Chapter 2

Minimal reducing subspaces of an
operator weighted shift

2.1 Introduction

In this chapter, we consider a unilateral operator weighted shift S on (2 (K) with a
uniformly bounded sequence of weights { A, },en,, and try to find its reducing and
minimal reducing subspaces. The operator weights {A, }.en, are elements of the
class 7. So, with reference to the definition of 7 given in the previous chapter, S
is a unilateral operator weighted shift whose weights are not necessarily diagonaliz-

able, and neither are these weights necessarily normal or self-adjoint.

2.2 Unitary equivalence

Let K be a separable complex Hilbert space with orthonormal basis {e;}ien,. Also
for i,j € Ny, let g;; := (0,...,¢€;,0,...) where e; occurs at the j position. Then

{gi;}ijen, is an orthonormal basis for /2 (K).

We now consider the operator weighted sequence space H?(B), where B denotes a

uniformly bounded sequence of operators { B, }nen, on K. As ||g; ;|5 = || Bjeil], so if

fij = Hgijé_l‘, then {f;;}ijen, is an orthonormal basis for the Hilbert space H?*(B).
€1

13
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The unilateral shift U, on H?(B) is then defined as Uy (fo, fi,...) = (0, fo, f1,--.)

1Bj+1ell
1 Bjeill

and is bounded if and only if sup; ; < 00.

Theorem 2.2.1. Let U, be the unilateral shift on H*(B), and for each n € Ny, we

define the operator A,, on K as A,e; = (%)ei. Then U, is unitarily equivalent

to the unilateral operator weighted shift S on (% (K) with weight sequence { A, }nen, -

Proof. Let V : H*(B) — (3 (K) be defined as Vf;; = g;; for all 4,5 € Ny, and
extend linearly. Then V' is unitary and V*g,; ; = f; ;.
We claim: U, = V*SV. To establish our claim choose i, j € Ny. Then,

1
| Bje:
_ gu+1
| Bje|

- Mf. .
[Bjei]| W

U—l—fi,j HSglj

Also, we have
V*SVfiJ = V*S(O, ) 0, . )
- V*( A 627 tt )a

which implies V*SV f; ; = ”]’;;eﬁ”fzﬁl Hence, V*SV = U,. O

For the converse, we consider a sequence { A, } ey, of bounded linear operators on K
such that sup,, [|A,]] < co. We first consider the case where A,,’s are simultaneously

diagonalizable with respect to {e;};en,-

Theorem 2.2.2. For n € Ny, let A, be an invertible bounded linear operator on
K such that the matriz of A, with respect to {e;}ien, is diag(dy™, 6, 6. ...
Also let sup,||An| < co. If S is the unilateral operator weighted shift on (%(K)
with weight sequence { A, }nen,, then S is unitarily equivalent to the unilateral shift
Uy on H*(B), where B denotes the sequence { By, }nen, with By :== I and B,y :=
ApA, 1A, ... Ay for n € Ny.
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Proof. By Theorem 3.4 [34] we may assume that each A, is positive. If V :
H*(B) — (%(K) is defined linearly such that Vf;; = g¢;; for all i,j € Ny, then
V' is unitary. Let Bo =1 and B,y = A,A, 1A, ... Ay for n € Ny. Then
|Busies|| = 676" 69 for all i,n € Ny so that ”fg;jﬁ” = 6. Then as in

Theorem 2.2.1, it can be shown that V*SV = U,. 0J

Next, we consider the case where each A,, isin 7. Now, elements of 7 have a specific
type of matrix representation with respect to {e;}ien,. Let T € T and for j € Ny,
let 7; denote the non zero entry occurring in the j™ column of the matrix of 7' with
respect to {e;}ien,. Then there exists a unique bijective map 1 : Ng — Ny such that
7, occurs at the ¥(j)™ row. Thus, if [a; ;] (i,j € Ny) denotes the matrix of T with
respect to {e;}ien,, then

,_{ v if i = 9());
Q5 5 1=

0, otherwise.

Thus for each j € Ny, T'ej = ey ;). Also ||T'[| = sup; |v;].

Since T is invertible in B(K), so 7; # 0 for each j € Ny and T ey = %e]—. Hence

if o := 17!, then for each i € Ny,

1
T_lei — ep(i), and
e (3)
B 1 1 1
|77 = sup = o = f :
i Vel infilveml  infj |yl

If 3; denotes the non-zero entry in the i row of [a; ;], then for z = ZZENO zie; € K,

T(%, L1,2,y .- ) = (50%0(0)7 51%0(1)7 e )

Note that K = (2 (C), so « = (¢, 1, . ..). In [35], this operator T is called weighted
pseudo shift and is denoted by Ty, ,, where b = {3; }ien,. We study this operator in
Chapters 4 and 5.
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Theorem 2.2.3. Let {A,}nen, be a sequence in T and sup,, |A,| < oo. Then
there exists a sequence B = { By, }nen, of positive invertible diagonal bounded linear
operators on K such that the unilateral operator weighted shift S on (2 (K) with

weight sequence { Ay }nen, is unitarily equivalent to the unilateral shift U, on H*(B).
To prove the above theorem, we first prove the following lemmas.

Lemma 2.2.4. Let T' € T and for i € Ny, let ; denote the only non zero entry in
the matriz of T' occurring in the ith column. If T = UP is the polar decomposition

of T, then P with respect to {e;}ien, s diag(|vol, |71l |72, - - ) and U is unitary such

that U € T and “’?‘ 1s the only non-zero entry occurring in the ith column of the

I'Yz

matriz of U with respect to the orthonormal basis {e;}ien, of K.
The proof being obvious is omitted.

Lemma 2.2.5. Let {A, }nen, be a sequence in T with sup,||A,| < oo, and S be a
unilateral operator weighted shift on (%(K) with weight sequence {A,}nen,- Then
there exists a sequence { Dy, }nen, of positive invertible diagonal operators on K such
that S is unitarily equivalent to the operator weighted shift T on (2 (K) with weight

sequence { Dy, }nen, -

Proof. For each n € Ny, there exists a bijective map v, : Ny — Ny such that

Ane; = 7(")6%@ for non-zero scalars 7(") and 7 € Ny.

Let A,, = U, P, be the polar decomposition of A,,. Then P, > 0 is invertible diagonal
(n)

and P,e;, = m(")\ei for all i € Ny. Also U, is unitary with U,e; = %:(—,;Iewn(i) for all

o7

i € Np. Define P, M, U, : (%(K) — (2 (K) as follows:

P(l’o,l’l,...):(P()LU(),Pl.CL’l,...)
M(Io,xl,...) = (U(]Io,lel,...>

U+(ZL’0,1’1, .. ) = (0,1’0,1’1, .. )
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Then S = (U; M) P, which is in fact the polar decomposition of S.

Let Vo = [ and V,,.1 = U,V, for all n € Ny. Then each V,, is unitary on K. Let
V : 2(K) — (2(K) be defined as V(zg,21,...) = (Vozo, Vizr,...). Then V is
unitary and Uy M = VU, V*. Thus,

S=U,MP=VUV*P=V(U.V*PV)V".

As V' is unitary, hence S is unitarily equivalent to U, V*PV.
Let D, :==V*P,V, for all n € Ny. For each z € K,

(Dpx,zy = (VP Vo, 2y = (P, V,x, V) > 0.

This implies D,, > 0.

Also, as P, is diagonal and V,, is unitary, so D, is diagonal. If T"'= U, V*PV then
T(ZL’Q,[L’l, .. ) = (0, DQZIZ’Q, Dll’l, c. )

i.e, T is an operator weighted shift on (2 (K) with weight sequence {D,}nen, of

positive invertible diagonal operators on K. O

Proof. Proof of Theorem 2.2.3.

By Lemma 2.2.5, there exists a sequence {D,}nen, of positive invertible diagonal
operators on K and an operator weighted shift 7" on ﬁ(K ) with weight sequence
{D,, }nen, such that S is unitarily equivalent to 7. By Theorem 2.2.2, T' is unitarily
equivalent to the unilateral shift U, on H?(B) with B = {B, }nen, where By := I
and B, :== D, D, _1...Dg for n € Nyg. Thus, S is also unitarily equivalent to U, on
H?(B). O
Remark 2.2.6. Suppose we consider an operator A € T, whose matrix representation

0 a O

is | 0 0 b |. The polar decomposition of A is then given by A = V P, where
c 00
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0 & 0 el 0 0
V=| 0 0 ‘—2‘ is the unitary matrixand P=| 0 |a|] 0 | is the positive
< 0 0 0 0 b

lel
semi-definite matrix.

We can find {D,, },en, as given in Lemma 2.2.5 in the following manner: Let A, € T

and A,e; = 72-(")6%@), i.e, 7\ occurs at the v, (i)th row and ith column of the matrix

representation of A,. For each n € Ny, the polar decomposition of A, is given by

A, = U,P,, where

P, = diag(y§™], 1), 187, - ) (2.2.1)

and if [, ;| is the matrix representation of U,, with respect to {ej }ren,, then for each

J € Ny, we must have
A
O, elsewhere.

From Lemma 2.2.5, we have for each n € Ny, V,, : K — K such that V,, is a unitary

operator defined as
Vo=TandV, 1 = U,V,for alln € Ny. (2.2.3)

Also, D,, := V*P,V, for all n € Nyg. Then 2.2.1 gives us P,e; = |%(")|e,- which

(n)
clearly implies that Ple; = |fyi(")\ei. Again, 2.2.2 gives U,e; = %ewn(i) so that

BN

LI Yn (7')
Unei = 55 Contiy

The recurrence relation 2.2.3 gives

7(0)%(&1)() %(pn 13¢ Yo(i)
Vaei = ] (: i)n 30 ‘ed}nflwn—l--wO(i)' (2.24)

‘% Vwo (@) " Vo athn_5..100(i)

2.2.4 gives us the adjoint of V| i.e,

‘71(;11<z>7(n jzpil(z)"'”fpof)lw*l )
L e ey ©) Cog o a1y () (22.5)

Yozt 0 Vot ) Teg et ()
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Hence, with the help of the relation D,, := V*P,V,,, we find D,, for each n € Ny as
Doei = ;" e
1
Dies = gy les

2
Dae; = ‘%(111)1110(%') ‘ €

3
Dse; = |7w2w1w0(i)|ei, o

Hence, for each i € Ny, Dge; = |%'(0)|‘3i> and D,e; = |71(L)71wn72___¢0(i)|6i for n > 0.

Thus, for each A,, n € Ny we get a positive invertible diagonal operator such that

if A, is given as A, = ( ((]"), %"), 75"), ... ), where %(")

occurs at the v, (i)th row and
1th column of the matrix representation of A,,, then the corresponding D,, is given

as

Dy = diag (7], 121, 7Y, ...) for n =0,

X (n) (n) (n)
Dn = dzag(|,}/¢n71¢n72-~¢0(0)|’ |,}/¢n71¢n72~~~¢0(1)|’ |,}/¢n71¢n72~~~w0(2)|’ o ) for n > 0.

The minimal reducing subspaces of U, on H?(B) is determined in [20], where it
is assumed that B represents a uniformly bounded sequence of invertible diagonal
operators on K. So in view of Theorem 2.2.3 and [20], we should be able to deter-
mine the minimal reducing subspaces of the unilateral operator weighted shift .S on
(% (K) with weights {A,} in 7. However, because of the complex transformations
involved in the process, it is quite difficult to easily appreciate the end result. Hence

in the present work, we adopt a different approach.

For unilateral operator weighted shift S with non diagonal operator weights, we first
try and represent S as a direct sum of scalar weighted shift operators, as suggested in

[44]. In this respect we have Theorem 3.9 [34] which we restate below for reference.

Theorem 2.2.7. [34] The unilateral operator weighted shift S on (2 (K) with op-

erator weights { A, }nen, s a direct sum of scalar weighted shifts if and only if the
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weakly closed x algebra generated by {I, Ag, A1, ...} is diagonalizable.

Note that an algebra B of operators is said to be diagonalizable if there is an or-
thonormal basis for the underlying space such that each operator in B is diagonal
with respect to this basis.

We consider the unilateral operator weighted shift S on (2 (K) with weights A, in
T. In view of Lemma 2.2.5 and Theorem 2.2.7, it is possible to express S as a direct
sum of scalar weighted shift operators. Based on these scalar weighted shifts, we

then proceed to determine the minimal reducing subspaces of S.

2.3 Direct sum of scalar shifts

Since K is assumed to be a separable complex Hilbert space, so K = (2 (C) where

(A(C) = {x = (xo,21,...) s € Cand Y, |zi|* < oo}. Let {&}ien, denote the
standard orthonormal basis for £3 (C). If p; ; :== (0,0,...,§;,0,...) where & occurs

at the i" place, then {4; ;}; jen, is an orthonormal basis for ¢2(C) ® (2(C) & ....

Theorem 2.3.1. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weight sequence { A, }nen, where each A,, is positive invertible diag-
onal with respect to the orthonormal basis {e;}ien, of K. Then there exists scalar
weighted shift operators Sy, Si,...on (2(C) such that S on (% (K) is unitarily equiv-
alent to So & S1® ... on L (C)p A (C)& ... .

Proof. For n € Ny, let A,, with respect to {e; }ien, be the diagonal matrix given by
diag({", 6" .. .). Define S, to be the scalar weighted shift on ¢2 (C) with weight

sequence {5&‘ )}jeNo- Then S,¢§; = 5y )£j+1 for all j € Ny. Therefore,
(So®S1@.. )iy =07 1 jin.

Also, Sgi; =09 g; ipr. EV : (2(K) — (2(C)® 2 (C) . ... is defined by Vg ; = i,
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then V' is unitary and
VSV*MZ'J' = VSgiJ
= 52-(j)ng'7j+1

5i(J)Ni,j+1

Thus, S on ¢2(K) is unitarily equivalent to Sy & S; & ... on (2 (C) & (2 (C) &
]

Remark 2.3.2. If dim K < oo then the above result can also be deduced using

Lemma 2.1 [36]. A similar discussion can also be found in [6].

Theorem 2.3.3. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded operator weights { A, }nen, where each A, € T. Then there exists
scalar weighted shift operators Sy, S1,...on (2(C) such that S on (2 (K) is unitarily

equivalent to So ® S1® ... on (2(C) @ (2(C) @

The proof follows immediately from Lemma 2.2.5 and Theorem 2.3.1. However, we
include an independent proof so that the structure of S,,, which is often used in later

sections, is explicitly given.

Proof. For each A,, € T, there exists a unique bijective map ,, on Ny such that
Ane; =1\ Vey, ) for all j € No. Let, U : €2(K) — (2(C) & £2(C) & ... be linearly

defined such that

U { Hi 0, if j = 0;
g’i,’ = . .
’ Hog o sy .0 15> 0.

Then U is unitary. For n € Ny, let S,, be scalar weighted shift on ¢2 (C) with weight

0 1
sequence {’Vﬁz )7’715;0)@) 71/111#0 } le

n€] = () 5 if 7> O
7% 1¢j 2. 1!’0 ]+1’ 1 ‘7
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Therefore,

7‘(0)/%' 1 if j =0;
Vi 10 o ()i 1L > U.

Hence for 7 =0,

USU*M,O = Ung',o
= US(Q;,0,0,...)

:U(O,Aoei,O,...)

0
= (0,72( )61110(2')70’-")

0
= ,}/Z( )Ugdjo(l)vl

0
= %’( )Ni,1

= (SO D Sl D... )ILLLO.
And for j > 0,

USU ;= USGy; 1 2..40(i).j
=US(0,..., €4 _14pj_a..po(i), 05 - - 2

= U(O, e ,O, Ajed’jfllﬁij--WO(i)? O, ce )
) N
wj,le,QwO(z)gwgwg—l¢O(Z)73+1

(4)
%ﬂ%‘fzuwo(i)ﬂi’j"'l

= (S()@Sl@ ),U/z,]

In view of Theorem 2.3.3, we now propose the following definitions.

Definition 2.3.4. Let S be a unilateral operator weighted shift on ¢%(K) with
uniformly bounded weights { A, }nen, in 7. Let Sp, Si, ... be scalar weighted shifts

on (2 (C) such that S is unitarily equivalent to Sy &S, @.... For n,m € Ny, we say
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‘n is related to m with respect to S’ denoted by n ~° m if S, and S,, are identical.

Clearly ~° is an equivalence relation on Nj.

Definition 2.3.5. Let S be a unilateral operator weighted shift on % (K') with uni-
formly bounded weight sequence {4, }nen, in T. Let Sy, S1,... be scalar weighted
shifts on ¢2 (C) such that S is unitarily equivalent to Sy @ S; @ .... S is said to be
of Type I if no two S,,’s are identical. Otherwise, S is said to be of Type II. Thus,
S is of Type Il if and only if there exist distinct non negative integers n and m such
that S, and S,, are identical. An operator weighted shift S of Type II is said to be

of Type III if ~° partitions Ny into finite number of equivalence classes.

The above definition is motivated by similar definitions given in [50]. In fact for
dim K = N < oo the two definitions refer to the same idea, as can be seen from the

following discussion.

In [50], the minimal reducing subspaces of MY (N > 1) on the space H*(3) :=

() = Sommg o ¢ IFIB = Ty 52282 < 0} s determined, where § —
{Bo, P1,- ..} is a sequence of positive numbers.

If in the present study we consider dim K = N, and for each n € Ny, define

Bn = dmg(\/ ﬁnNa V ﬁnN-‘rla SRRV, ﬁ(n—l—l)N—l)a

then MY on H?(j) is unitarily equivalent to the unilateral shift U, on H?*(B).

Again if for each n € Ny, we define

A = dmg Bty | B+ Nt ﬁ(n+2)N—1)
WnN Bun+1 ’ 5(n+1)N—1

and consider S to be the unilateral operator weighted shift on ¢ (K) with weights

{A, }nen,, then as in Theorem 2.2.1, U, is unitarily equivalent to S. Thus MY on

H?(3) is unitarily equivalent to the unilateral operator weighted shift S on ¢ (K)
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with weights { A, }nen,-

For 0 < n < N —1, let S, be the scalar weighted shift on 63(@) with weight se-

quence {\/B%:N, Buton - [Bntsn ... }. Then, as in Theorem 2.3.1, the unilateral

Brni+nN Brnian’

operator weighted shift S on (% (K) with weights {4, },en, is unitarily equivalent
t0 Sy @+ ® Sn_1 on 3(C) @ Z(C) @ --- & L3(C) (N copies).

By Definition 2.3.5, S is of Type I if no two S,,’s are identical. This means that

foreach 0 < n < N—1and 0 < m < N — 1 with n # m, there exists [ > 0

such that \/ 3 Puin #+ \/ 3 BmtiN 1 | is the smallest positive integer for which

nt+(I—1)N m+(1-1)N

BnikN +# \/56’"*’“V then ﬁ”;:” + B’”ﬁ:“v. So S is of Type I if for each

Brt(k—1)N m+(k—1)N

0<n<N-1land 0 <m < N — 1 with n # m, there exists k& > 0 such that

A el A miEN and this according to [50] implies that the sequence [ is of Type I.

2.4 Extremal functions of reducing subspaces

We begin the section by introducing a few definitions and notations which are to be

used in subsequent results.

Definition 2.4.1. Let F = Y"._ a;g;0 be a non-zero vector in ¢% (K). The order

1€Np

of F', denoted as o(F'), is defined as the smallest non negative integer m such that

am # 0.

Definition 2.4.2. If f = ZieNO a;e; is a non-zero vector in K, then order of f,

denoted as o(f), is defined to be the smallest non negative integer m such that

am # 0.

Definition 2.4.3. If f = Y, a;e; € K then we define Fy in (3 (K) as Fy =

> ien, Qigio- Clearly, for f # 0, o(f) = o(Fy).
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Definition 2.4.4. Let Y be a non-zero non-empty subset of K. Then order of Y,
denoted as o(Y'), is defined to be the non negative integer m satisfying the following
conditions:

(i) o(f) > m for all f €Y, and

(i) there exists f € Y such that o(f) = m.

Definition 2.4.5. Let X be a subset of 2 (K) and Lx = {fo : (fo, fi,...) € X}.
If Ly is a non-zero subset of K, then order of X, denoted as o(X), is defined as
O(,CX).

Definition 2.4.6. Let S be a unilateral operator weighted shift on 3 (K) with
uniformly bounded weights {A, }nen, in 7. A linear expression F' = ZZENO a;i0
is said to be S-transparent if for every pair of non-zero scalars «; and o, we have

i ~S 7.

Definition 2.4.7. Let S be a unilateral operator weighted shift on ¢3(K) with
uniformly bounded weights {A,, },en, in 7, and let S be the vector space of all finite
linear combinations of finite products of S and S*. For non-zero F € (% (K), let
SF :={TF : T € §}. Then the closure of SF in {2 (K) is a reducing subspace of S,
denoted by Xp. Clearly Xp is the smallest reducing subspace of (2 (K) containing
F.

Lemma 2.4.8. Let {A, }nen, be a uniformly bounded sequence of operators in T and

S be the unilateral operator weighted shift on (3 (K) with weight sequence { Ay }nen, -

Let 1, denote the unique bijective map on Ny such that Ane; = vj(»")ewn(j) with

W > 0. The following will hold :

(i) For eachn € Ny, Afe; = 4™

1 €t (i) for all v € Ny.
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(i) S*(fo, frs--) = (Asfi, A fa ) for (fo, fr, .)€ GL(K).

(ili) Fori,j € Ny, Sg¢;; = yfj)gwj(i)7j+1 and

S 0, if 1 =0;
“gi; = (J— ) e
J fyd} 1(2)910 1 (@)1 if 5 > 0.

241, if k=1;

(iv) Fori,j € Ny, (S*)"S*g;; = () (G+1) (+k—1) 2 .
Vi V) %Mfz...wju)] gig, Hhk>1.

(v) For distinct non-negative integers n and m, if n ~% m then ||(S*)kS*g, || =

| (S*)*Sk g ]| for each k € N.

Proof. (i) For f =} .y, aje; € K and n € Ny,

(A, f,e) Zaj 7 ewn €i)
_ (n)
= Ayt @ Vyrt )
={f; 71(117::)1(1')%;1(2'))‘

Hence Afe; = 7; ") 1oy Gt ;) for all 7 € No.

(ii) For g = (90, 01,...) € Ei(K),

(Sg. f) = (Aigi, frs1)

1€Np

= Z(%Affwﬁ

1€Np

= <g> (ASfl,ATf% - )>

and so S*(fo,fl, . ) = (ASfl,Ang, . ) for f = (f(],fl, . ) c ga_(K)
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(iii) follows from (i) and (ii), and (iv) follows from (iii).

(v) For n € Ny, let S,, be the scalar weighted shift on ¢2 (C) with weight sequence

{% ,fy% 715)1)% .. }. Then by Theorem 2.3.3, S is unitarily equivalent to Sy @®

S1 @ .... Asn ~° m, so by Definition 2.3.4, S, and S,, are identical. Therefore,

0) _ _(0) (k+1) __(k+1D)

Yo' = Ym and 7y wwk Lotbo() = Vit abo(m) for all £ > 0. The result now follows

immediately from (iv). O

Lemma 2.4.9. Let {A, }nen, be a uniformly bounded sequence of operators in T and
S be the unilateral operator weighted shift on (2.(K) with weight sequence { Ay }nen, -

Let 1), denote the unique bijective map on Ny such that A,e; = 7](-")6%(]-) with

fy](") > 0. Let =737, igio be S-transparent in (3 (K) with o(F) = m.

- F, if k=0; . | |
If Fy, .= { EieNo QG vinsin(rs k> 17 then the following will hold :
2
[%('g)} F, i k=1
(i) (S*)FSFF = o - 2
[’Vm Tpo(m) *** Vipye_p..ap0(m) F, it k>1.
0) 1- .
~ me Fl, lf k — O;-
i) SF. = ~ '
() ' { 71(;?71---1/10(m)Fk+1> if k> 0.
O’ for k = 0;
i) 5B = 4 10 F, 1
71(;:2) womy PRty for k> 1,

(iv) X is the closed linear span of {F, - k € Ny}.

Proof. As F'= 3., @igio is S-transparent in (3 (K) with o(F) = m, so the fol-
lowing must hold:
(a) app 0 and a; = 0 for 0 < i < m.

(b) If oy # 0 and «; # 0, then i ~% j.
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Thus we must have i ~° m for all i € Ny with o; # 0, and so,

0) _ (0 (k+1) _ A (k+D)

(i) Follows from 2.4.1 and Lemma 2.4.8(iv).

(ii) For k =0, we get

SFy=SF = Z @;Sgi0 = Z 042‘%'(0)91110(1'),1 =V

i€Ng 1€Np

For k > 0,

SFy =Y iSgu_ (i

1€Np

k

=D i T (i1
1€Ng

_ (k) ”

- 7¢k71---¢0(m)Fk+1.

(ili) can be similarly shown using 2.4.1 and Lemma 2.4.8(iii).

(iv) By (ii) and (iii) each F}, € Xp and the closed linear span{Fy : k € Ny} is a
non-zero reducing subspace of S contained in Xp. Thus, by minimality of Xpg, we

have Xy = closed linear span{F}, : k € Ny}. O

Definition 2.4.10. Let S be an operator weighted shift on 3 (K') with uniformly
bounded weights { A, }nen, in 7. Let Qp,Qo, ... be the disjoint equivalence classes
of Ny under the relation ~°. Consider F = ZieNO a;gio € li(K). For each k,
let g, = Zz’eﬂk a;g;0. Dropping those g, which are zero, the remaining ¢;’s are
arranged as fi, fa,... in such a way that for i < j we have o(f;) < o(f;). The
resulting decomposition F' = f; + fo + ... is called the canonical decomposition of
F with respect to S. Clearly each f; is S-transparent in (2 (K).

If there exists a finite positive integer n such that F' = f; + fo + -+ + f,,, then F'is

said to have a finite canonical decomposition.
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Lemma 2.4.11. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { Ay, }nen, in T. Let X be a reducing subspace of S and F' =
> ien, Qigio be in X. If F has a finite canonical decomposition F' = fi+ fo+- -+ fu,
then each f; € Xp.

Proof. Let 1, denote the unique bijective map on Ny such that A,e; = fy](-")ewn(j)
with 7](-") > 0. Let o(f;) = m;, so that m; < my < -+ < m,,. Clearly m; =° m; for
i

Step I. As m; ~

(k)
fyilfk 1.0 (m1) #%lfk 120 (mn)”

) _

(0) (0)

S m, so either vm, # ~m., or there exists k > 0 such that

(kl)

In case ym, = fymn, let k1 be the smallest positive integer such that ~, '~ . 7
11—
(k1)
%lfkl 1--%o(mn)’ Let
Q1 = [(n)? = 5*S]F, if Yim 7 Yoo
e [(%(n,)l%(plo)(m )---%(bkl) o (m ))2 — (S*)k1+15k1+1] F, otherwise.
n g =1+ n

For 1 <i<mn-—1,let 52.(1) = (%S?’) (%m) if 7 7& me otherwise let

(1) 0) (1) (k1) 2 (0. (k1) 2
B = (Y Vo (mn) “Vwkrl...wo(mn)) (Yome Vo my) Vi, 1. olm)

Then ﬁfl) # 0. Also since each f; is S-transparent, so by applying Lemma 2.4.9(i),

we get Q1 = 2?2—11 ﬁi(l)fi € Xp.

Step II. As m; = m,,_1, so either 77(,33 + 7,(331_1 or ks is the smallest positive integer

such that v(kz) Let

~to(m1) a 7% 1--Yo(mp—1)"
0 . e (0 0
0, (v )2 — S*S]Qu, if Y} # Yo 1
2 I= 0 1 k . )
[(%(n’)l 171(!’0)("’% 1) 'f}/’(ﬁkz)f1~~¢o(mn71)> — (S )k2+15k2+1] Q1, otherwise.

For 1 <i<n-—2,let 552) = (%(,S) )2 = (vm) if 7 7& an .; otherwise let

n—

@ ._ (0 O (k2) ©0) (1) (k2) 2
B = Moy Yoo ma) - Vg1t (i 1)) (lewo(mz)-”%krl...wo(mn) .
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Then 87 # 0 and Qo = 317" 887 f; € Xp.

Repeating the above argument n — 1 times we get (),,_1 = fl) 52) . .ﬁfn_l)fl € Xp
with ﬁf) # 0 for 1 <i <n — 1. This implies that f; € Xp.

By a similar procedure it can be shown that f; € Xz for 1 <1 <n. O

Lemma 2.4.12. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { Ay, }nen, in T . If X is a reducing subspace of S then Lx = 0
if and only if X = 0.

Proof. X =0= Lx =0.

Conversely, suppose X # 0, and let, if possible Ly = 0. As X # 0 so we can choose
f=1(0,f1, fa,...) € X with f,, # 0. Then by Lemma 2.4.8(ii), (S*)"f = (g1, 92, .- .)
where g1 # 0. As (S*)"f € X, so g1 € Lx, which is a contradiction. Thus,
X#0=Lx #0. O

Theorem 2.4.13. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { Ay, }nen, in T. Let X be a non-zero reducing subspace of S
with o(X) = m. Then the extremal problem
sup{Re ap : F = (fo, fr.... ) €X, IFI <L, fo=) e}
i€Ng

has a unique solution G =Y .« ®igio € X with |G| =1 and o(G) = m.

1€Np
Proof. Define ¢ : X — C as p(F) = a,, where ' = (fo, f1,...) and fy =
ZZENO a;e;. As X # 0, so by Lemma 2.4.12, Lx # 0, and in view of Definition

2.4.5, o(Lx) = m = o(X). Therefore ¢ is a non-zero bounded linear functional

on X. From [8] we know that there exists a unique G € X such that p(G) > 0,
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|G|l =1 and

p(G) = sup{Re p(F) : e X, [[F]| <1}

:sup{Re am:F:(vaflv”‘) €X7 HFH Slv fOIZaiei‘}

i€Ng

We will show that G = > . @g;0 and o(G) = m. For this we consider G =

i€Np
(90>91> s )

Claim I. If F' € X and ||F|| < 1, then Rep(F) < ¢(G).

Let, if possible, Rep(F) = ¢(G). Let H := ﬁ Then H € X, ||H|| = 1 and
Rep(H) > p(G), contradicting the extremality of G. Hence, claim I is established.
Now for each F' € X, Rep(G + SF) = ¢(G) and so by claim I, we must have

|G + SF|| > 1 which implies G L SF'. In particular,

(G,S5*G) =0
=A7giv1 =0V i >0, by Lemma 2.4.8(ii)

Thus, G = (g0,0,0,...). Let go = > .. @s€;. Since, o(Lx) = m, so «; = 0 for all

1€Np
0 <i<m. Also, o(G) > 0 implies «a,, # 0.

Thus, G = )y, @igio and o(G) = m. O

Remark 2.4.14. The function G in Theorem 2.4.13 is called the extremal function of

the non-zero reducing subspace X of S.

Theorem 2.4.15. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { A, }nen, in T. If the extremal function of a non-zero re-
ducing subspace X of S has a finite canonical decomposition, then it must be S-

transparent.

Proof. Let X be a non-zero reducing subspace of order m and G' = }_, \ igio

be its extremal function. Also let G = ¢1 + g2 + - - + ¢, be the finite canonical



Chapter 2 32

decomposition of G.
Then, g, = ZZENO Bigi0, such that o(g1) = m and S, = a,,. Also |lg1|| < |G| = 1.
So by extremality of G, we must have G = ¢g;. As g1, by definition, is S-transparent,

so GG is also S-transparent. O

2.5 Minimal Reducing subspaces

In this section we identify and study the minimal reducing subspaces of S in (2 (K).
It may be noted that in general there are many operators which have reducing
subspaces that do not contain minimal reducing subspaces. One such operator is
the operator of multiplication by 2 on the Bergman space L?(ID,dA), where D is the

unit disc and dA is the area measure [26], [55].

Lemma 2.5.1. Let S be a unilateral operator weighted shift on (% (K) with uniformly
bounded weights { A, }nen, i T. Let F' be S-transparent and o(F) =m. If G € Xp
is such that G is non zero and G = ), .\ Qigip, then G = AF for some non-zero

scalar \.

Proof. Let 1, denote the unique bijective map on Ny such that A,e; = 7](-")6%(]-)

with 7](-") > 0.
As G = (g,0,0,...) with g # 0 and F' = (f,0,0,...) with f # 0, so by Definition
2.4.7, G =5, M (S*)FSFF for scalars g, not all zero. Let

5 { ()2, itk =1
k= 0) (1) (k—1) 9 -
(¥ Vygm) -+ Yoo (my) AL K> 1

Then by Lemma 2.4.9(i), (S*)*S*F = B, F, where 3} # 0 for all k.
Therefore, G = (>, \ifSp)F' = AF for A =Y, A5 # 0. O

Lemma 2.5.2. Let S be a unilateral operator weighted shift on (% (K) with uniformly
bounded weights {Ap}nen, in T. Let F'= 3, uigio with o(F) =my. If G € Xp

such that G is mon zero and G = ;. Bigio, then o(G) > m;.



Chapter 2 33
Proof. Let 1, denote the unique bijective map on Ny such that A,e; = fy](-")e%(j)
with 7](-") > 0.

Let ' = f1 + fo+ ... be the canonical decomposition of F' with o(f;) = m,. If for

each 7 € Ny,
0 .
(i) ._{ (%%8%)2(,1) . if k= 1;
kT - 5 .
(Vi Vo) Vo eniome)) > 1 E > 1

then (S*)ESkf, = B f; for all k € Ny and i € N. Now G € Xy implies

G=> M(S)S'F

keNp
= 2{: Ak 2{:%3 2
keNp 1€N
=3 M
1€N keNg

Therefore, o(G) = o(f1) if ) ien, )\kﬁlil) # 0, otherwise o(G) > o(f1). Hence o(G) >

mi. O

Theorem 2.5.3. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { A, }nen, i T, and let X be a minimal reducing subspace

of S . If F'=73cn, @igio € X, then F' must be S-transparent.

Proof. Let 1, denote the unique bijective map on Ny such that A,e; = fy](-")e%(j)

with 7" > 0.

Let, if possible, F' is not S-transparent. Then the canonical decomposition of
F=f + fo+ ... will have at least two components f; and f.

Let o(fi) = n;. Then n; =° ny and so either vﬁlol) #+ 7£L02) or there exists a positive

) k k
integer k£ such that 775)1@)—1~~~1/}0(n1) + vfbk)ilnwo(w).

(i) If YO £ 49 then define G := S*SF — (%(Lol))zF so that

G = [(W)) = 2+ 1)) = ()21 fs +
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which implies o(G) = o( f2) = na.

(ii) If %S(P = %(g), then let k be the positive integer such that 71(pi),1... Yo(m) +
(k) (@) N O) .
Vibg 1. b0 (n2) and Vabi 1 abo(n1) = Vabn_1..ab0(n2) for all 0 <7 < k. Then
. okl okl (. (0) (1) (k) 2
Go= (97 8F (7"1 Tpo(ny) - - ¢k71~~~¢0(n1)) F

_((0) (D) (k) 2 (0) 1) (k) 2
= (Mg Yo(ma) - Vs o))~ Vo Wogm) + + Vo)) 2 -+

which implies that o(G) = o(f2) = na.

Thus, there exists 0 # G € X such that o(F') < o(G). Therefore X¢ is a non-
zero reducing subspace of S contained in X. By minimality of X, we must have
X¢ = X. But this implies F' € X so that by Lemma 2.5.2) o(F') > o(G) which is

a contradiction. Thus, F' must be S-transparent. O

Corollary 2.5.4. Let S be a unilateral operator weighted shift on (3 (K) with weights
{A, }nen, in T. The extremal function of a minimal reducing subspace of S is always

S-transparent.

Theorem 2.5.5. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { A, }nen, in T. Let X be a non-zero reducing subspace of

S. Then X is minimal if and only if X = Xp where F € X is S-transparent.

Proof. If X is minimal then X = X where G is the extremal function of X. Also
by Corollary 2.5.4, G must be S-transparent.

Conversely, let X = Xp where ' € X is S-transparent. Then by Lemma 2.4.9,
Xp is a reducing subspace of S. Thus, we only need to show that Xg is minimal
reducing.

For this, let Y be a non-zero reducing subspace of S contained in Xp. If GG is the

extremal function of Y, then G € Xp and so by Lemma 2.5.1, G = AF for a non
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zero scalar A\. This implies that F' € Y.

Therefore Y = X, which shows that X is minimal. O

Corollary 2.5.6. Let S be an operator weighted shift on (% (K) with weights { Ay }nen,
in T. Every reducing subspace of S in (% (K), whose extremal function has a finite

canonical decomposition must contain a minimal reducing subspace.

The proof follows immediately from Lemma 2.4.11 and Theorem 2.5.5.

2.6 Conclusion

Theorem 2.6.1. Let S be a unilateral operator weighted shift on (% (K) with uni-
formly bounded weights { Ay }nen, in T. If S is of Type I, then X, , for n € Ny are

the only minimal reducing subspaces of S in (% (K).

Proof. Let X be a minimal reducing subspace of S and G be the extremal function
such that X = Xs. As S is of Type I, so the only S-transparent functions are g,

and their scalar multiples. Hence, X = X,  for n € Ny. O

Theorem 2.6.2. Let S be a unilateral operator weighted shift on (%(K) with uni-
formly bounded weights {A,}nen, i T. If S is of Type II, then S has minimal
reducing subspaces other than X, , (n € Ng). In fact, for every S-transparent F,
Xr is a minimal reducing subspace and hence S will have infinitely many minimal

reducing subspaces in (2 (K).

Proof. Let Y be a non-zero reducing subspace of S such that Y C Xp. Let Y = Xg,
where G is the extremal function. Then G € Xp. So by Lemma 2.5.1, G = A\F,

A # 0, which implies F' € Y. Therefore Xr =Y. Hence, X is minimal. O

Theorem 2.6.3. Let S be an operator weighted shift on (2 (K) with uniformly
bounded weights { Ay, Ynen, in T. If S is of Type III, then every reducing subspace of

S must contain a minimal reducing subspace.
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Proof. Let X be a non-zero reducing subspace of S. If X = X for some transparent
function F', then X is minimal. Otherwise let G = ZZENO a;gio € X and G =
fi+ fo+ -+ fm be its canonical decomposition. Then by Lemma 2.4.11, each

fi € X and so Xy, is a minimal reducing subspace in X. O
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