Chapter 5

Operator pseudo shifts of types II and III

5.1 Introduction

In Chapter 4, we have discussed the pseudo shift operator $T_{\varphi,\left\{A_{n}\right\}}$ of type I on $\ell_{+}^{2}(K)$, wherein each A_{n} is a positive, invertible, diagonal operator on K. In the first part of this chapter, we will show that the conclusions of Theorem 4.7.1 holds even if we consider each A_{n} to be invertible, diagonal and not necessarily positive. In fact, we prove the following theorem:

Theorem 5.1.1. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of invertible diagonal operators on K. Let φ be an injective map on \mathbb{N}_{0}, and $T_{\varphi,\left\{A_{n}\right\}}$ be the weighted pseudo shift operator on $\ell_{+}^{2}(K)$ with weights $\left\{A_{n}\right\}_{n \in \mathbb{N}_{0}}$. Then there exists a sequence of positive invertible diagonal operators $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ on K such that $T_{\varphi,\left\{A_{n}\right\}}$ is unitarily equivalent to $T_{\varphi,\left\{B_{n}\right\}}$ provided the following condition holds:

If $j \in \mathcal{M}_{3}$ and r is the smallest positive integer such that $\varphi^{r}(j)=j$, then we must have $U_{j} U_{\varphi(j)} \ldots U_{\varphi^{r-1}(j)}=I$, where $A_{k}=U_{k} P_{k}$ is the polar decomposition of A_{k} as the product of unitary and positive operators.

In the later part of the chapter, we discuss about the reducing and minimal reducing subspaces of $T_{\varphi,\left\{A_{n}\right\}}$ of types II and III.

5.2 Unitary equivalence

Lemma 5.2.1. Let U_{k} be a sequence of unitary operators. Let $\lambda_{n} \in \Lambda_{\varphi}$ such that $\lambda_{n} \in \mathcal{M}_{1} \cup \mathcal{M}_{2}$ and $o\left(\lambda_{n}\right)=r$. For $j \in\left[\left[\lambda_{n}\right]\right]$, let

$$
V_{j}:= \begin{cases}I, & \text { if } j=\lambda_{n} ; \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}, & \text { if } j=\varphi^{k}\left(\lambda_{n}\right), k>0 ; \\ U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{k}\left(\lambda_{n}\right)}^{-1}, & \text { if } j=\varphi^{k}\left(\lambda_{n}\right),-r \leq k<0\end{cases}
$$

Then $V_{\varphi(j)}=V_{j} U_{j}$.
Proof. Since $j \in\left[\left[\lambda_{n}\right]\right]$ and $o\left(\lambda_{n}\right)=r$, so there exists $k \geq-r$ such that $j=\varphi^{k}\left(\lambda_{n}\right)$. Let, $\tilde{j}:=\varphi(j)$. Then $\tilde{j} \in\left[\left[\lambda_{n}\right]\right]$ and $\tilde{j}=\varphi^{k+1}\left(\lambda_{n}\right)$ where $k+1 \geq-r+1$. Therefore

$$
V_{\tilde{j}}:= \begin{cases}I, & \text { if } \tilde{j}=\lambda_{n} \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \cdots U_{\varphi^{k}\left(\lambda_{n}\right)}, & \text { if } k+1>0 \\ U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} \cdots U_{\varphi^{k+1}\left(\lambda_{n}\right)}^{-1}, & \text { if }-r+1 \leq k+1<0\end{cases}
$$

i.e,

$$
V_{\varphi(j)}:= \begin{cases}I, & \text { if } k=-1 ; \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k}\left(\lambda_{n}\right)}, & \text { if } k>-1 ; \\ U_{\varphi^{-1}\left(\lambda_{n}\right)} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} \cdots U_{\varphi^{k+1}\left(\lambda_{n}\right)}^{-1}, & \text { if }-r \leq k<-1 .\end{cases}
$$

To show $V_{\varphi(j)}=V_{j} U_{j}$.
Case I: For $-r \leq k<-1$, we have

$$
\begin{aligned}
& V_{j}=\left[U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} \cdots U_{\varphi^{k+1}\left(\lambda_{n}\right)}^{-1}\right] U_{\varphi^{k}\left(\lambda_{n}\right)}^{-1} \\
\Rightarrow & V_{j}=V_{\varphi(j)} U_{j}^{-1} \\
\Rightarrow & V_{\varphi(j)}=V_{j} U_{j} .
\end{aligned}
$$

Case II: For $k=-1$, we have $j=\varphi^{-1}\left(\lambda_{n}\right), V_{j}=U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1}=U_{j}^{-1}$ and $V_{\varphi(j)}=I$. Therefore $V_{\varphi(j)}=I=V_{j} U_{j}$.
Case III: For $k=0$, we have $j=\lambda_{n}, V_{j}=I$ and $V_{\varphi(j)}=U_{\lambda_{n}}$. Therefore $V_{\varphi(j)}=$ $I U_{\lambda_{n}}=V_{j} U_{j}$.

Case IV: For $k>0$, we have

$$
V_{\varphi(j)}=\left[U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}\right] U_{\varphi^{k}\left(\lambda_{n}\right)}=V_{j} U_{j} .
$$

Thus for all $j \in\left[\left[\lambda_{n}\right]\right]$, we have $V_{\varphi(j)}=V_{j} U_{j}$.

Lemma 5.2.2. Let $\left\{U_{k}\right\}$ be a sequence of unitary operators on K, and let $\lambda_{n} \in$ $\Lambda_{\varphi} \cap \mathcal{M}_{4}$. For $j \in\left[\left[\lambda_{n}\right]\right]$, let

$$
V_{j}:= \begin{cases}I, & \text { if } j=\lambda_{n} ; \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}, & \text { if } j=\varphi^{k}\left(\lambda_{n}\right), k>0 \\ U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} \ldots U_{\varphi^{k}\left(\lambda_{n}\right)}^{-1}, & \text { if } j=\varphi^{k}\left(\lambda_{n}\right), k<0\end{cases}
$$

Then $V_{\varphi(j)}=V_{j} U_{j}$ for all $j \in\left[\left[\lambda_{n}\right]\right]$.
The proof being similar to that of Lemma 5.2.1 is omitted.
Lemma 5.2.3. Let $\left\{U_{k}\right\}$ be a sequence of unitary operators on K, and let $\lambda_{n} \in$ $\Lambda_{\varphi} \cap \mathcal{M}_{3}$ with $o\left(\lambda_{n}\right)=r$. Let $j \in\left[\left[\lambda_{n}\right]\right]=\left\{\lambda_{n} \varphi\left(\lambda_{n}\right) \ldots \varphi^{r-1}\left(\lambda_{n}\right)\right\}$. Let

$$
V_{j}:= \begin{cases}I, & \text { if } j=\lambda_{n} ; \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}, & \text { if } j=\varphi^{k}\left(\lambda_{n}\right), 0<k<r ;\end{cases}
$$

Then $V_{\varphi(j)}=V_{j} U_{j}$ if and only if $U_{j} U_{\varphi(j)} \ldots U_{\varphi^{r-1}(j)}=I$ for all $j \in\left[\left[\lambda_{n}\right]\right]$.
Proof. If $r=1$, then $\left[\left[\lambda_{n}\right]\right]=\left\{\lambda_{n}\right\}$. So $j \in\left[\left[\lambda_{n}\right]\right]$ implies that $\varphi(j)=j=\lambda_{n}$ and hence $V_{\varphi(j)}=V_{j} U_{j}$ if and only if $U_{j}=I$.

Now suppose $r>1$. Then for $j \in\left[\left[\lambda_{n}\right]\right]$, there exists an integer k where $0 \leq k \leq r-1$ such that $j=\varphi^{k}\left(\lambda_{n}\right)$. Let $\tilde{j}:=\varphi(j)$ so that $\tilde{j}=\varphi^{k+1}\left(\lambda_{n}\right)$.
Case I: For $0 \leq k<r-1$, we have $\tilde{j}=\varphi^{k+1}\left(\lambda_{n}\right)$ where $1 \leq k+1 \leq r-1$ and so $V_{\tilde{j}}=U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k}\left(\lambda_{n}\right)}$. i.e,

$$
V_{\varphi(j)}=\left[U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}\right] U_{\varphi^{k}\left(\lambda_{n}\right)}=V_{j} U_{j} .
$$

Case II: For $k=r-1$, we have $j=\varphi^{r-1}\left(\lambda_{n}\right)$ and $\tilde{j}=\varphi(j)=\varphi^{r}\left(\lambda_{n}\right)=\lambda_{n}$ (since $o\left(\lambda_{n}\right)=r$. .) Therefore $V_{j}=U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{r-2}\left(\lambda_{n}\right)}$ and $V_{\tilde{j}}=I$. Therefore $V_{\tilde{j}}=V_{j} U_{j}$ if and only if $I=U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{r-2}\left(\lambda_{n}\right)} U_{\varphi^{r-1}\left(\lambda_{n}\right)}$.

The proof of Theorem 5.1.1:
Proof. Let us denote $T_{\varphi,\left\{A_{n}\right\}}$ simply as T_{φ}. Then

$$
\begin{aligned}
T_{\varphi}\left(x_{0}, x_{1}, \cdots\right) & =\left(A_{0} x_{\varphi(0)}, A_{1} x_{\varphi(1)}, \ldots\right) \\
& =\left(A_{\varphi^{-1}(\varphi(0))} x_{\varphi(0)}, A_{\varphi^{-1}(\varphi(1))} x_{\varphi(1)}, \ldots\right) .
\end{aligned}
$$

For each $k \in \mathbb{N}_{0}$, let $A_{k}=U_{k} P_{k}$ be the polar decomposition of A_{k} as unitary operator U_{k} and positive operator P_{k} respectively. Also for $j \in \mathbb{N}_{0}$, let

$$
\begin{aligned}
& \tilde{A}_{j}:= \begin{cases}A_{\varphi^{-1}(j)}, & \text { if } j \in R(\varphi) ; \\
I, & \text { otherwise. }\end{cases} \\
& \tilde{U}_{j}:= \begin{cases}U_{\varphi^{-1}(j)}, & \text { if } j \in R(\varphi) ; \\
I, & \text { otherwise. }\end{cases} \\
& \tilde{P}_{j}:= \begin{cases}P_{\varphi^{-1}(j)}, & \text { if } j \in R(\varphi) ; \\
I, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then for each $j \in \mathbb{N}_{0}, \tilde{A}_{\varphi(j)}=A_{j}, \tilde{U}_{\varphi(j)}=U_{j}$, and $\tilde{P}_{\varphi(j)}=P_{j}$.

$$
\tilde{U}_{j} \tilde{P}_{j}:= \begin{cases}A_{\varphi^{-1}(j)}, & \text { if } j \in R(\varphi) \\ I, & \text { otherwise }\end{cases}
$$

which implies $\tilde{U}_{j} \tilde{P}_{j}=\tilde{A}_{j}$.
Define \tilde{W}_{+}on $\ell_{+}^{2}(K)$ as $\tilde{W}_{+}\left(x_{0}, x_{1}, \cdots\right)=\left(x_{\varphi(0)}, x_{\varphi(1)}, \ldots\right)$. Then

$$
\begin{aligned}
\tilde{W}_{+}\left(\tilde{A}_{0} x_{0}, \tilde{A}_{1} x_{1}, \ldots\right) & =\left(\tilde{A}_{\varphi(0)} x_{\varphi(0)}, \tilde{A}_{\varphi(1)} x_{\varphi(1)}, \ldots\right) \\
& =\left(A_{0} x_{\varphi(0)}, A_{1} x_{\varphi(1)}, \ldots\right) \\
& =T_{\varphi}\left(x_{0}, x_{1}, \ldots\right)
\end{aligned}
$$

If $U\left(x_{0}, x_{1}, \ldots\right)=\left(\tilde{U}_{0} x_{0}, \tilde{U}_{1} x_{1}, \ldots\right)$, and $P\left(x_{0}, x_{1}, \ldots\right)=\left(\tilde{P}_{0} x_{0}, \tilde{P}_{1} x_{1}, \ldots\right)$, then

$$
\begin{aligned}
U P\left(x_{0}, x_{1}, \ldots\right) & =\left(\tilde{U}_{0} \tilde{P}_{0} x_{0}, \tilde{U}_{1} \tilde{P}_{1} x_{1}, \ldots\right) \\
& =\left(\tilde{A}_{0} x_{0}, \tilde{A}_{1} x_{1}, \ldots\right) .
\end{aligned}
$$

Therefore $\tilde{W}_{+} U P=T_{\varphi}$.
Let $j \in \mathbb{N}_{0}$. Then there exists $\lambda_{n} \in \Lambda_{\varphi}$ such that $j \in\left[\left[\lambda_{n}\right]\right]$.
(i) If $\lambda_{n} \in \mathcal{M}_{1} \cup \mathcal{M}_{2}$ with $o\left(\lambda_{n}\right)=r$, then there exists $k \geq-r$ such that $\varphi^{k}\left(\lambda_{n}\right)=j$.

Let

$$
V_{j}:= \begin{cases}I, & \text { if } k=0 \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \cdots U_{\varphi^{k-1}\left(\lambda_{n}\right)}, & \text { if } k>0 ; \\ U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right) \cdots U_{\varphi^{k}\left(\lambda_{n}\right)}^{-1},}, \text { if }-r \leq k<0 .\end{cases}
$$

(ii) If $\lambda_{n} \in \mathcal{M}_{3}$ with $o\left(\lambda_{n}\right)=r$, then $j \in\left\{\lambda_{n}, \varphi\left(\lambda_{n}\right), \ldots, \varphi^{r-1}\left(\lambda_{n}\right)\right\}$. Let

$$
V_{j}:= \begin{cases}I, & \text { if } j=\lambda_{n} ; \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right),}, \text { if } j=\varphi^{k}\left(\lambda_{n}\right) \text { for } 0<k<r\end{cases}
$$

(iii) If $\lambda_{n} \in \mathcal{M}_{4}$, then $o\left(\lambda_{n}\right)=\infty$. So there exists $k \in \mathbb{Z}$ such that $\varphi^{k}\left(\lambda_{n}\right)=j$.

$$
V_{j}:= \begin{cases}I, & \text { if } k=0 \\ U_{\lambda_{n}} U_{\varphi\left(\lambda_{n}\right)} \ldots U_{\varphi^{k-1}\left(\lambda_{n}\right)}, & \text { if } k>0 \\ U_{\varphi^{-1}\left(\lambda_{n}\right)}^{-1} U_{\varphi^{-2}\left(\lambda_{n}\right)}^{-1} \ldots U_{\varphi^{k}\left(\lambda_{n}\right)}^{-1}, & \text { if } k<0\end{cases}
$$

Clearly, $\left\{V_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of unitary operators on K and the operator V defined as $V\left(x_{0}, x_{1}, \ldots\right):=\left(V_{0} x_{0}, V_{1} x_{1}, \ldots\right)$ is a unitary operator on $\ell_{+}^{2}(K)$. Now

$$
\begin{aligned}
\tilde{W}_{+} U\left(x_{0}, x_{1}, \ldots\right) & =\tilde{W}_{+}\left(\tilde{U}_{0} x_{0}, \tilde{U}_{1} x_{1}, \ldots\right) \\
& =\left(\tilde{U}_{\varphi(0)} x_{\varphi(0)}, \tilde{U}_{\varphi(1)} x_{\varphi(1)}, \ldots\right) \\
& =\left(U_{0} x_{\varphi(0)}, U_{1} x_{\varphi(1)}, \ldots\right), \text { and } \\
V^{*} \tilde{W}_{+} V\left(x_{0}, x_{1}, \ldots\right) & =V^{*}\left(V_{\varphi(0)} x_{\varphi(0)}, V_{\varphi(1)} x_{\varphi(1)}, \ldots\right) \\
& =\left(V_{0}^{*} V_{\varphi(0)} x_{\varphi(0)}, V_{1}^{*} V_{\varphi(1)} x_{\varphi(1)}, \ldots\right) .
\end{aligned}
$$

Thus, $V^{*} \tilde{W}_{+} V=\tilde{W}_{+} U$ if and only if $V_{k}^{*} V_{\varphi(k)}=U_{k}$ for all $k \in \mathbb{N}_{0}$ i.e, if $V_{\varphi(k)}=V_{k} U_{k}$ for all $k \in \mathbb{N}_{0}$.

By Lemmas 5.2.1 and 5.2.2, we have $V_{\varphi(k)}=V_{k} U_{k}$ holds for all $k \in \mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{4}$, and for $k \in \mathcal{M}_{3}$, by Lemma 5.2.3, $V_{\varphi(k)}=V_{k} U_{k}$ holds if and only if $U_{k} U_{\varphi(k)} \ldots U_{\varphi^{r-1}(k)}=$ I, where r is the smallest positive integer such that $\varphi^{r}(k)=k$.

For $n \in \mathbb{N}_{0}$, let $D_{n}:=V_{n} P_{n} V_{n}^{*}$. Then $\left\langle D_{n} x, x\right\rangle=\left\langle P_{n} V_{n}^{*} x, V_{n}^{*} x\right\rangle \geq 0$ for all $x \in K$. This implies $D_{n} \geq 0$. Also P_{n} is invertible diagonal and V_{n} is unitary implies each D_{n} is diagonal and invertible. Let $T=\tilde{W}_{+} V P V^{*}$. Then

$$
\begin{aligned}
T\left(x_{0}, x_{1}, \ldots\right) & =\tilde{W}_{+}\left(D_{0} x_{0}, D_{1} x_{1}, \ldots\right) \\
& =\left(D_{\varphi(0)} x_{\varphi(0)}, D_{\varphi(1)} x_{\varphi(1)}, \ldots\right)
\end{aligned}
$$

So if $B_{n}:=D_{\varphi(n)}$, then $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a sequence of positive invertible diagonal operators and $T=T_{\varphi,\left\{B_{n}\right\}}$. Also,

$$
T_{\varphi}=\left(\tilde{W}_{+} U\right) P=\left(V^{*} \tilde{W}_{+} V\right) P=V^{*}\left(\tilde{W}_{+} V P V^{*}\right) V=V^{*} T V
$$

As V is unitary, so T_{φ} is unitarily equivalent to $T=T_{\varphi,\left\{B_{n}\right\}}$.

5.3 Reducing subspace of bilateral weighted shift W on $\ell^{2}(\mathbb{C})$

Let $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$ be a bounded sequence of non-zero scalars, and W be the bilateral shift on $\ell^{2}(\mathbb{C})$ with weight sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$. Then for $x=\left(\ldots, x_{-1},\left[x_{0}\right], x_{1}, \ldots\right) \in \ell^{2}(\mathbb{C})$, $W x:=\left(\ldots, \lambda_{-2} x_{-2},\left[\lambda_{-1} x_{-1}\right], \lambda_{0} x_{0}, \ldots\right)$, and so $W=U \Lambda$, where U is the unweighted bilateral shift and Λ is the diagonal operator with diagonal entries $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$.

The reducing subspaces of W have been studied in [40]. In Theorem 5.3.1 and Theorem 5.3.3 below, we restate Theorem 4 of [40] for future reference.

Theorem 5.3.1. Let W be the scalar weighted bilateral shift on $\ell^{2}(\mathbb{C})$ with non-zero weight sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$. Then the following are equivalent:
(i) W has non-trivial reducing subspaces.
(ii) The set \mathbb{Z} divides up into finitely many arithmetic progressions $\mathbb{Z}_{1}, \mathbb{Z}_{2}, \ldots, \mathbb{Z}_{n}$, on each of which $\left|\lambda_{p}\right|\left(p \in \mathbb{Z}_{i}, i=1,2, \ldots, n\right)$ is constant.
(iii) There exists a natural number m such that $|T|^{m}=r U^{m}, r>0$, where $|T|=$ $U|\Lambda|$, and $|\Lambda|$ is the operator of multiplication by the sequence $\left\{\left|\lambda_{n}\right|\right\}_{n \in \mathbb{Z}}$.

Remark 5.3.2. To say \mathbb{Z} divides up into finitely many arithmetic progressions $\mathbb{Z}_{1}, \mathbb{Z}_{2}, \ldots, \mathbb{Z}_{n}$ means $\mathbb{Z}=\bigcup_{i=1}^{n} \mathbb{Z}_{i}$, where $\mathbb{Z}_{i}=\{k n+i: k \in \mathbb{Z}\}$.

Theorem 5.3.3. Let $W=U \Lambda$ be the scalar weighted bilateral shift on $\ell^{2}(\mathbb{C})$ with weight sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$. Let $\mathbb{Z}_{1}, \mathbb{Z}_{2}, \ldots, \mathbb{Z}_{n}$ be disjoint arithmetic progressions with
difference n and let $\mathbb{Z}=\bigcup_{i=1}^{n} \mathbb{Z}_{i}$. If $\left|\lambda_{k}\right|=r_{i}$ for all $k \in \mathbb{Z}_{i}, r_{i}>0, i=1,2, \ldots, n$, then the following are equivalent:
(i) The space $H \subset \ell^{2}(\mathbb{C})$ reduces the operator W.
(ii) $H=M H_{0}$, where $H_{0}=\sum_{i=1}^{n} P_{\mathbb{Z}_{i}} H_{0} \equiv \sum_{i=1}^{n} \oplus H_{i}$ and $U H_{i}=H_{i+1} \quad(1 \leq i \leq n-$ 1), $U H_{n}=H_{1}, H_{1}=\left\{\left\{a_{i}\right\}_{i \in \mathbb{Z}}: a_{n k}=\tilde{a}_{k}, a_{i}=0\right.$ if $i \neq n k, k \in \mathbb{Z}$, and $\left.\left\{\tilde{a}_{k}\right\}_{k \in \mathbb{Z}} \in \tilde{H}\right\}$ and $\tilde{H} \subset \ell^{2}(\mathbb{C}), U \tilde{H}=\tilde{H}$.

Remark 5.3.4. $P_{\mathbb{Z}_{i}}$ is the projection of $\ell^{2}(\mathbb{C})$ onto H_{i}, which is the closed linear span of $\left\{e_{k}\right\}_{k \in \mathbb{Z}_{i}}$, where $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is an orthonormal basis for $\ell^{2}(\mathbb{C})$. Also M is the operator of multiplication by the sequence $\left\{m_{k}\right\}_{k \in \mathbb{Z}}$ in $\ell^{2}(\mathbb{C})$, where $m_{0}:=1$,

$$
\begin{aligned}
m_{k} & :=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{k-1}}{\left|\lambda_{0} \lambda_{1} \ldots \lambda_{k-1}\right|} \text { if } k \geq 1, \text { and } \\
m_{k} & :=\frac{\lambda_{-1} \lambda_{-2} \ldots \lambda_{k}}{\left|\lambda_{-1} \lambda_{-2} \ldots \lambda_{k}\right|} \text { if } k<0
\end{aligned}
$$

Definition 5.3.5. Let \mathcal{S} be the vector space of all finite linear combinations of finite products of the operators W and W^{*}. For any non-zero $x \in \ell^{2}(\mathbb{C}), \mathcal{S} x:=\{T x: T \in$ $\mathcal{S}\}$. Then the closure of $\mathcal{S} x$ in $\ell^{2}(\mathbb{C})$ is a reducing subspace of W, and is denoted by $X_{x} . X_{x}$ is called the subspace generated by x. Clearly, it is the smallest reducing subspace of W containing x.

Definition 5.3.6. Let $x \in \ell^{2}(\mathbb{C})$ and $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ be an orthonormal basis for $\ell^{2}(\mathbb{C})$. Then there exists scalars $\left\{\alpha_{j}\right\}_{j \in \mathbb{Z}}$ such that $x=\sum_{j \in \mathbb{Z}} \alpha_{j} e_{j}$. If there exists integers n_{1} and $n_{2}, n_{1} \leq n_{2}$ such that $\alpha_{n_{1}} \neq 0, \alpha_{n_{2}} \neq 0$ and $\alpha_{j}=0$ for $j<n_{1}$ and $j>n_{2}$, then we define the length of x as $n_{2}-n_{1}+1$. Otherwise length of x is defined as ∞. Length of x is denoted as $l(x)$.

Now, let us consider a bilateral shift on $\ell^{2}(\mathbb{C})$ with positive weight sequence $\left\{\lambda_{n}\right\}_{n \in \mathbb{Z}}$. In view of Theorems 5.3.1 and 5.3.3, W has a proper reducing subspace if and only if there exists a positive integer n such that $\mathbb{Z}=\cup_{i=1}^{n} \mathbb{Z}_{i}$ and $\mathbb{Z}_{i}=\{k n+i: k \in \mathbb{Z}\}$ for all $1 \leq i \leq n$, and there also exists $r_{i}>0(1 \leq i \leq n)$ such that $\lambda_{p}=r_{i}$ for all $p \in \mathbb{Z}_{i}$.

In this case, we have $W^{n}=r U^{n}$ where $r=r_{1} \ldots r_{n}$. Moreover, a subspace M of $\ell^{2}(\mathbb{C})$ is reducing for W if and only if $M=M_{1} \oplus \cdots \oplus M_{n}$, where $M_{i}=P_{\mathbb{Z}_{i}} M$ for all i.

We make the following observations:
(1) $U\left(M_{i}\right)=M_{i+1}$ for $1 \leq i \leq n-1$ and $U\left(M_{n}\right)=M_{1}$.
(2) If $x \in M_{i}$, then

$$
\begin{aligned}
& W x=r_{i} U x \in M_{i+1}, \\
& W^{2} x=r_{i} r_{i+1} U^{2} x \in M_{i+2}, \\
& \cdot \\
& W^{n} x=r U^{n} x \in M_{i} \text {. Similarly, } \\
& W^{*} x=r_{i-1} U^{*} x \in M_{i-1}, \\
& \left(W^{*}\right)^{2} x=r_{i-1} r_{i-2}\left(U^{*}\right)^{2} x \in M_{i-2}, \\
& \quad \cdot \\
& \left(W^{*}\right)^{n} x=r\left(U^{*}\right)^{n} x \in M_{i} .
\end{aligned}
$$

Thus, $\left(W^{*}\right)^{n} W^{n} x=r^{2} x=W^{n}\left(W^{*}\right)^{n} x$ for $x \in M_{i}(1 \leq i \leq n)$, and $\left(W^{*}\right)^{k n} W^{k n} x=r^{2 k} x=W^{k n}\left(W^{*}\right)^{k n} x$ for all $k \in \mathbb{Z}, x \in M_{i}(1 \leq i \leq n)$.
(3) If $r_{i}=\lambda$ for all $i \in \mathbb{Z}$, i.e, if $W e_{i}=\lambda e_{i+1}$ for all $i \in \mathbb{Z}$, then W will have no eigen values.

To show this, let if possible, μ be an eigen value of W. Then, there exists a non zero vector x in $\ell^{2}(\mathbb{C})$ such that $W x=\mu x$. So if $x=\left(\ldots, x_{-1},\left[x_{0}\right], x_{1}, \ldots\right)$, then $W x=\mu x$ implies $x_{i+1}=\frac{\lambda}{\mu} x_{i}$ for all $i \in \mathbb{Z}$. Without loss of generality, we can assume
$x_{0} \neq 0$. Therefore

$$
\|x\|^{2}=\sum_{i=-\infty}^{\infty}\left|x_{i}\right|^{2}=\left|x_{0}\right|^{2}\left(\sum_{i=0}^{\infty}\left|\frac{\lambda}{\mu}\right|^{2 i}+\sum_{i=1}^{\infty}\left|\frac{\mu}{\lambda}\right|^{2 i}\right) \nless \infty .
$$

This gives us a contradiction.
(4) As above, for any positive integer k, it can be shown that W^{k} also does not have any eigen value. This also means that for non zero $x \in \ell^{2}(\mathbb{C}), W^{k} x$ and x are always linearly independent.
(5) If $x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n} \in M$ with $x_{i} \in M_{i}$ for all $1 \leq i \leq n$, then $x_{i} \in M$ for each i.

If all the r_{i} 's are equal then $n=1$ and so M cannot be reducing for W. Hence, we cannot have all r_{i} 's equal.

If $n=2$, then we must have $r_{1} \neq r_{2}$. Therefore, $r_{2}^{2} x-W^{*} W x=\left(r_{2}^{2}-r_{1}^{2}\right) x_{1} \in M$, so that $x_{1} \in M$. Similarly, $r_{1}^{2} x-W^{*} W x=\left(r_{1}^{2}-r_{2}^{2}\right) x_{2}$ implies $x_{2} \in M$.

If $n=3$, then we may have two situations:
Case I. $r_{i} \neq r_{j}$ if $i \neq j$. Then

$$
\begin{aligned}
& y:=r_{3}^{2} x-W^{*} W x=\left(r_{3}^{2}-r_{1}^{2}\right) x_{1}+\left(r_{3}^{2}-r_{2}^{2}\right) x_{2} \in M, \text { and } \\
& r_{2}^{2} y-W^{*} W y=\left(r_{2}^{2}-r_{1}^{2}\right)\left(r_{3}^{2}-r_{1}^{2}\right) x_{1} \in M
\end{aligned}
$$

This implies $x_{1} \in M$. Similarly, $x_{2}, x_{3} \in M$.
Case II. $r_{2}=r_{3}$ and $r_{1} \neq r_{3}$. Then $y=r_{3}^{2} x-W^{*} W x=\left(r_{3}^{2}-r_{1}^{2}\right) x_{1} \in H$. This implies $x_{1} \in H$. Therefore $x-x_{1}=x_{2}+x_{3} \in H$. Again,

$$
\begin{aligned}
\left(W^{*}\right)^{2} W^{2}\left(x_{2}+x_{3}\right) & =r_{2}^{2} r_{3}^{2} x_{2}+r_{3}^{2} r_{1}^{2} x_{3} \\
& =r_{2}^{2}\left(r_{3}^{2} x_{2}+r_{1}^{2} x_{3}\right) \in H .
\end{aligned}
$$

Therefore, $r_{2}^{2} r_{3}^{2}\left(x_{2}+x_{3}\right)-\left(W^{*}\right)^{2} W^{2}\left(x_{2}+x_{3}\right)=r_{2}^{2}\left(r_{3}^{2}-r_{1}^{2}\right) x_{3} \in H$. This implies $x_{3} \in H$ and so $x_{2} \in H$. Thus each $x_{i} \in H$. The cases for ($r_{3}=r_{1}$ and $\left.r_{1} \neq r_{2}\right)$ and
($r_{1}=r_{2}$ and $r_{1} \neq r_{3}$) can be similarly settled.
The cases for $n>3$ can be similarly proved.
(6) If $x \in M_{1}$ such that $l(x)<\infty$, then
(i) M_{1} is not minimal reducing for W^{n}.
(ii) M_{1} does not contain any minimal reducing subspace for W^{n}.

To show this, let $y:=x+U^{n} x$. Also,

$$
\begin{aligned}
& \tilde{M}_{x}:=\operatorname{span}\left\{W^{k n}\left(W^{*}\right)^{t n} x,\left(W^{*}\right)^{k n} W^{t n} x: t, k \in \mathbb{N}_{0}\right\}, \text { and } \\
& \tilde{M}_{y}:=\operatorname{span}\left\{W^{k n}\left(W^{*}\right)^{t n} y,\left(W^{*}\right)^{k n} W^{t n} y: t, k \in \mathbb{N}_{0}\right\} .
\end{aligned}
$$

Then $y \in \tilde{M}_{x}$ which implies $\tilde{M}_{y} \subseteq \tilde{M}_{x}$.
Again, $l(y)=l(x)+n$ and for each $z \in \tilde{M}_{y}, l(z) \geq l(y)$. Therefore, $x \notin \tilde{M}_{y}$, which implies $\tilde{M}_{y} \varsubsetneqq \tilde{M}_{x} \subseteq M_{1}$.

In this context, we raise the following question:

Question: Let $x \in \ell^{2}(\mathbb{C})$ such that $l(x)=\infty$. If $y:=x+U x$, then $X_{y} \subseteq X_{x}$. Is $x \in X_{y}$?

An answer to this question would enable us to comment on the existence of minimal reducing subspaces of W on $\ell^{2}(\mathbb{C})$. If the answer is "no", i.e, if $x \notin X_{y}$, then X_{x} is not a minimal reducing subspace of W. This together with the observations made above will imply that W does not have any minimal reducing subspace in $\ell^{2}(\mathbb{C})$. However, if the answer to the above question is "yes", i.e, if $x \in X_{y}$, then X_{x} could possibly be a minimal reducing subspace of W. It is to be mentioned that we could not answer the above question. Hence, it remains open.

5.4 Minimal reducing subspaces for T_{φ} of type II.

Let $\lambda_{n} \in \Lambda_{\varphi} \cap \mathcal{M}_{4}$ and $K_{n}:=\operatorname{span}\left\{g_{i, j}: i \in \mathbb{N}_{0}, j \in\left[\left[\lambda_{n}\right]\right]\right\}$. By Theorem 4.3.13, $\left.T_{\varphi}\right|_{K_{n}}$ is unitarily equivalent to the bilateral backward operator weighted shift on $\ell^{2}(K)$. Let us denote $\left.T_{\varphi}\right|_{K_{n}}$ as $W^{\left[\lambda_{n}\right]}$.
The reducing subspaces of the operator weighted bilateral shift W on $\ell^{2}(K)$ are discussed in [44] and [17]. Guyker proved the following result:

Theorem 5.4.1. Let $\left\{A_{n}\right\}_{n \in \mathbb{Z}}$ be a commuting family of compact, normal operators with dense range. Let W be the bilateral shift on $\ell^{2}(K)$ with operator weights $\left\{A_{n}\right\}_{n \in \mathbb{Z}}$. Then W is unitarily equivalent to a countable direct sum $\sum_{n \in \mathbb{N}_{0}} \oplus W_{n}$ of bilateral weighted shifts W_{n} on $\ell^{2}(\mathbb{C})$ with non-zero scalar weights. Moreover a subspace M of $\ell^{2}(K)$ reduces $\sum_{n \in \mathbb{N}_{0}} \oplus W_{n}$ if and only if $M=\sum_{n \in \mathbb{N}_{0}} \oplus M_{n}$, where M_{n} reduces W_{n} for every $n \in \mathbb{N}_{0}$.

So, by the above theorem, $W^{\left[\lambda_{n}\right]}$ is unitarily equivalent to a countable direct sum $\sum_{i \in \mathbb{N}_{0}} \oplus W_{i}^{\left[\lambda_{n}\right]}$ of bilateral weighted shifts $W_{i}^{\left[\lambda_{n}\right]}$ on $\ell^{2}(\mathbb{C})$ with non-zero scalar weights. Also, a subspace M of $\ell^{2}(K)$ reduces $\sum_{i \in \mathbb{N}_{0}} \oplus W_{i}^{\left[\lambda_{n}\right]}$ if and only if $M=\sum_{i \in \mathbb{N}_{0}} \oplus M_{i}$, where M_{i} reduces $W_{i}^{\left[\lambda_{n}\right]}$ for every $i \in \mathbb{N}_{0}$.

Following the above notation, we now propose the following theorem:
Theorem 5.4.2. Let, $M=\sum_{i \in \mathbb{N}_{0}} \oplus M_{i}$ be a reducing subspace of $W^{\left[\lambda_{n}\right]}$. Also, let $x=\sum_{i \in \mathbb{N}_{0}} x_{i}$ be in M, where each $x_{i} \in M_{i}$, and there exists some $i \in \mathbb{N}_{0}$ such that $l\left(x_{i}\right)<\infty$. Then, M cannot be minimal.

Proof. By Theorem 5.4.1, each $M_{i} \subseteq \ell^{2}(\mathbb{C})$ is a reducing subspace for $W_{i}^{\left[\lambda_{n}\right]}$. Suppose, there exists some $i \in \mathbb{N}_{0}$ such that $l\left(x_{i}\right)<\infty$. Then from the observation 6 made in Section 5.3, we can say that the reducing subspace M_{i} is not minimal reducing. So there exists a reducing subspace $N_{i} \varsubsetneqq M_{i}$. Also, let $N_{j}=M_{j}$ for all
$j \in \mathbb{N}_{0}-\{i\}$, and $N=\sum_{j \in \mathbb{N}_{0}} \oplus N_{j}$. Clearly, $N \nsubseteq M$, and N is reducing for $W^{\left[\lambda_{n}\right]}$. Hence, M cannot be a minimal reducing subspace.

Remark 5.4.3. In the above theorem, if for each $x=\sum_{i \in \mathbb{N}_{0}} x_{i}$ in M, we have $l\left(x_{i}\right)=$ ∞ for all $i \in \mathbb{N}_{0}$, then whether M is a minimal reducing subspace or not still remains unresolved.

5.5 Minimal reducing subspaces for T_{φ} of type III.

Let $\lambda \in \Lambda_{\varphi} \cap \mathcal{M}_{3}$, and $o(\lambda)=r$. Also, let K_{λ} be the closed linear span of $\left\{g_{i, j}: i \in \mathbb{N}_{0}, j \in[[\lambda]]\right\}$. Then, by Theorem 4.3.12, we have $\left.T_{\varphi}\right|_{K_{\lambda}}$ is a weighted circulant operator on $H_{r}=K \oplus \cdots \oplus K(r$ copies $)$.

Again, for $i \in \mathbb{N}_{0}$, let $K_{\lambda}^{(i)}$ be the closed linear span of $\left\{g_{i, j}: j \in[[\lambda]]\right\}$. Then, $K_{\lambda}=\sum_{i \in \mathbb{N}_{0}} \oplus K_{\lambda}^{(i)}$. As $[[\lambda]]=\left\{\lambda, \varphi(\lambda), \varphi^{2}(\lambda), \ldots, \varphi^{r-1}(\lambda)\right\}$ with $\varphi^{r}(j)=j$ for all $j \in[[\lambda]]$, and $A_{n}=\left(\alpha_{i}^{(n)}\right)_{i \in \mathbb{N}_{0}}$, so we have $T_{\varphi} g_{i, j}=\alpha_{i}^{\left(\varphi^{-1}(j)\right)} g_{i, \varphi^{-1}(j)}$ for all $j \in[[\lambda]]$.

If for $i \in \mathbb{N}_{0}$, we define $C_{i}: K_{\lambda}^{(i)} \rightarrow K_{\lambda}^{(i)}$ as $C_{i} g_{i, j}=\alpha_{i}^{\left(\varphi^{-1}(j)\right)} g_{i, \varphi^{-1}(j)}$ for all $j \in[[\lambda]]$, then each C_{i} is a weighted circulant operator on $K_{\lambda}^{(i)}$. Also, then $\left.T_{\varphi}\right|_{K_{\lambda}}$ is unitarily equivalent to the countable direct sum $\sum_{i \in \mathbb{N}_{0}} \oplus C_{i}$.

5.5.1 \quad For $\lambda \in \mathcal{M}_{3}, o(\lambda)=1$

If $o(\lambda)=1$, then $\varphi(\lambda)=\lambda$, and so for each $i \in \mathbb{N}_{0}$, we have $C_{i} g_{i, \lambda}=\alpha_{i}^{(\lambda)} g_{i, \lambda}$, so that C_{i} is irreducible, since the only reducing subspaces of C_{i} are the trivial ones.

Theorem 5.5.1. Let $f \in K_{\lambda}$ such that $f=\sum_{i \in \Lambda} \xi_{i} g_{i, \lambda}$ for a subset Λ of \mathbb{N}_{0}. Then, X_{f} is minimal reducing for T_{φ} if and only if $\alpha_{i}^{(\lambda)}=\alpha_{j}^{(\lambda)}$ for all $i, j \in \Lambda$.

Proof. We have, $T_{\varphi} f=\sum_{i \in \Lambda} \xi_{i} \alpha_{i}^{(\lambda)} g_{i, \lambda}=T_{\varphi}^{*} f$.
Condition is sufficient: If $\alpha_{i}^{(\lambda)}=\alpha_{j}^{(\lambda)}=\eta$ for all $i, j \in \Lambda$, then $T_{\varphi} f=\eta f=T_{\varphi}^{*} f$, and so $X_{f}=\operatorname{span}\{f\}$. Let Y be a non zero reducing subspace of T_{φ} such that $Y \subseteq X_{f}$. Then, for $0 \neq y \in Y$, there exists a scalar ξ such that $y=\xi f$. This implies $f=\frac{1}{\xi} y \in Y$, and hence $Y=X_{f}$. Thus, X_{f} is minimal reducing for T_{φ}.
Condition is necessary: If $i, j \in \Lambda$ such that $\alpha_{i}^{(\lambda)} \neq \alpha_{j}^{(\lambda)}$, then let $\Lambda^{(i)}=\{t \in \Lambda$: $\left.\alpha_{i}^{(\lambda)} \neq \alpha_{t}^{(\lambda)}\right\}$. Thus,

$$
\alpha_{i}^{(\lambda)} f-T_{\varphi} f=\sum_{t \in \Lambda^{(i)}}\left(\alpha_{i}^{(\lambda)}-\alpha_{t}^{(\lambda)}\right) g_{t, \lambda}=h(\text { say })
$$

Thus, $X_{h} \varsubsetneqq X_{f}$, and so X_{f} is not minimal for T_{φ}.

5.5.2 \quad For $\lambda \in \mathcal{M}_{3}, o(\lambda)=2$

In this case, $[[\lambda]]=\{\lambda, \varphi(\lambda)\}$.
Lemma 5.5.2. Let $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=2$. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi}(\lambda)$ with $a, b \neq 0$. Then X_{x} is a minimal reducing subspace for C_{i} if and only if $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$ and $a^{2}=b^{2}$.

Proof. We have the following relations:

$$
\begin{align*}
C_{i} x & =a \alpha_{i}^{\left(\varphi^{-1}(\lambda)\right)} g_{i, \varphi^{-1}(\lambda)}+b \alpha_{i}^{(\lambda)} g_{i, \lambda} \\
& =a \alpha_{i}^{(\varphi(\lambda))} g_{i, \varphi(\lambda)}+b \alpha_{i}^{(\lambda)} g_{i, \lambda} . \tag{5.5.1}\\
C_{i}^{*} x & =a \alpha_{i}^{(\lambda)} g_{i, \varphi(\lambda)}+b \alpha_{i}^{(\varphi(\lambda))} g_{i, \lambda} . \tag{5.5.2}\\
C_{i}^{*} C_{i} x & =a\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \varphi(\lambda)} . \tag{5.5.3}
\end{align*}
$$

Case I. Let $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{(\varphi(\lambda))}$. Then

$$
\left(\alpha_{i}^{(\lambda)}\right)^{2} x-C_{i}^{*} C_{i} x=a\left(\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}\right) g_{i, \lambda}
$$

This implies $g_{i, \lambda} \in X_{x}$. Therefore $g_{i, \varphi(\lambda)} \in X_{x}$ so that $K_{\lambda}^{(i)}=X_{x}$, and hence X_{x} is not a proper reducing subspace for C_{i}.

Case II. Let $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$, but $a^{2} \neq b^{2}$. Then,

$$
x-\frac{b}{a}\left[\alpha_{i}^{(\lambda)} \alpha_{i}^{(\varphi(\lambda))}\right]^{-\frac{1}{2}} C_{i} x=\left(\frac{a^{2}-b^{2}}{a}\right) g_{i, \lambda},
$$

which implies $g_{i, \lambda} \in X_{x}$, and hence again we have $K_{\lambda}^{(i)}=X_{x}$.
Case III. Let $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$, and $a^{2}=b^{2}$. Then,

$$
\begin{aligned}
& x-\frac{b}{a}\left[\alpha_{i}^{(\lambda)} \alpha_{i}^{(\varphi(\lambda))}\right]^{-\frac{1}{2}} C_{i} x=\left(\frac{a^{2}-b^{2}}{a}\right) g_{i, \lambda}=0 \\
& \Rightarrow C_{i} x= \\
& \frac{a}{b}\left[\alpha_{i}^{(\lambda)} \alpha_{i}^{(\varphi(\lambda))}\right]^{\frac{1}{2}} x .
\end{aligned}
$$

Similarly, $C_{i}^{*} x=\frac{a}{b}\left[\alpha_{i}^{(\lambda)} \alpha_{i}^{(\varphi(\lambda))}\right]^{\frac{1}{2}} x$. Hence, $X_{x}=\operatorname{span}\{x\}$ and so X_{x} is a minimal reducing subspace of C_{i}.

Corollary 5.5.3. If $i \in \mathbb{N}_{0}$ is such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$, then C_{i} will have a minimal reducing subspace X_{x} for $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}$ with $a, b \neq 0$ and $a^{2}=b^{2}$. Hence, $\left.T_{\varphi}\right|_{K_{\lambda}}$ has a minimal reducing subspace X_{x}.

Theorem 5.5.4. (Sufficiency condition for minimality.)
Let Λ be a subset of \mathbb{N}_{0}, and a, b be non zero scalars such that $f=\sum_{i \in \Lambda}\left[a g_{i, \lambda}+\right.$ $\left.b g_{i, \varphi(\lambda)}\right] \in K_{\lambda}$, where $\lambda \in \mathcal{M}_{3}$ and $o(\lambda)=2$. Then X_{f} is a minimal reducing subspace of $\left.T_{\varphi}\right|_{K_{\lambda}}$ if
(i) $a^{2}=b^{2}$, and
(ii) there exists some $\mu>0$ such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=\mu$ for all $i \in \Lambda$.

Proof. For $i \in \Lambda$, let $\delta_{i}=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}$. Then, $f=\sum_{i \in \Lambda} \delta_{i}$, and since $a^{2}=b^{2}$, so

$$
T_{\varphi} f=\frac{b}{a}\left(\sum_{i \in \Lambda} \alpha_{i}^{(\lambda)} \delta_{i}\right)=\left(\frac{b}{a} \mu\right) f .
$$

Similarly, $T_{\varphi}^{*} f=\left(\frac{a}{b} \mu\right) f=T_{\varphi} f$ (since, $a^{2}=b^{2} \Rightarrow \frac{a}{b}=\frac{b}{a}$). Thus, $X_{f}=\operatorname{span}\{f\}$ and so X_{f} is a minimal reducing subspace of T_{φ}.

Remark 5.5.5. Suppose in Theorem 5.5.4, the conditions $a^{2}=b^{2}$ and $\alpha_{t}^{(\lambda)}=\alpha_{t}^{(\varphi(\lambda))}$ for all $t \in \Lambda$ holds. We show below that the condition $\alpha_{i}^{(\lambda)}=\alpha_{j}^{(\lambda)}$ for all $i, j \in \Lambda$ is necessary for X_{f} to be a minimal reducing subspace for T_{φ}.

To show this, suppose $i, j \in \Lambda$ such that $\alpha_{i}^{(\lambda)} \neq \alpha_{j}^{(\lambda)}$. For simplicity, we assume that $\Lambda=\Lambda^{(i)}+\Lambda^{(j)}$, where

$$
\begin{aligned}
& \Lambda^{(i)}=\left\{t \in \Lambda: \alpha_{i}^{(\lambda)}=\alpha_{t}^{(\lambda)}\right\} \\
& \Lambda^{(j)}=\left\{t \in \Lambda: \alpha_{j}^{(\lambda)}=\alpha_{t}^{(\lambda)}\right\} .
\end{aligned}
$$

Then, $T_{\varphi} f=\frac{b}{a}\left(\alpha_{i}^{(\lambda)} \sum_{t \in \Lambda^{(i)}} \delta_{t}+\alpha_{j}^{(\lambda)} \sum_{t \in \Lambda^{(j)}} \delta_{t}\right)$, and $f=\sum_{t \in \Lambda^{(i)}} \delta_{t}+\sum_{t \in \Lambda^{(j)}} \delta_{t}$.
Therefore,

$$
\alpha_{j}^{(\lambda)} f-\frac{a}{b} T_{\varphi} f=\left(\alpha_{j}^{(\lambda)}-\alpha_{i}^{(\lambda)}\right) \sum_{t \in \Lambda^{(i)}} \delta_{t}=h \text { (say). }
$$

So, $h \in X_{f}$ which implies $X_{h} \subseteq X_{f}$. Also, $\sum_{t \in \Lambda^{(j)}} \delta_{t} \notin X_{h}$ implies $f \notin X_{h}$. Thus, $X_{h} \varsubsetneqq X_{f}$, and so X_{f} cannot be minimal.

Remark 5.5.6. All other conditions in Theorem 5.5.4 remaining same, the condition $a^{2}=b^{2}$ is necessary for X_{f} to be minimal reducing. This can be shown by a method similar to case II of Lemma 5.5.2.

5.5.3 \quad For $\lambda \in \mathcal{M}_{3}, o(\lambda)=3$

Theorem 5.5.7. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}$ with $a, b \neq 0$, and $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=3$. If X_{x} is a proper minimal reducing subspace of C_{i} in $K_{\lambda}^{(i)}$, then there must exist $\mu>0$ such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}=\mu$.

Proof. Here, we have the following relations:

$$
\begin{align*}
x & =a g_{i, \lambda}+b g_{i, \varphi(\lambda)} \tag{5.5.4}\\
C_{i}^{*} x & =a \alpha_{i}^{(\lambda)} g_{i, \varphi(\lambda)}+b \alpha_{i}^{(\varphi(\lambda))} g_{i, \varphi^{2}(\lambda)} \tag{5.5.5}\\
C_{i} x & =a \alpha_{i}^{\left(\varphi^{-1}(\lambda)\right)} g_{i, \varphi^{-1}(\lambda)}+b \alpha_{i}^{(\lambda)} g_{i, \lambda} \\
& =a \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)} g_{i, \varphi^{2}(\lambda)}+b \alpha_{i}^{(\lambda)} g_{i, \lambda} \tag{5.5.6}
\end{align*}
$$

$$
\begin{align*}
C_{i} C_{i}^{*} x & =a\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2} g_{i, \varphi(\lambda)} \tag{5.5.7}\\
C_{i}^{*} C_{i} x & =a\left(\alpha_{i}^{\left(\varphi^{-1}(\lambda)\right)}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \varphi(\lambda)} \\
& =a\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \varphi(\lambda)} \tag{5.5.8}
\end{align*}
$$

Now, $\left(\alpha_{i}^{(\lambda)}\right)^{2} \times(5.5 .4)-(5.5 .7)$ gives

$$
\left(\alpha_{i}^{(\lambda)}\right)^{2} x-C_{i} C_{i}^{*} x=b\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right] g_{i, \varphi(\lambda)}
$$

This implies $g_{i, \varphi(\lambda)} \in X_{x}$ if $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{(\varphi(\lambda))}$.
Similarly, $\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} \times(5.5 .4)-(5.5 .8)$ gives

$$
\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} x-C_{i}^{*} C_{i} x=b\left[\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}\right] g_{i, \varphi(\lambda)}
$$

and so, $g_{i, \varphi(\lambda)} \in X_{x}$ if $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$.
Thus, if either $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{(\varphi(\lambda))}$ or $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$, then $g_{i, \varphi(\lambda)} \in X_{x}$. This implies $X_{x}=$ $\operatorname{span}\left\{g_{i, j}: j \in[[\lambda]]\right\}=K_{\lambda}^{(i)}$, and hence X_{x} is not a proper reducing subspace for C_{i}. Thus, if X_{x} is minimal reducing, we must have $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}=\mu$.

Theorem 5.5.8. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}$ with $a, b \neq 0$, and $\lambda \in \mathcal{M}_{3}$, $o(\lambda)=3$. Also, suppose there exists $\mu>0$ such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}=\mu$. Then X_{x} is a proper reducing subspace for C_{i} in $K_{\lambda}^{(i)}$ if and only if $a^{3}+b^{3}=0$.

Proof. We have the following relations:

$$
\begin{align*}
a g_{i, \lambda}+b g_{i, \varphi(\lambda)}=x & =\frac{1}{\mu^{3}} C_{i}^{3} x=\frac{1}{\mu^{3}}\left(C_{i}^{*}\right)^{3} x=\frac{1}{\mu^{4}} C_{i}^{2}\left(C_{i}^{*}\right)^{2} x=\frac{1}{\mu^{4}}\left(C_{i}^{*}\right)^{2} C_{i}^{2} x \\
& =\frac{1}{\mu^{2}} C_{i}^{*} C_{i} x=\frac{1}{\mu^{2}} C_{i} C_{i}^{*} x . \tag{5.5.9}\\
a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)} & =\frac{1}{\mu} C_{i}^{*} x=\frac{1}{\mu^{2}} C_{i}^{2} x \tag{5.5.10}\\
a g_{i, \varphi^{2}(\lambda)}+b g_{i, \lambda} & =\frac{1}{\mu^{2}}\left(C_{i}^{*}\right)^{2} x=\frac{1}{\mu} C_{i} x \tag{5.5.11}
\end{align*}
$$

Claim: $g_{i, \lambda} \notin X_{x}$ if $a^{3}+b^{3}=0$. From the above relations, we see that all elements in X_{x} are finite linear combinations of the functions $a g_{i, \lambda}+b g_{i, \varphi(\lambda)}, a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)}$
and $a g_{i, \varphi^{2}(\lambda)}+b g_{i, \lambda}$. Let, if possible, $g_{i, \lambda} \in X_{x}$. So, there exists A, B, C such that

$$
\begin{aligned}
& \quad g_{i, \lambda}=A\left(a g_{i, \lambda}+b g_{i, \varphi(\lambda)}\right)+B\left(a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)}\right)+C\left(a g_{i, \varphi^{2}(\lambda)}+b g_{i, \lambda}\right) \\
& \Rightarrow a A+b C-1=0 \\
& b A+a B=0 \\
& b B+a C=0 .
\end{aligned}
$$

This implies $P X=Q$, where $P=\left(\begin{array}{ccc}a & 0 & b \\ b & a & 0 \\ 0 & b & a\end{array}\right), X=\left(\begin{array}{c}A \\ B \\ C\end{array}\right)$ and $Q=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
To solve this system, we consider the augmented matrix

$$
\begin{aligned}
{[P \mid Q] } & =\left[\begin{array}{lll|l}
a & 0 & b & 1 \\
b & a & 0 & 0 \\
0 & b & a & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc|c}
a & 0 & b & 1 \\
0 & a^{2} & -b^{2} & -b \\
0 & b & a & 0
\end{array}\right] \quad R_{2} \rightarrow a R_{2}-b R_{1} \\
& \sim\left[\begin{array}{ccc|c}
a & 0 & b & 1 \\
0 & a^{2} & -b^{2} & -b \\
0 & 0 & a^{3}+b^{3} & b^{2}
\end{array}\right] \quad R_{3} \rightarrow a^{2} R_{3}-b R_{2}
\end{aligned}
$$

By assumption, we have $a \neq 0, b \neq 0$. So, if $a^{3}+b^{3}=0$, then the system becomes inconsistent and therefore has no solution. In other words, if $a^{3}+b^{3}=0$, then $g_{i, \lambda} \notin X_{x}$. Hence, $X_{x} \varsubsetneqq K_{\lambda}^{(i)}$ so that X_{x} is a proper reducing subspace of C_{i}. Conversely, suppose $a^{3}+b^{3}=0$. Then, for $A=\frac{a^{2}}{a^{3}+b^{3}}, B=-\frac{a b}{a^{3}+b^{3}}, C=\frac{b^{2}}{a^{3}+b^{3}}$, we get

$$
g_{i, \lambda}=A x+\frac{B}{\mu} C_{i}^{*} x+\frac{C}{\mu^{2}}\left(C_{i}^{*}\right)^{2} x,
$$

so that $g_{i, \lambda} \in X_{x}$. This implies that $g_{i, \varphi(\lambda)}$ and $g_{i, \varphi^{2}(\lambda)}$ are also in X_{x}, and so $X_{x}=K_{\lambda}^{(i)}$. Thus, X_{x} is not a proper reducing subspace for C_{i} if $a^{3}+b^{3} \neq 0$.

Remark 5.5.9. Analogous results can be found if we consider $x=a g_{i, \lambda}+b g_{i, \varphi^{2}(\lambda)}$ and $x=a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)}$.

Remark 5.5.10. In Theorem 5.5.8, as X_{x} is a proper reducing subspace for C_{i} in $K_{\lambda}^{(i)}$, and $\operatorname{dim} K_{\lambda}^{(i)}=3$, so $\operatorname{dim} X_{x}$ is either 1 or 2. However from (5.5.9) and (5.5.10), we see that $h_{1}=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}$, and $h_{2}=a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)}$, are in X_{x}, where h_{1} and h_{2} are linearly independent in $K_{\lambda}^{(i)}$.
Also, $a g_{i, \varphi^{2}(\lambda)}+b g_{i, \lambda}=-\frac{a^{2}}{b}\left(b h_{2}-a h_{1}\right)$. Hence, $X_{x}=\operatorname{span}\left\{h_{1}, h_{2}\right\}$, i.e, $\operatorname{dim} X_{x}=2$. Thus, if at all we have a minimal reducing subspace for C_{i}, then it will be of the form X_{y}, where $y=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+c g_{i, \varphi^{2}(\lambda)}$ with scalars a, b, c non zero.

Theorem 5.5.11. Let $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=3$. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+$ $c g_{i, \varphi^{2}(\lambda)}$ with $a, b, c \neq 0$. Then X_{x} is minimal reducing for C_{i} if
(i) $\frac{a}{b}=\frac{b}{c}=\frac{c}{a}$, and
(ii) there exists $\mu>0$ such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}=\mu$.

Proof. We have $C_{i}^{*} x=\mu\left(a g_{i, \varphi(\lambda)}+b g_{i, \varphi^{2}(\lambda)}+c g_{i, \lambda}\right)$. Therefore,

$$
(c \mu) x-a C_{i}^{*} x=\mu\left[\left(b c-a^{2}\right) g_{i, \varphi(\lambda)}+\left(c^{2}-a b\right) g_{i, \varphi^{2}(\lambda)}\right] .
$$

As, $a^{2}=b c$ and $c^{2}=a b$, so $C_{i}^{*} x=\left(\frac{c \mu}{a}\right) x$. Similarly, $C_{i} x=\left(\frac{b \mu}{a}\right) x$. Hence, $X_{x}=$ $\operatorname{span}\{x\}$, and hence X_{x} is a minimal reducing subspace.

Theorem 5.5.12. Let $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=3$. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+$ $c g_{i, \varphi^{2}(\lambda)}$ with $a, b, c \neq 0$. Suppose X_{x} is a proper minimal reducing subspace for C_{i} in $K_{\lambda}^{(i)}$. If two of the values $\alpha_{i}^{(\lambda)}, \alpha_{i}^{(\varphi(\lambda))}, \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$ are equal, then all three must be equal. Proof. Here, we have the following relations:

$$
\begin{align*}
x & =a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+c g_{i, \varphi^{2}(\lambda)} . \tag{5.5.12}\\
C_{i} C_{i}^{*} x & =a\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2} g_{i, \varphi(\lambda)}+c\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} g_{i, \varphi^{2}(\lambda)} . \tag{5.5.13}\\
C_{i}^{*} C_{i} x & =a\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} g_{i, \lambda}+b\left(\alpha_{i}^{(\lambda)}\right)^{2} g_{i, \varphi(\lambda)}+c\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2} g_{i, \varphi^{2}(\lambda)} . \tag{5.5.14}
\end{align*}
$$

Case I. Suppose, $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$ but $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$. Then

$$
\begin{align*}
& {\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}\right] a g_{i, \lambda}+\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right] c g_{i, \varphi^{2}(\lambda)} } \\
= & \left(\alpha_{i}^{(\lambda)}\right)^{2} x-C_{i}^{*} C_{i} x \in X_{x} . \tag{5.5.15}
\end{align*}
$$

As $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}$ and $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$, so we get $g_{i, \lambda} \in X_{x}$, and so $X_{x}=K_{\lambda}^{(i)}$, showing that X_{x} cannot be a proper subspace for C_{i}.

Case II. Suppose, $\alpha_{i}^{(\lambda)}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$ but $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{(\varphi(\lambda))}$. Again by (5.5.15), we see that $g_{i, \varphi^{2}(\lambda)} \in X_{x}$, which implies $X_{x}=K_{\lambda}^{(i)}$. So, X_{x} cannot be a proper subspace for C_{i}.

Case III. Suppose, $\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$ but $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{(\varphi(\lambda))}$. Then

$$
\begin{align*}
& {\left[\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}\right] b g_{i, \varphi(\lambda)}+\left[\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right] c g_{i, \varphi^{2}(\lambda)} } \\
= & \left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2} x-C_{i}^{*} C_{i} x \in X_{x} . \tag{5.5.16}
\end{align*}
$$

As $\alpha_{i}^{(\lambda)} \neq \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$ and $\alpha_{i}^{(\varphi(\lambda))}=\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$. So, we get $g_{i, \varphi(\lambda)} \in X_{x}$, and so $X_{x}=K_{\lambda}^{(i)}$, showing that X_{x} cannot be a proper subspace for C_{i}.

Theorem 5.5.13. Let $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=3$. For $i \in \mathbb{N}_{0}$, let $x=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+$ $c g_{i, \varphi^{2}(\lambda)}$ with $a, b, c \neq 0$. Suppose X_{x} is a proper reducing subspace for C_{i} in $K_{\lambda}^{(i)}$. If $\alpha_{i}^{(\lambda)}, \alpha_{i}^{(\varphi(\lambda))}, \alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}$ are all distinct, then

$$
\frac{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}}{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}}=\frac{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}}{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}=\frac{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}} .
$$

Proof. From (5.5.12) and (5.5.13), we have

$$
\begin{equation*}
\left(\alpha_{i}^{(\lambda)}\right)^{2} x-C_{i} C_{i}^{*} x=b\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right] g_{i, \varphi(\lambda)}+c\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}\right] g_{i, \varphi^{2}(\lambda)} \in X_{x} . \tag{5.5.17}
\end{equation*}
$$

Then from (5.5.16) and (5.5.17), we get

$$
\begin{equation*}
b\left[\left[\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right]\left[\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}\right]-\left[\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}\right]^{2}\right] g_{i, \varphi(\lambda)} \in X_{x} \tag{5.5.18}
\end{equation*}
$$

Let, if possible

$$
\frac{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}}{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}} \neq \frac{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}} .
$$

Then, from (5.5.18), $g_{i, \varphi(\lambda)} \in X_{x}$. This implies $X_{x}=K_{\lambda}^{(i)}$, a contradiction. Hence, we must have

$$
\frac{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}}{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}=\frac{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}} .
$$

A similar situation occurs for

$$
\begin{aligned}
& \frac{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}}{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}} \neq \frac{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}}{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}, \text { or } \\
& \frac{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}}{\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}-\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}} \neq \frac{\left(\alpha_{i}^{\left(\varphi^{2}(\lambda)\right)}\right)^{2}-\left(\alpha_{i}^{(\lambda)}\right)^{2}}{\left(\alpha_{i}^{(\lambda)}\right)^{2}-\left(\alpha_{i}^{(\varphi(\lambda))}\right)^{2}}
\end{aligned}
$$

Theorem 5.5.14. Sufficiency condition for minimality:
Let $\lambda \in \mathcal{M}_{3}$ with $o(\lambda)=3$. Let Λ be a subset of \mathbb{N}_{0}, and a, b, c be non zero scalars such that $f=\sum_{i \in \Lambda}\left[a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+c g_{i, \varphi^{2}(\lambda)}\right] \in K_{\lambda}$. Then X_{f} is a minimal reducing subspace of $\left.T_{\varphi}\right|_{K_{\lambda}}$ if
(i) $\frac{a}{b}=\frac{b}{c}=\frac{c}{a}$, and
(ii) there exists $\mu>0$ such that $\alpha_{i}^{(\lambda)}=\alpha_{i}^{(\varphi(\lambda))}=a_{i}^{\varphi^{2}(\lambda)}=\mu$ for all $i \in \Lambda$.

Proof. For $i \in \Lambda$, let $\delta_{i}=a g_{i, \lambda}+b g_{i, \varphi(\lambda)}+c g_{i, \varphi^{2}(\lambda)}$. Then $f=\sum_{i \in \Lambda} \delta_{i}$ and $\left.T_{\varphi}\right|_{K_{\lambda}}=$ $\sum_{i \in \Lambda} C_{i}$. By Theorem 5.5.11, for each $i \in \Lambda$, we have $C_{i} \delta_{i}=\left(\frac{b \mu}{a}\right) \delta_{i}$ and $C_{i}^{*} \delta_{i}=$ $\left(\frac{c \mu}{a}\right) \delta_{i}$. Therefore, $T_{\varphi} f=\left(\frac{b \mu}{a}\right) f$ and $T_{\varphi}^{*} f=\left(\frac{c \mu}{a}\right) f$. Hence, $X_{f}=\operatorname{span}\{f\}$, and so X_{f} is a minimal reducing subspace of T_{φ} on K_{λ}.

5.5.4 For $\lambda \in \mathcal{M}_{3}, o(\lambda)=r$

From Theorem 5.5.4 and Theorem 5.5.14, we can propose a sufficiency condition for minimality where $\lambda \in \mathcal{M}_{3}, o(\lambda)=r, r \geq 2$.

Theorem 5.5.15. Let $\lambda \in \mathcal{M}_{3}$ and $o(\lambda)=r$ with $r \geq 2$. Let Λ be a subset of \mathbb{N}_{0}, and $a_{0}, a_{1}, \ldots, a_{r-1}$ be non zero scalars such that $f=\sum_{i \in \Lambda}\left[a_{0} g_{i, \lambda}+a_{1} g_{i, \varphi(\lambda)}+\cdots+\right.$ $\left.a_{r-1} g_{i, \varphi^{r-1}(\lambda)}\right] \in K_{\lambda}$. Then X_{f} is a minimal reducing subspace of $\left.T_{\varphi}\right|_{K_{\lambda}}$ if
(i) $\frac{a_{0}}{a_{1}}=\frac{a_{1}}{a_{2}}=\cdots=\frac{a_{r-2}}{a_{r-1}}=\frac{a_{r-1}}{a_{0}}$, and
(ii) there exists $\mu>0$ such that $\alpha_{i}^{\left(\varphi^{t}(\lambda)\right)}=\mu$ for all $0 \leq t<r$ and $i \in \Lambda$.

The proof of Theorem 5.5.15 is similar to that of Theorem 5.5.14, and hence it is omitted.

