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Introduction

1.1 Introduction

In the branch of operator theory, shift operators are a class of very widely and

extensively studied linear operators on Hilbert spaces. These operators are of fun-

damental importance in many parts of operator theory. Among the many adequate

and comprehensive references are [10], [41], [45] and [48]. A recent approach is the

weighted shifts on trees [28]. These operators have many algebraic and analytic

properties and very often it is the technique applied in proving these properties

which are very valuable even though the properties may not have immediate visible

application.

In our work, we have studied weighted unilateral shifts of higher multiplicity with op-

erator weights. We determine the reducing subspaces of a class of operator weighted

shifts where the operator weights are not necessarily normal or self adjoint. It may

be recalled that a reducing subspace of an operator T on a Hilbert spaceH is a closed

subspaceM of H such that T and T ∗ both mapsM intoM . A reducing subspaceM

is called minimal if the only reducing subspace contained inM areM and {0}. Also,

an operator T on H is irreducible if the only reducing subspaces of T are H and {0}.
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It is well known that the unweighted unilateral shift of multiplicity one is irreducible.

The structure of the reducing subspace lattice for unweighted unilateral shifts of

higher multiplicities was described in [18] and [42]. The reducing subspaces of more

general weighted shifts are discussed in [50]. Similar work on reducing subspaces

of analytic Toeplitz operators can be found in [1, 7, 15, 26, 38, 46]. Both scalar

and operator shifts have time and again proved to be a fertile ground for providing

examples and counter examples in various branches of operator theory.

We begin with an introduction of shift operators along with some of their basic

properties. It may be mentioned that different authors often tend to use different

notations. For our purpose, we follow the notation given in [10].

Let K be a Hilbert space, and let ℓ2+(K) = K ⊕K ⊕ . . . be the Hilbert space of all

sequences x = {xn}
∞
n=0 of vectors xn ∈ K such that ‖x‖2 =

∑∞
n=0 ‖xn‖

2 < ∞. The

unilateral shift U+ on ℓ2+(K) is defined as

U+(x0, x1, . . . ) = (0, x0, x1, . . . ).

The multiplicity of U+ is the cardinal number n = dimK. It follows immediately

that the adjoint of U+ is given by

U∗
+(x0, x1, . . . ) = (x1, x2, . . . )

and U∗
+ is called the backward shift. Two unilateral shift operators are unitarily

equivalent if and only if they have the same multiplicity.

Again, let ℓ2(K) =
∑∞

−∞⊕K be the Hilbert space of two-way sequences x =

(. . . , x−1, [x0], x1, . . . ) of vectors from K with ‖x‖2 =
∑∞

n=−∞ ‖xn‖
2 < ∞, and let
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the bilateral shift U on ℓ2(K) be defined as

U(. . . , x−1, [x0], x1, . . . ) = (. . . , x−2, [x−1], x0, . . . ).

Here, [·] denotes the central 0th entry of x = (. . . , x−1, [x0], x1, . . . ).

The multiplicity of U is dimK. Just like unilateral shifts, bilateral shifts are also

unitarily equivalent if and only if they have the same multiplicity.

1.2 Review of literature

Let C denote the complex plane, and T and D denote the unit circle and open unit

disc in C respectively. Also, Z and N denotes the set of integers and the set of

natural numbers respectively. The set of non negative integers is denoted by N0.

Let L2 be the space of all square integrable functions with respect to the normalized

Lebesgue measure µ on the unit circle T. For f, g ∈ L2,

〈f, g〉 :=

∫

T
f(z)g(z)dµ(z)

=
1

2π

∫ 2π

0

f(eiθ)g(eiθ)dθ

=
1

2π

∫ 2π

0

f(θ)g(θ)dθ (writing f(θ) for f(eiθ) and g(θ) for g(eiθ)).

For n ∈ Z, en : T → C is defined as en(e
iθ) = einθ, or equivalently as en(z) = zn for

z = eiθ. We usually write en(θ) instead of en(e
iθ) for simplicity whenever there is no

confusion. The functions en(θ) = einθ, n ∈ Z form a complete orthonormal set in L2.

Let H2 be the closed linear span of the {en}n∈N0 . Thus

H2 = {f ∈ L2 : 〈f, en〉 = 0 for n < 0}.
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Let e(θ) := e1(θ) = eiθ and Me : L
2 → L2 be defined as

Me(f) = ef for all f ∈ L2.

Therefore, (Mef)(θ) = eiθf(θ) for all f ∈ L2.

ThenMe is unitarily equivalent to the bilateral shift of multiplicity one. Also,Me|H2

is unitarily equivalent to the unilateral shift of multipicity one.

Let L2(K) consist of all measurable functions f from T to K such that ‖f‖2 =

1
2π

∫ 2π

0
‖f(θ)‖2dθ <∞. Two functions f and g in L2(K) are considered equal if they

differ only on a set of measure zero. L2(K) is a Hilbert space with respect to the

inner product

〈f, g〉 :=
1

2π

∫ 2π

0

〈f(θ), g(θ)〉dθ.

Functions in L2(K) admit two kinds of orthogonal expansions, as shown below:

(1) Let {bα}α∈Λ be an orthonormal basis for K. Let f ∈ L2(K). For each α ∈ Λ, let

fα : T → C be defined as fα(θ) = 〈f(θ), bα〉. Here, fα’s are called the co-ordinate

functions of f . Then f(θ) =
∑

α∈Λ fα(θ)bα, where convergence is in the norm of

K. Here, each fα ∈ L2 and ‖f‖2 =
∑

α∈Λ ‖fα‖
2. Thus the map f 7→

∑

α∈Λ ⊕fα

is an isometry from L2(K) onto
∑

α∈Λ ⊕L
2. This also shows that L2(K) is complete.

(2) The second kind of expansion is as a Fourier series with vector coefficients. It can

be shown that each f ∈ L2(K) admits a unique expansion f(θ) =
∑∞

k=−∞ xke
ikθ,

with xk ∈ K and ‖f‖2 =
∑∞

k=−∞ ‖xk‖
2. This is to be understood in the weak sense:

for each x ∈ K, the Fourier expansion of 〈f(θ), x〉 is
∑∞

k=−∞〈xk, x〉e
ikθ. The map

f 7→ {xk} is an isometry from L2(K) onto ℓ2(K).
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Multiplication by e, i.e, Me on L
2(K) is the bilateral shift U of multiplicity dimK.

The subspace H2(K) := {f ∈ L2(K) : f(θ) =
∑∞

k=0 xke
ikθ} is invariant under U ,

and U |H2(K) is the unilateral shift U+ of multiplicity dim K.

The invariant and reducing subspaces of these general shift operators are well un-

derstood. A comprehensive reference for the same is [10]. Of particular interest is

the case when dim K = 1, for which a lucid treatment can be found in [39].

Motivated by the theory of unilateral and bilateral shifts, another class of opera-

tors namely weighted shift operators was defined on ℓ2(K). Here, we refer to the

definition given by Shields in [48], where he considers weighted shifts on ℓ2(K) for

dimK = 1. For a bounded sequence of scalars {βn}n∈Z, he defines S on ℓ2+(K) as

S(x0, x1, . . . ) = (0, β0x0, β1x1, . . . );

and W on ℓ2(K) as

W (. . . , x−1, [x0], x1, . . . ) = (. . . , β−2x−2, [β−1x−1], β0x0, . . . )

and call them the unilateral weighted shift and bilateral weighted shift respectively.

In the same paper, Shields also introduced the definition of a weighted sequence

space. Let β denote a sequence of positive numbers {βn}n∈N0 with β0 = 1. Then

H2(β) is defined to be the space of all formal power series f(z) =
∑∞

n=0 fnz
n such

that
∑∞

n=0 |fn|
2β2

n < ∞. Similarly, L2(β) is defined as the space of formal Laurent

series f(z) =
∑

n∈Z fnz
n such that

∑

n∈Z |fn|
2β2

n < ∞. For f, g ∈ L2(β), 〈f, g〉 :=

∑

n∈Z fngnβ
2
n. Thus,

H2(β) = {(x0, x1, . . . ) : xi ∈ C,
∞
∑

n=0

|xn|
2β2

n <∞}, and
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L2(β) = {(. . . , x−1, [x0], x1, . . . ) : xi ∈ C,
∑

n∈Z

|xn|
2β2

n <∞}.

The following results were established in [48]:

Theorem 1.2.1. The unilateral shift U+ on H2(β) is unitarily equivalent to the

unilateral weighted shift S on ℓ2+(C) with weights {wn}n∈N0 given by wn = βn+1

βn
for

all n ∈ N0. Also, U+ on H2(β) is bounded if and only if sup{βn+1

βn
: n ≥ 0} <∞.

Theorem 1.2.2. If S is a unilateral weighted shift on ℓ2+(C) with non-zero weights

{wn}n∈N0 then S is unitarily equivalent to U+ on H2(β) where β0 := 1 and βn :=

w0w1 . . . wn−1 for n > 0.

Similar results also hold for the bilateral shift U on L2(β). In Corollary 2 of Theorem

3 [48], Shields has shown that U+ on H2(β) is irreducible. In view of Theorem

1.2.2, this implies that S on ℓ2+(C) is also irreducible. In 1967, N. K. Nikolskii [40]

introduced operator weighted shifts as a generalization of scalar weighted shifts.

Invariant subspaces of the weighted shifts was first studied by Nikolskii [40]. For

this, he considered a sequence of uniformly bounded operators {An}n∈N0 on K. The

operator S on ℓ2+(K) is defined as

S(x0, x1, . . . ) = (0, A0x0, A1x1, . . . )

and is called the unilateral operator weighted shift with weights {An}n∈N0 . A bilat-

eral operator weighted shift is similarly defined on ℓ2(K).

The unilateral operator weighted shift S is bounded and ‖S‖ = supn ‖An‖. If

each An is invertible, then S is an invertibly weighted operator shift [34]. Operator

weighted shifts are a generalization of the scalar weighted shifts. However, this gen-

eralization is not just formal. For example, by means of an operator weighted shift,

Pearcy and Petrovic [43] proved that an n-normal operator is power bounded if and
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only if it is similar to a contraction. Since its introduction, operator weighted shifts

have been widely studied. For a general understanding of its various properties we

refer the following: [3, 11, 25, 27, 34, 36, 40].

Our interest is to determine the minimal reducing subspaces of an invertibly weighted

operator shift S on ℓ2+(K).

Definition 1.2.3. A subspace M of ℓ2+(K) is invariant under S if S(M) ⊆ M . If

M is invariant under both S and S∗ thenM is said to be reducing for S. A reducing

subspace M is said to be minimal reducing if it does not contain any proper non

zero reducing subspace.

The invariant and reducing subspaces of specific types of invertibly weighted oper-

ator shifts are known from [13, 14, 16, 17, 20, 30, 34, 40, 44, 50, 55]. However, we

observe that in all these cases S is an operator weighted shift with weight sequence

{An}n∈N0 , where it is either assumed that the An’s are commuting normal operators,

or that each An is positive diagonal.

In [34], Lambert considered the unilateral operator weighted shift S on ℓ2+(K)

with uniformly bounded operator weights {An}n∈N0 such that each An is invertible,

though the An’s need not be mutually commuting. For each n ∈ N0, he constructed

operators Sn on K such that S0 := I, and for n ≥ 1, Sn := An−1An−2 . . . A0 and

considered T (S) to be the weakly closed ∗-algebra generated by {S∗
nSn}n∈N0 . Lam-

bert proved that S is irreducible if and only if T (S) = B(K), where B(K) denotes

the space of all bounded linear operators on K. As against this result, we know that

the unweighted shift U+ on ℓ2+(K) is always irreducible. For the unilateral operator

weighted shift S on ℓ2+(K), Lambert proved the following two significant results in

[34]:
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Theorem 1.2.4. If M is a subspace of ℓ2+(K) which reduces S, then we have M =

∑

n∈N0
⊕SnM0 for some subspace M0 of K.

Theorem 1.2.5. If M =
∑

n∈N0
⊕SnM0 is a subspace of ℓ2+(K), then the following

are equivalent:

(i) M reduces S.

(ii) SnM0 is invariant for A∗
nAn, n ∈ N0.

(iii) (SnM0)
⊥ = Sn(M0)

⊥, n ∈ N0.

(iv) S∗
nSnM0 =M0, n ∈ N0.

Following this work, there has been a continuous attempt to identify the reducing

subspaces of unilateral and bilateral operator weighted shifts S and W respectively

with the operator weights {An}n∈N0 satisfying different sets of conditions.

In [44], Pilidi deduced a reducibility condition forW on ℓ2(K) with invertible weights

{An}
∞
n=−∞. Let B(K) denote the space of all bounded linear operators on K. For

any integer p, the sequence {T (n,p)}n∈Z in B(K) is defined as follows:

T (0,p) = 1, and for n ≥ 1,

T (n,p) = |An+p−1An+p−2 . . . Ap|,

T (−n,p) = |A−1
−n+pA

−1
−n+p+1 . . . A

−1
p−1|,

where |B| = (B∗B)
1
2 for B ∈ B(K). U

(p)
T denotes the w∗-algebra generated by

{T (n,p)}n∈Z. In [44], Pilidi established the following results for the bilateral operator

weighted shift W on ℓ2(K):

Theorem 1.2.6. The bilateral operator weighted shift W on ℓ2(K) with positive

weights {An}n∈Z is reducible if and only if one of the following conditions hold:

(a) U
(0)
T 6= B(K).

(b) The sequence {An}n∈Z is unitarily periodic.
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Note that a sequence {An}n∈Z in B(K) is said to be unitarily periodic if for some

integer p 6= 0 the sequences {An}n∈Z and {An−p}n∈Z are unitarily equivalent. That

is, if there exists a unitary operator U ∈ B(K) such that An = U∗An−pU for all

n ∈ Z.

Theorem 1.2.7. If W on ℓ2(K) has positive operator weights {An}n∈Z such that

the sequence {An}n∈Z is completely non-periodic, then M ⊂ ℓ2(K) reduces W if and

only if M = ℓ2(N), where N ⊂ K is a common reducing subspace of the operators

An.

Note that a sequence {An}n∈Z in B(K) is said to be completely non-periodic if the

conditions p ∈ Z, p 6= 0, A ∈ B(K) and An+pA = AAn for all n ∈ Z together imply

A = 0.

In [17], Guyker extended these results to the case of normal weights with dense

range. He proved the following:

Theorem 1.2.8. Let {An}n∈Z be a commuting family of compact, normal operators

with dense range. Then W on ℓ2(K) is unitarily equivalent to the countable direct

sum
∑

⊕Wn of bilateral weighted shifts Wn on ℓ2(C) with non-zero scalar weights.

Moreover, a subspace M reduces
∑

⊕Wn if and only if M =
∑

⊕Mn, where Mn

reduces Wn for every n.

In [50], Stessin and Zhu considers UN
+ on H2(β) for N > 1, and gives a complete

description of its reducing subspaces. In [20], Hazarika and Arora considers U+ on

the operator weighted sequence space H2(B). The space H2(B) is defined as follows:

LetB denote a uniformly bounded sequence {Bn}n∈N0 of positive invertible operators

on K, and

H2(B) := {(x0, x1, . . . ) : xi ∈ K,
∑

i∈N0

‖Bixi‖
2 <∞}.
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For f = (fi) and g = (gi) in H
2(B), 〈f, g〉 :=

∑

i∈N0
〈Bifi, Bigi〉. If dimK = N <∞,

then UN
+ on H2(β) can be considered as U+ on H2(B) where each Bn is an invert-

ible diagonal operator on K defined as Bnei = βNn+iei for i = 0, 1, . . . , N − 1. Here

{ei}
N−1
i=0 is an orthonormal basis for K.

In [20], the results of [50] are extended to the case where dimK = ℵ0. In both these

papers, the minimal reducing subspaces of the shift are also discussed.

1.3 Chapter-wise brief summary of the thesis

The thesis comprises of five chapters. The first chapter is introductory in nature.

It includes a brief background leading to the problem in hand. The operators and

spaces referred to in the sequel are also defined in this chapter.

In our work, we consider K to be a separable complex Hilbert space with dimK =

ℵ0, and orthonormal basis {ei}i∈N0 . Though the literature on scalar weighted shifts

is extensive, the same is not true for operator weighted shifts. There are many as-

pects of the class of operator weighted shifts which are yet to be fully understood.

One of these is regarding their reducing and minimal reducing subspaces. As regards

the available literature, we find that most of the work imposes specific restrictions

on the operator weights. One such set of conditions is to assume that the weights

are self adjoint and invertible. In another situation, it is assumed that the operator

weights are simultaneously diagonalizable i.e, they are mutually commuting. In our

study, we try to go beyond these assumptions and consider a more general class of

operator weights. We begin with a brief introduction to these weights:

Let B(K) denote the set of all bounded linear operators on the separable complex
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Hilbert space K having an orthonormal basis {en}n∈N0, and T be the subset of B(K)

defined as follows:

T := {T ∈ B(K)
∣

∣ T is invertible in B(K) and the matrix of T with respect to

{en}n∈N0 has exactly one non zero entry in each row and each column.}

We observe the following:

(i) If T1, T2 ∈ T , then T1T2 ∈ T . However, T1 and T2 need not commute and hence

elements of T are not simultaneously diagonalizable with respect to {en}n∈N0.

(ii) If T ∈ T then its Hilbert adjoint T ∗ and inverse T−1 are also in T .

(iii) Elements of T need not be self adjoint or normal.

In Chapter 2, we consider the operator weighted shift S on ℓ2+(K) with uniformly

bounded weights {An}n∈N0 in T and determine its reducing and minimal reducing

subspaces.

In Chapter 3, we consider the unilateral shift U+ on the operator weighted sequence

space H2(B), where B denotes a uniformly bounded sequence of operators {Bn}n∈N0

in T . We determine the reducing and minimal reducing subspaces of U+ on H2(B).

In Chapters 4 and 5, we extend our study to a more general class of operators called

operator pseudo shifts. The motivation to define operator pseudo shift comes from

that of scalar weighted pseudo shift [12, 35]. We consider an injective map ϕ on N0

and for a uniformly bounded sequence of operators {An}n∈N0 in K, we define Tϕ on
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ℓ2+(K) as

Tϕ(f0, f1, . . . ) = (A0fϕ(0), A1fϕ(1), . . . ).

Tϕ, also denoted as Tϕ,{An} is called the operator pseudo shift induced by ϕ, with

weight sequence {An}n∈N0 .

For a given injective map ϕ, we define the following sets:

(i) M1 = {n ∈ N0 : n /∈ R(ϕ)}, where R(ϕ) denotes the range of ϕ.

(ii) M2 = {n ∈ N0 : n = ϕk(m) for some m ∈ M1, k > 0}.

(iii) M3 = {n ∈ N0 : n = ϕk(n) for some k > 0}.

(iv) M4 = N0 − (M1 ∪M2 ∪M3).

Based on these sets, we classify an operator pseudo shift Tϕ into three types, as

mentioned below:

(i) Tϕ is said to be of Type I if M3 = φ and M4 = φ.

(ii) Tϕ is said to be of Type II if M1, M2 and M3 are empty and M4 6= φ.

(iii) Tϕ is said to be of Type III if M1, M2 and M4 are empty and M3 6= φ.

In Chapter 4, we consider Tϕ to be of type I and determine its reducing and minimal

reducing subspaces.

In Chapter 5, we discuss about the reducing and minimal reducing subspaces of Tϕ

when it is of type II and type III.
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