(λ))
i = µ.

Proof. We have C∗
i x = µ(agi,ϕ(λ) + bgi,ϕ2(λ) + cgi,λ). Therefore,

(cµ)x− aC∗
i x = µ[(bc− a2)gi,ϕ(λ) + (c2 − ab)gi,ϕ2(λ)].

As, a2 = bc and c2 = ab, so C∗
i x = ( cµ

a
)x. Similarly, Cix = ( bµ

a
)x. Hence, Xx =

span{x}, and hence Xx is a minimal reducing subspace.

Theorem 5.5.12. Let λ ∈ M3 with o(λ) = 3. For i ∈ N0, let x = agi,λ + bgi,ϕ(λ) +

cgi,ϕ2(λ) with a, b, c 6= 0. Suppose Xx is a proper minimal reducing subspace for Ci in

K
(i)
λ . If two of the values α

(λ)
i , α

(ϕ(λ))
i , α

(ϕ2(λ))
i are equal, then all three must be equal.

Proof. Here, we have the following relations:

x = agi,λ + bgi,ϕ(λ) + cgi,ϕ2(λ). (5.5.12)

CiC
∗
i x = a(α

(λ)
i )2gi,λ + b(α

(ϕ(λ))
i )2gi,ϕ(λ) + c(α

(ϕ2(λ))
i )2gi,ϕ2(λ). (5.5.13)

C∗
i Cix = a(α

(ϕ2(λ))
i )2gi,λ + b(α

(λ)
i )2gi,ϕ(λ) + c(α

(ϕ(λ))
i )2gi,ϕ2(λ). (5.5.14)
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Case I. Suppose, α
(λ)
i = α

(ϕ(λ))
i but α

(λ)
i 6= α

(ϕ2(λ))
i . Then

[(α
(λ)
i )2 − (α

(ϕ2(λ))
i )2]agi,λ + [(α

(λ)
i )2 − (α

(ϕ(λ))
i )2]cgi,ϕ2(λ)

=(α
(λ)
i )2x− C∗

i Cix ∈ Xx. (5.5.15)

As α
(λ)
i = α

(ϕ(λ))
i and α

(λ)
i 6= α

(ϕ2(λ))
i , so we get gi,λ ∈ Xx, and so Xx = K

(i)
λ , showing

that Xx cannot be a proper subspace for Ci.

Case II. Suppose, α
(λ)
i = α

(ϕ2(λ))
i but α

(λ)
i 6= α

(ϕ(λ))
i . Again by (5.5.15), we see that

gi,ϕ2(λ) ∈ Xx, which implies Xx = K
(i)
λ . So, Xx cannot be a proper subspace for Ci.

Case III. Suppose, α
(ϕ(λ))
i = α

(ϕ2(λ))
i but α

(λ)
i 6= α

(ϕ(λ))
i . Then

[(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2]bgi,ϕ(λ) + [(α

(ϕ2(λ))
i )2 − (α

(ϕ(λ))
i )2]cgi,ϕ2(λ)

=(α
(ϕ2(λ))
i )2x− C∗

i Cix ∈ Xx. (5.5.16)

As α
(λ)
i 6= α

(ϕ2(λ))
i and α

(ϕ(λ))
i = α

(ϕ2(λ))
i . So, we get gi,ϕ(λ) ∈ Xx, and so Xx = K

(i)
λ ,

showing that Xx cannot be a proper subspace for Ci.

Theorem 5.5.13. Let λ ∈ M3 with o(λ) = 3. For i ∈ N0, let x = agi,λ + bgi,ϕ(λ) +

cgi,ϕ2(λ) with a, b, c 6= 0. Suppose Xx is a proper reducing subspace for Ci in K
(i)
λ . If

α
(λ)
i , α

(ϕ(λ))
i , α

(ϕ2(λ))
i are all distinct, then

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

(α
(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

=
(α

(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2

=
(α

(ϕ2(λ))
i )2 − (α

(λ)
i )2

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

.

Proof. From (5.5.12) and (5.5.13), we have

(α
(λ)
i )2x− CiC

∗
i x = b

[

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

]

gi,ϕ(λ) + c
[

(α
(λ)
i )2 − (α

(ϕ2(λ))
i )2

]

gi,ϕ2(λ) ∈ Xx.
(5.5.17)

Then from (5.5.16) and (5.5.17), we get

b
[

[(α
(λ)
i )2 − (α

(ϕ(λ))
i )2][(α

(ϕ2(λ))
i )2 − (α

(ϕ(λ))
i )2]− [(α

(ϕ2(λ))
i )2 − (α

(λ)
i )2]2

]

gi,ϕ(λ) ∈ Xx.
(5.5.18)
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Let, if possible

(α
(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2

6=
(α

(ϕ2(λ))
i )2 − (α

(λ)
i )2

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

.

Then, from (5.5.18), gi,ϕ(λ) ∈ Xx. This implies Xx = K
(i)
λ , a contradiction. Hence,

we must have

(α
(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2

=
(α

(ϕ2(λ))
i )2 − (α

(λ)
i )2

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

.

A similar situation occurs for

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

(α
(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

6=
(α

(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

(α
(ϕ2(λ))
i )2 − (α

(λ)
i )2

, or

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

(α
(ϕ(λ))
i )2 − (α

(ϕ2(λ))
i )2

6=
(α

(ϕ2(λ))
i )2 − (α

(λ)
i )2

(α
(λ)
i )2 − (α

(ϕ(λ))
i )2

.

Theorem 5.5.14. Sufficiency condition for minimality:

Let λ ∈ M3 with o(λ) = 3. Let Λ be a subset of N0, and a, b, c be non zero scalars

such that f =
∑

i∈Λ[agi,λ+ bgi,ϕ(λ) + cgi,ϕ2(λ)] ∈ Kλ. Then Xf is a minimal reducing

subspace of Tϕ|Kλ if

(i) a
b
= b

c
= c

a
, and

(ii) there exists µ > 0 such that α
(λ)
i = α

(ϕ(λ))
i = a

ϕ2(λ)
i = µ for all i ∈ Λ.

Proof. For i ∈ Λ, let δi = agi,λ + bgi,ϕ(λ) + cgi,ϕ2(λ). Then f =
∑

i∈Λ δi and Tϕ|Kλ =

∑

i∈Λ Ci. By Theorem 5.5.11, for each i ∈ Λ, we have Ciδi = ( bµ
a
)δi and C∗

i δi =

( cµ
a
)δi. Therefore, Tϕf = ( bµ

a
)f and T ∗

ϕf = ( cµ
a
)f . Hence, Xf = span{f}, and so Xf

is a minimal reducing subspace of Tϕ on Kλ.

5.5.4 For λ ∈ M3, o(λ) = r

From Theorem 5.5.4 and Theorem 5.5.14, we can propose a sufficiency condition for

minimality where λ ∈ M3, o(λ) = r, r ≥ 2.
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Theorem 5.5.15. Let λ ∈ M3 and o(λ) = r with r ≥ 2. Let Λ be a subset of N0,

and a0, a1, . . . , ar−1 be non zero scalars such that f =
∑

i∈Λ[a0gi,λ + a1gi,ϕ(λ) + · · ·+

ar−1gi,ϕr−1(λ)] ∈ Kλ. Then Xf is a minimal reducing subspace of Tϕ|Kλ if

(i) a0
a1

= a1
a2

= · · · = ar−2

ar−1
= ar−1

a0
, and

(ii) there exists µ > 0 such that α
(ϕt(λ))
i = µ for all 0 ≤ t < r and i ∈ Λ.

The proof of Theorem 5.5.15 is similar to that of Theorem 5.5.14, and hence it is

omitted.
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