Chapter 5

Operator pseudo shifts of types 11
and III

5.1 Introduction

In Chapter 4, we have discussed the pseudo shift operator T, (4, of type I on 3 (K),
wherein each A, is a positive, invertible, diagonal operator on K. In the first part
of this chapter, we will show that the conclusions of Theorem 4.7.1 holds even if we
consider each A,, to be invertible, diagonal and not necessarily positive. In fact, we

prove the following theorem:

Theorem 5.1.1. Let {A,}nen, be a uniformly bounded sequence of invertible diag-
onal operators on K. Let ¢ be an injective map on Ny, and T, (4, be the weighted
pseudo shift operator on (2 (K) with weights { A, }nen,. Then there exists a sequence
of positive invertible diagonal operators { By, }nen, on K such that T, ga,y is unitarily
equivalent to Ty, (p,y provided the following condition holds:

If j € M3 and r is the smallest positive integer such that ©"(j) = j, then we must
have U;Uy ) ... Ugr—1(5y = I, where Ay = U Py is the polar decomposition of Ay as

the product of unitary and positive operators.

In the later part of the chapter, we discuss about the reducing and minimal reducing

subspaces of T}, 14,1 of types II and III.
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5.2 Unitary equivalence

Lemma 5.2.1. Let Uy, be a sequence of unitary operators. Let A, € A, such that

An € M1 UM,y and o(N\,) = r. Forj € [[\]], let

I, if j =M\,
V=< UnUsinn) - Uge-1(n,), if 7 =¢*(\,), k> 0;
Ut U, Ut if j=@*\,),—r <k<0.

e 1 (An) T 072(An)
Then vcp(j) = V]U]

@ (An)’

Proof. Since j € [[\,]] and o(\,) = 7, so there exists k > —r such that j = pF(\,).

Let, j := ¢(j). Then j € [[\,]] and j = ©**'(\,) where k 4+ 1 > —r + 1. Therefore

I if 7=\
Vii= anlUSD(An) N Uk (An)s 1 ?f kE+1>0;
Ui Usen - Uiy i =7 +1<k+1<0.
ie,
I if k= —1;
Vo) =9 UnlUstnn) - Ugrn),s if k> —1;

7 —1
UpmroamU

1 .
20 U@HI(M), if —r<k<-—1.

To show V,;) = V;Uj.

Case I: For —r < k < —1, we have

_ -1 -1 -1 -1
Vi = [U¢*1(An)U¢*2(Avl) T Uw’““(/\n)]U@’“(/\n)

:>VJ = v%(j)Uj_l

=V = ViUj.

Case II: For k = —1, we have j = p~1()\,), V; = U;,ll(An) = U; ' and V) = 1.
Therefore V,;) = I = V;Uj.

Case III: For k = 0, we have j = A,, V; = I and V,;) = Uy,. Therefore V) =
1U,, = V,U;.

Case IV: For k > 0, we have
Vﬂj) = [UAnU¢(A7l) A U@kq()\n)]ka()\n) = V]Uj

Thus for all j € [[A,]], we have V) = V;U;. O
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Lemma 5.2.2. Let {Uy} be a sequence of unitary operators on K, and let \, €

A, N My. Forj € [[\]], let

I, if 7=\,
V= UAnlUSO()\n) - kaq()\n),l if j = (pZ()\n), k> 0;
U;,l(/\n)U;,Q(An) . U;k(/\n), if j = ¢"(\n), k <0.

Then Vi = V;U; for all j € [[A]].
The proof being similar to that of Lemma 5.2.1 is omitted.

Lemma 5.2.3. Let {Uy} be a sequence of unitary operators on K, and let \, €

Ay O M with o(\) = 7. Let 5 € [Ma]] = D) ... 0™ (An)}. Let

7 UAnUSp(An)...U@k—I(An), lfj :ﬁpk(kn),0<k <7

Then Vi = V;U; if and only if U;Uyy ... Uyr-1¢y = I for all j € [[A]].

Proof. If r = 1, then [[A\,]] = {\.}. So j € [[A\,]] implies that ¢(j) = j = A, and
hence V,,;) = V;U; if and only if U; = I.
Now suppose r > 1. Then for j € [[A,]], there exists an integer k£ where 0 < k < r—1
such that j = ¢*(\,). Let j := ¢(j) so that j = @*+1(\,).
Case I: For 0 < k < r — 1, we have j = " (\,) where 1 < k+1<r—1and so
Vo= Uy Uprny - - Upra- i,

Vi) = [0nUprn) - - Uprmra)lUgrin,) = ViU
Case IT: For k = 7 — 1, we have j = ¢"~'(\,) and j = ¢(j) = ¢"(A\) = A, (since
o(An) = 1) Therefore V; = Uy, Uy, - - - Ugr—2(n,y and V; = I. Therefore V; = V;U;

if and only if [ = U)\nUap(An) NP U¢r72(>\n)U¢r71(>\n). [
The proof of Theorem 5.1.1:
Proof. Let us denote T}, ¢4, simply as T,. Then

T@(l’o, Ty, ) = (A()Icp(O% Al£cp(l)> ce )

= (Ap-1(p(0) Tep(0)s Ap=1(p(1)) Tip(1) s - - - )-
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For each k € Ny, let A, = Uy Py be the polar decomposition of A, as unitary operator

Uy and positive operator P, respectively. Also for j € Ny, let

i ._{ Ay, if j € R(p);

I, otherwise.

ﬁj — { Up—l(j), lfj c R(QO);

I, otherwise.

b [ ey it € B()
I I, otherwise.

Then for each j € Ny, fl@(j) = Aj, (L(j) = Uj, and ]—T’@(j) = P;.

{Aww if j € R(p);

I, otherwise,
which implies U jJSj = flj.
Define W, on (% (K) as W (zg, 21, --) = (40, Tp(1), - - - ). Then

W+(AOSL’0, 1211251, NP ) = (A@(O)l’w(o), A¢(1)I<p(1), c. )
= (AQI’SD(O), All’@(l), e )

:Tw(l’o,l’l,...).
If U(l’o,l’l, .. ) = (00[[’0,011’1, .. .), and P(l’o,l’l, .. ) = (p()llfo,plllfl, .. .), then

UP(ZL’(],SCl,...) = (Uopoxo,ﬁlpll’l,...>

= (Aol’o,filxl, .. )

Therefore W, UP = T,.
Let j € Ny. Then there exists A, € A, such that j € [[A,]].
(i) If X\, € M; UM, with o()\,) = r, then there exists k& > —r such that ¢*(\,) = j.
Let
I, if k =0;

Vj = U)\nU@()\n U k— 1>\ if &> 0;
An)? if —r<k<D0.
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(ii) If A, € Mz with o(\,) =7, then j € {\,, o(An), ..., " 1 (An)}. Let

Vo 1, if j = A\.;
T UnUpian) - - - Ugiminyy, 1 5 = @F(Ay) for0 < k < r;

(iii) If A, € My, then o()\,) = co. So there exists k € Z such that ©*()\,) = ;.

I, if k =0;
V}- = UAnU¢(A7l) . kaﬂ()\n), if k> 0;
-1 -1 -1 .

Clearly, {V,, }nen, is a sequence of unitary operators on K and the operator V' defined
as V(xo, 21,...) := (Voxo, Vi, ... ) is a unitary operator on (2 (K). Now
W+U($0, L1y - ) = W+(ﬁ0.§(:0, Ul.ilfl, ce )

= (Up(0)Z4(0)> Up(1)Tio(1) - - - )

= (UOCL’SD(O), lego(l)7 ce ), and

V*W+V(l’0, Tiyow ) = V*(ch(o)xgp(O)a V@(l)xw(l)’ e )
= (V()*Vgo(o)xgo(o), ‘/1*‘/@(1)l'¢(1), R )

Thus, VW,V = W, U if and only if V;*V,4) = Uy, for all k € Ny i.e, if V) = ViUy
for all k£ € Ny.

By Lemmas 5.2.1 and 5.2.2, we have V() = V3 Uy holds for all k € My, My, My, and
for k € M3, by Lemma 5.2.3, V) = Vi.Uy, holds if and only if UpU,) ... Usr—1(z) =
I, where r is the smallest positive integer such that ¢"(k) = k.

For n € Ny, let D, := V,,P,V.*. Then (D,x,x) = (P,V,x,V*x) > 0 for all x € K.
This implies D,, > 0. Also P, is invertible diagonal and V/, is unitary implies each

D,, is diagonal and invertible. Let T' = W+VPV*. Then
T(l’o, L1,y .. ) = W+(D0[l§'0, Dll’l, .. )

= (Dy(0)Tp(0)s Dp(1)Tp(1), - - - )-
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So if By, := Dy, then {B,,},en, is a sequence of positive invertible diagonal oper-

ators and T' =T, (3. Also,
T,=(W.U)P=(VW. V)P =V (W VPVV =V*TV.

As V' is unitary, so T, is unitarily equivalent to T' = T, 5,1 O

5.3 Reducing subspace of bilateral weighted shift
W on (*(C)

Let {\, }nez be a bounded sequence of non-zero scalars, and W be the bilateral shift
on ¢?(C) with weight sequence {\,, }ez. Then forx = (..., x_1, [xo],x1,...) € £*(C),
Wz = (..., 029, [A\12_1], NoZ0, ... ), and so W = UA, where U is the un-

weighted bilateral shift and A is the diagonal operator with diagonal entries {\,, } ,cz.

The reducing subspaces of W have been studied in [40]. In Theorem 5.3.1 and

Theorem 5.3.3 below, we restate Theorem 4 of [40] for future reference.

Theorem 5.3.1. Let W be the scalar weighted bilateral shift on (*(C) with non-zero
weight sequence {\, }nez. Then the following are equivalent:

(i) W has non-trivial reducing subspaces.

(ii) The set Z divides up into finitely many arithmetic progressions Zy, Za, . . ., L,
on each of which |\, (p € Z;, i =1,2,...,n) is constant.

(i) There exists a natural number m such that |T|™ = rU™, r > 0, where |T'| =

U|A|, and |A] is the operator of multiplication by the sequence {|\n|}nez-

Remark 5.3.2. To say Z divides up into finitely many arithmetic progressions Z;, Zo, . . .

means Z = |J;_, Z;, where Z; = {kn+1i: k € Z}.

Theorem 5.3.3. Let W = UA be the scalar weighted bilateral shift on (*(C) with

weight sequence {\, }nez. Let 2y, Zo, ..., 7, be disjoint arithmetic progressions with
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difference n and let Z = \J;_, Z;. If |\i| =i for allk € Z;, r; >0, 1 =1,2,...,n,
then the following are equivalent:

(i) The space H C (*(C) reduces the operator W .

(i) H = MHy, where Hy = ", Py Hy =S @H; and UH; = Hyy (1 <0< n—
1), UH, = Hy, Hy = {{a;}icz : anr = ag,a; = 0 if i # nk,k € Z, and {ax}rez € H}
and H C (*(C), UH = H.

Remark 5.3.4. Py, is the projection of £2(C) onto H;, which is the closed linear span
of {ey}rez,, where {e}, }rez is an orthonormal basis for £2(C). Also M is the operator

of multiplication by the sequence {my}xrcz in ¢*(C), where mg := 1,

Y9 VERUD VAP
my = —————if k> 1, and
AR DYS VS VT B
AiAg. A
my = if £ <0.
AR NS W W

Definition 5.3.5. Let S be the vector space of all finite linear combinations of finite
products of the operators W and W*. For any non-zero x € (*(C), Sz :={Tz: T €
S}. Then the closure of Sz in ¢?(C) is a reducing subspace of I, and is denoted by
X,. X, is called the subspace generated by x. Clearly, it is the smallest reducing

subspace of W containing x.

Definition 5.3.6. Let 2 € ¢*(C) and {e;}ez be an orthonormal basis for ¢2(C).

Then there exists scalars {o;},ez such that x = )., oje;. If there exists integers

JEZ
ny and ng, ny < ng such that a,, # 0, a,, # 0 and a; = 0 for j < n; and j > no,
then we define the length of x as no — n; + 1. Otherwise length of x is defined as

oo. Length of x is denoted as I(z).

Now, let us consider a bilateral shift on £2(C) with positive weight sequence {\, },cz.
In view of Theorems 5.3.1 and 5.3.3, W has a proper reducing subspace if and only if
there exists a positive integer n such that Z = U!' ,Z; and Z; = {kn+1i : k € Z} for

all 1 <7 < n, and there also exists r; > 0 (1 <14 < n) such that A\, = r; for all p € Z,.
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In this case, we have W" = rU" where r = ry...7,. Moreover, a subspace M of

(%(C) is reducing for W if and only if M = M, ®- - -@® M,,, where M; = Pz, M for all i.

We make the following observations:

(1) U(MZ) = Mi—i—l for 1 S 1 S n — 1 and U(Mn) = Ml.

(2) If z € M;, then

Wax =r,Ux € M;,q,

2 2
Wex :Ti'ri—i-lU S MZ'_J,_Q,

W"y = rU"x € M;. Similarly,

Wre = T’i_lU*LE’ c Mi—la

(W*)2ZE = ’l“i_l’l“i_Q(U*)2£L' € M,;_s,

(Wx =r(U*)"x € M,;.

Thus, (W*)"W"z = r?z = W*(W*)"x for x € M; (1 <i < n), and
(W knyhng = p2ky = Whn(W*)kng for all k € Z, v € M; (1 <i < n).

(3) Ifr; =Aforalli € Z, i.e, if We; = Ae;yq for all i € Z, then W will have no eigen
values.

To show this, let if possible, i be an eigen value of W. Then, there exists a non
zero vector x in (*(C) such that Wz = px. Soif x = (..., x_y, [wo],71,...), then

Wz = px implies x;41 = %9:, for all + € Z. Without loss of generality, we can assume
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xg # 0. Therefore

o0

— A i - 9
l2)* = > fail? = o * () Iﬁl2 +> IXIQ) % 00.
i=0 i=1

1=—00

This gives us a contradiction.

(4) As above, for any positive integer k, it can be shown that W* also does not have
any eigen value. This also means that for non zero x € £2(C), W*x and x are always

linearly independent.

G)lfre=01Pr® - Dx, €M with x; € M, for all 1 <i <mn, then x; € M for
each 1.

If all the r;’s are equal then n = 1 and so M cannot be reducing for W. Hence, we
cannot have all r;’s equal.

If n = 2, then we must have r; # ry. Therefore, r3x — W*Wax = (r2 —r?)z, € M,
so that z; € M. Similarly, riz — W*Wz = (r? — r3)xy implies 2o € M.

If n = 3, then we may have two situations:

Case I. r; # r; if i # j. Then
2 * 22 2 2

y:=rix—W'Wz = (r; —ri)xy + (r; —r3)zs € M, and

r3y — WWy = (r3 —r])(r; — r3)x; € M.
This implies ;7 € M. Similarly, xo, 23 € M.
Case II. ry = r3 and ry # r3. Then y = r3x — W*Wz = (r} — r})z; € H. This
implies x; € H. Therefore ©x — 1 = x5 + 3 € H. Again,

(W*)*W?2(zy + 13) = rorizy + 127703
=r3(rawy +1r3x3) € H.

Therefore, r3r2(xq + x3) — (W*)?)W?(29 + x3) = 13(r3 — r?)x3 € H. This implies

x3 € H and so x9 € H. Thus each z; € H. The cases for (r3 = r; and r; # ry) and
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(r1 = ry and 71 # r3) can be similarly settled.

The cases for n > 3 can be similarly proved.

(6) If x € M, such that [(z) < oo, then
(i) M, is not minimal reducing for W".
(ii) M; does not contain any minimal reducing subspace for W™.

To show this, let y := x + U"x. Also,

M, = span{W*(W*) "z, (W*)*""W*z : t, k € Ny}, and

M, = span{W*"(W*)"my, (W) Wy -t k € Ny}

Then y € ]\;[x which implies My - Mx.
Again, I(y) = I(z) + n and for each z € M,, I(z) > I(y). Therefore, = ¢ M,, which
implies My S M, C M.

In this context, we raise the following question:

Question: Let z € (*(C) such that {(z) = co. If y := z + Uz, then X, C X,. Is
re X, ?

An answer to this question would enable us to comment on the existence of minimal
reducing subspaces of W on ¢*(C). If the answer is “no”, i.e, if ¢ X, then X, is
not a minimal reducing subspace of W. This together with the observations made
above will imply that W does not have any minimal reducing subspace in ¢?(C).
However, if the answer to the above question is “yes”, i.e, if z € X, then X, could
possibly be a minimal reducing subspace of W. It is to be mentioned that we could

not answer the above question. Hence, it remains open.
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5.4 Minimal reducing subspaces for 7, of type II.

Let A\, € A, N My and K, := span{g;; : i € Ng,j € [[A;]]}. By Theorem 4.3.13,
T,|k, is unitarily equivalent to the bilateral backward operator weighted shift on
(?(K). Let us denote T} |x, as W,

The reducing subspaces of the operator weighted bilateral shift W on (*(K) are

discussed in [44] and [17]. Guyker proved the following result:

Theorem 5.4.1. Let {A,},ez be a commuting family of compact, normal opera-
tors with dense range. Let W be the bilateral shift on (?(K) with operator weights
{An}nez. Then W is unitarily equivalent to a countable direct sum ZneNO oW,
of bilateral weighted shifts W,, on €*(C) with non-zero scalar weights. Moreover a
subspace M of (*(K) reduces Y, ., ®Wy if and only if M = Y ®M,, where

M,, reduces W,, for every n € Ny.

So, by the above theorem, Wl is unitarily equivalent to a countable direct sum
> ieNy @VVZ-[A"] of bilateral weighted shifts VVZ-P‘"] on ¢?(C) with non-zero scalar weights.
@Mw

Also, a subspace M of (*(K) reduces Y @VVZ-[A"] if and only if M =

1€Np 1€Np

where M; reduces WZ-[A”} for every i € Ny.

Following the above notation, we now propose the following theorem:

Theorem 5.4.2. Let, M = > &M, be a reducing subspace of Wl Also, let

1€Np
T = ZieNO x; be in M, where each x; € M;, and there exists some 1 € Ny such that

l(z;) < oo. Then, M cannot be minimal.

Proof. By Theorem 5.4.1, each M; C ¢?(C) is a reducing subspace for Wip‘”]. Sup-
pose, there exists some i € Ny such that {(z;) < co. Then from the observation
6 made in Section 5.3, we can say that the reducing subspace M; is not minimal

reducing. So there exists a reducing subspace N; ; M;. Also, let N; = M; for all
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j € No—{i}, and N =3\ ©N;. Clearly, N & M, and N is reducing for Wl
Hence, M cannot be a minimal reducing subspace.

O

Remark 5.4.3. In the above theorem, if for each x = > ._ x; in M, we have [(x;) =

1€Np
oo for all 7 € Ny, then whether M is a minimal reducing subspace or not still remains

unresolved.

5.5 Minimal reducing subspaces for T, of type III.

Let A € A, N M3, and o(\) = r. Also, let K, be the closed linear span of
{9i; : © € No,7 € [[A]]}. Then, by Theorem 4.3.12, we have T,|k, is a weighted

circulant operator on H, = K & --- & K (r copies).

Again, for i € Ny, let Ky) be the closed linear span of {g;; : 7 € [[A]]}. Then,

Ky = Yy, @KV As [N] = {0 0(V), @2 (), ..., 9" 1 (\)} with ¢7(j) = j for all
(Ca®))

j e [N, and A, = (0{)icn,, s0 we have T,9i; = Gip-1(j for all j € [[A]].

If for i € Ny, we define C; : K)(\i) — K)(\i) as Cig;j = ozg“ofl(j))gwfl(j) for all 5 € [[A]],
then each C} is a weighted circulant operator on K gi). Also, then T, |k, is unitarily

equivalent to the countable direct sum ), ©C;.

5.5.1 For A\ € M3, o(\) =1

If o(A\) = 1, then p(A\) = A, and so for each i € Ny, we have C;g; » = agk)gw, so that

C; is irreducible, since the only reducing subspaces of C; are the trivial ones.

Theorem 5.5.1. Let f € K such that f =) ..\ &gix for a subset A of No. Then,

Xy s minimal reducing for T, if and only if ozg)‘) = oz;)‘) foralli,j € A.
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Proof. We have, T,,f = >\ &a?’gi,x =T:f

Condition is sufficient: If ag’\) = ag»’\) =nforalli,j € A, then T, f =nf =17/,
and so Xy = span{f}. Let Y be a non zero reducing subspace of T, such that
Y C Xy. Then, for 0 # y € Y, there exists a scalar { such that y = {f. This implies
f= %y €Y, and hence Y = X;. Thus, X is minimal reducing for 7T,,.

Condition is necessary: If 7,7 € A such that az(’\) + ag-’\), then let A® = {t € A :
az(’\) # agk)}. Thus,

A A A
oV f—Tof = > (0 — afM)gix = h(say).
teA()

Thus, X}, g Xy, and so Xy is not minimal for T,. ]

5.5.2 For \ € M3, o(\) =2
In this case, [[A]] = {\, ¢(N)}.

Lemma 5.5.2. Let A € Mg with o(\) = 2. Fori € Ny, let x = ag; » + bgi ,(\) with
a,b# 0. Then X, is a minimal reducing subspace for C; if and only if agk) = Ozl(“p()‘))

and a®> = b?.

Proof. We have the following relations:

Cix :aag“fl()‘))gwfl(x) + bag’\)g@,\
—aa* Mg, ooy + bV gi . (5.5.1)
Crx :aa?)gi,@m + baE@(A))gi,A. (5.5.2)
CrCix =a(aP)2g, 5 + b(a™M)2gi 0. (5.5.3)

Case 1. Let 045)‘) + al@(’\)). Then

(o) = G i = a(("™)? = (a”)*)gin.

7 7 i

This implies g; » € X,. Therefore g; ,n) € X, so that K)(\i) = X,, and hence X, is

not a proper reducing subspace for C;.
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Case IL Let o\ = o*™) but a2 # 62, Then,

b 2 b2
x — —[ag’\)ay(’\))]_%@x = (a
a

)%,m

which implies g; » € X, and hence again we have K @ _ X,
Case I1I. Let o\ = a*™)and a? = 6%, Then,

a? —b?

b
- oMV G = (

ia=0
P )Q,A

[0 (P

1
=Cix = -y o, ]2,

SylRS]

OB

7 i

Similarly, Cjr = ¢| J22. Hence, X, = span{z} and so X, is a minimal
reducing subspace of C;. O

(A)), then C; will have a minimal

Corollary 5.5.3. Ifi € Ny is such that o/ = o/
reducing subspace X, for x = ag; x +bg; o) with a,b # 0 and a®> = b*. Hence, T,|k,

has a minimal reducing subspace X, .

Theorem 5.5.4. (Sufficiency condition for minimality.)
Let A be a subset of No, and a,b be non zero scalars such that f = Y. [agix +
bgi.o(n)] € K, where A € Mg and o(A\) = 2. Then Xy is a minimal reducing subspace
of Tyl if
(i) a®* =?, and
(ii) there exists some p > 0 such that a?) = az(“p()‘)) = for alli € A.
Proof. Fori € A, let §; = agix + bg; y(n). Then, f =3, ,6;, and since a® = b?, so
T, = 23 al6) = (Uu).
ieA
Similarly, T f = ($u)f = T, f (since, a®> =" = § = b). Thus, X; = span{[} and

so Xy is a minimal reducing subspace of 7. O

Remark 5.5.5. Suppose in Theorem 5.5.4, the conditions a? = b? and ™ = o/*™)

for all t € A holds. We show below that the condition 045)‘) = 045-)‘) for all 4,7 € A is

necessary for X; to be a minimal reducing subspace for 7T,,.
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To show this, suppose i, j € A such that 042()‘) #* Oé;)\). For simplicity, we assume that
A =A® + AU where

AD ={teA: az(’\) = aﬁ’\)}

AD ={teA: Oz;- = ag)‘)}.

Then, T, f = ( Zte/w) 0y + a Zte/\(]) 6t), and f =, a0 + D yenih Ot

Therefore,

f——Tf }:@ (say).

teA®)
So, h € Xy which implies X;, € X;. Also, Y, ) 0¢ € Xp, implies f ¢ Xj,. Thus,

Xy G Xy, and so Xy cannot be minimal.

Remark 5.5.6. All other conditions in Theorem 5.5.4 remaining same, the condition

a? = b is necessary for X; to be minimal reducing. This can be shown by a method

similar to case 11 of Lemma 5.5.2.

5.5.3 For \ € M3, o(\) =3

Theorem 5.5.7. Fori € Ny, let v = ag; » + bg; o(n) with a,b # 0, and A\ € M3 with

o(N) = 3. If X, is a proper minimal reducing subspace of C; in K/(\i), then there must

N _ ) _ 20

exist p > 0 such that ag Q; = /.

Proof. Here, we have the following relations:

€T =ag; x + bg@@()\) (554)

Cl*x :CLOzZ()\)g,'M()\) + bagp(A))ngz()\) (5.5.5)

CZ'ZE :a,OéZ(Sp (A))giﬁpfl()\) + bag’\)gi,A

:CLO‘E@Z(/\))QWZ(A) + bozg)\)gi,x (5.5.6)
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CiCix =a(aY)?gi + b(af?™ ))QQi,go(A) (5.5.7)
1
CrCix =a(q (e )))2gi,,\ + b(%(/\))2gi,so(/\)

2
Za(afso ° ))) gix +b(a EA ) Jio(\) (5.5.8)

Now, (a™)? x (5.5.4) — (5.5.7) gives

7

(Oz()\ V2o — CiCfx = b[( ) (o e ))) 19i.60)-

)

This implies g; ) € X, if a™ £ qFM),
Similarly, (c; @ (A))) x (5.5.4) — (5.5.8) gives

(@l N2z — G = b(al” )2 — (™M), o0,

Z

and s0, g; ,() € X, if a(’\) 7é ang(’\))

Thus, if either a 7é a or ag)‘) + a§“’2(*)>, then g; .\ € X,. This implies X, =
span{g;;:j € [[N]} =K )(f , and hence X, is not a proper reducing subspace for C;.
Thus, if X, is minimal reducing, we must have ozg’\) = QE@(A)) = agpz(’\)) = L. O

Theorem 5.5.8. For i € Ny, let x = ag;x + bgi o) with a,b # 0, and A € M,
o(\) = 3. Also, suppose there exists i > 0 such that o™ = o{#®) = aE“DQ()‘)) = /.

Then X, is a proper reducing subspace for C; in K/(\i) if and only if a®> +b* = 0.

Proof. We have the following relations:

1 3 1 *\ 3 1 2 *\ 2 1 * 2
agix + bgi,go()\) =T = ECiI = E(Cz) Tr = ECZ' (C)w = E(C ) Ciz

1 1
1
1

agi,o(N) + bgz w2\ — C €r = _C2 (5510)
7 2
1

agi g2 (n) + bgix = E(Cz-*)% = ;Cﬂ (5.5.11)

Claim: g;\ ¢ X, if a® + b% = 0. From the above relations, we see that all elements

in X, are finite linear combinations of the functions ag; x +bgi (»), agi.e() +b3i 022
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and ag; ,2(x) + bgi . Let, if possible, g; x € X,.. So, there exists A, B, C such that

Jix = A(agm + bgi7@()\)) + B(agi,cpo\) + bgi,@2()\)) + C(Clgi’@2()\) + bgi,)\)

=aA+0C -1=0

bA+aB =0

bB + aC = 0.
a 0 b A 1
This implies PX =Q, where P=| b a 0 |, X=| B |and@=1| 0
0 b a C 0

To solve this system, we consider the augmented matrix

a 0 b1l
[PIQ]=|b a 0]0

0 b al0
a O b 1

~ |0 CL2 —b2 —b R2 — CLRQ — le
0 b «a 0
a O b 1

~ 10 a? —? —b Rg — a2R3 — bR>.
0 0 a®+0| b

By assumption, we have a # 0, b # 0. So, if a® + * = 0, then the system becomes
inconsistent and therefore has no solution. In other words, if a® + 0* = 0, then
gix ¢ X,. Hence, X, ; K)(\i) so that X, is a proper reducing subspace of C;.

2

2
Conversely, suppose a® +b* = 0. Then, for A = % B = —aga—fbg, C = agbﬁ, we

get
B C
gir=Ax+ —Clz + —Q(Cf)%,
7 7

so that g;» € X,. This implies that g; ) and g;,2(n) are also in X, and so

X, = K/(\i). Thus, X, is not a proper reducing subspace for C; if a® + b3 # 0. O
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Remark 5.5.9. Analogous results can be found if we consider x = ag;\ + bg; ,2(5)
and T = ag; o(n) + 09 p2(n)-

Remark 5.5.10. In Theorem 5.5.8, as X is a proper reducing subspace for C; in K/(\i),
and dim K/(\i) = 3, so dim X, is either 1 or 2. However from (5.5.9) and (5.5.10), we
see that hy = ag; x +bgi (n), and hy = ag; ,(n) + 0gix2(n), are in X, where hy and hy
are linearly independent in K /(\i).

Also, ag; 25 +bgix = —%(bhg — ahy). Hence, X, = span{hy, ho}, i.e, dim X, = 2.
Thus, if at all we have a minimal reducing subspace for C;, then it will be of the

form X, where y = ag; » + bgi(n) + €gi 21 With scalars a, b, c non zero.

Theorem 5.5.11. Let A € Mg with o(\) = 3. Fori € Ny, let x = ag;x + bg; ,») +
i\ With a,b,c # 0. Then X, is minimal reducing for C; if
(i) %z%zg, and

@) _

) Q; = [

(ii) there exists > 0 such that ag’\ — QZW(/\)) _

Proof. We have C;x = pi(ag; o) + bgip200) + cgi,n). Therefore,
(cp)r — aCfz = pl(be — a*)gipin) + (¢ — ab)gip2(n)].
As, a® = be and 2 = ab, so Cfz = (%)z. Similarly, Cjz = (%)z. Hence, X, =

span{z}, and hence X, is a minimal reducing subspace. O

Theorem 5.5.12. Let A € M3 with o(\) = 3. Fori € Ny, let x = agix + bg; ) +
CGip2(n) With a,b,c # 0. Suppose X, is a proper minimal reducing subspace for C; in

K)(\i). If two of the values ag’\), al@(’\)), ang(’\)) are equal, then all three must be equal.
Proof. Here, we have the following relations:

T = agix + bgi o) T CGip2(n)- (5.5.12)

CiCrz = a(al2gin + b(alP™)2g, o0 + c(@FM)2g, o (5.5.13)

C:Ciz = a(al” M)2g 5 + b(0)2g i) + c(@F)2g; 20 (5.5.14)
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Case 1. Suppose, ag’\) = “0()‘ but a; N £ al@z(,\))‘ Then

A 2(\ A
(@) = (P ON2ag , + [(@M)? = (@ P)2)eg; o

=Mz - CrC € X, (5.5.15)

)

As ol = o™ and oV 2 al@z()‘)), so we get gy € X, and so X, = K\”, showing

that X, cannot be a proper subspace for C;.

Case II. Suppose, ag’\) = a(so ) but a, ) ag“”(*”. Again by (5.5.15), we see that

Gip2(n) € Xz, which implies X, = K )(f . S0, X, cannot be a proper subspace for C;.

Case III. Suppose, a#™ = o™ but o™ £ o#™ Then

[(a§¢2(A)))2 . (Oz,w)2]bgz’,¢(x) + [(aZ(sDQ(A)))2 . (Oéz(w()\)))z]cgz‘,gﬂ@)

=@y _ Cr i € X, (5.5.16)

N £ az(“pz()‘)) and o\*™) = al”M 8o we get gip0) € Xy, and so X, = K/(\i),

2

showing that X, cannot be a proper subspace for C;. O

Theorem 5.5.13. Let A € Mg with o(\) = 3. Fori € Ny, let x = ag;x + bg; ,») +

CGip2(n) with a,b,c # 0. Suppose X, is a proper reducing subspace for C; in K f

e >,a§“”( ) ()

b are all distinct, then

(a()‘))2 _ (a(sﬁ(k)))2 (a(sﬁ(k)))2 (9020\)))2 (a(¢2(>\)))2 _ (aQ))2

i B (Oé-
(a(w(k)))z _ (a(sﬂ(/\))y N (a(eo2(/\)))2 _ (a@))z (a(/\))2 _ (a(w(k)))z

Proof. From (5.5.12) and (5.5.13), we have

2
(M2 — CiCra = b[(alM)? — (afP™)?] g; i + c[(@™)? = (&l M) gi 20 € X
(5.5.17)
Then from (5.5.16) and (5.5.17), we get

b[[(@™)? = (@FM)[(@lF M2 — (@] — [P )2 — ()] g, o) € Xo
(5.5.18)
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Let, if possible

((<P(A)))2 (o 3020\)))

(3020\)))2 B (a(A))2
(N) ) 7

(SO()\)))2 ’

:
(a (2(N) ) (!

Z

Then, from (5.5.18), gion) € X5. This implies X, = K/(\i), a contradiction. Hence,

we must have

A 2(\ 2(\ A
(a£<ﬁ( )))2 ( 2(90 ( ))) B (al(so ( )))2 N (O‘z( ))2
2(N) ) o A A
(a2 — (@M (V)2 = (™)

A similar situation occurs for

(eo(/\))>2 (al(so(k)))z B (%(502(/\)))2

(@)~ (a ,
(a (AO(A))> — (a (@2()\))) (a(e02(>\)))2_(a(>\))2

Z

(QQ\))2 _ (a(@()‘))) (a(wz(k)))z _ (aQ\))z
(a(w(k)))z _ (a(sﬁ()\)))2 7 (a@))z _ (a(@(/\)))2

Theorem 5.5.14. Sufficiency condition for minimality:

Let A € M3 with o(\) = 3. Let A be a subset of Ny, and a,b, c be non zero scalars
such that f =", \[agix +bgi o0 +cgip2 ] € Kx. Then Xy is a minimal reducing
subspace of T|k, if

(Z’)%z%zg, and

(ii) there exists > 0 such that o™ = a#™) = af2(k) = p for alli € A.

Proof. For i € A, let 6; = agix + bgi p(n) + €Gi 20 Then f=3%"._, 6 and T, |k, =
> ica Ci- By Theorem 5.5.11, for each i € A, we have C;0; = (%”)52 and Cfo; =
(“%)0;. Therefore, T, f = (%“)f and T7 f = () f. Hence, X; = span{f}, and so X;

is a minimal reducing subspace of T, on K. O

5.5.4 For A\ € M3, o(\) =7

From Theorem 5.5.4 and Theorem 5.5.14, we can propose a sufficiency condition for

minimality where A € M3, o(A) =71, r > 2.
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Theorem 5.5.15. Let A € M3 and o(\) = r with r > 2. Let A be a subset of Ny,
and ag, a1, . .., a,—1 be non zero scalars such that f =%"._,\[aogix + a19i o0 + -+

ar—1Gi 1) € Kx. Then Xy is a minimal reducing subspace of T, |k, if

2 a Qr—2 ar—1
(Z) & — a1 — ., = 2r=2 _ Zr , a/nd
ay az ar—1 ag

(ii) there exists 1 > 0 such that agwt()‘)) = for all0 <t <r andie A.

The proof of Theorem 5.5.15 is similar to that of Theorem 5.5.14, and hence it is

omitted.
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