
Chapter 2

Minimal reducing subspaces of an
operator weighted shift

2.1 Introduction

In this chapter, we consider a unilateral operator weighted shift S on ℓ2+(K) with a

uniformly bounded sequence of weights {An}n∈N0, and try to find its reducing and

minimal reducing subspaces. The operator weights {An}n∈N0 are elements of the

class T . So, with reference to the definition of T given in the previous chapter, S

is a unilateral operator weighted shift whose weights are not necessarily diagonaliz-

able, and neither are these weights necessarily normal or self-adjoint.

2.2 Unitary equivalence

Let K be a separable complex Hilbert space with orthonormal basis {ei}i∈N0. Also

for i, j ∈ N0, let gi,j := (0, . . . , ei, 0, . . . ) where ei occurs at the jth position. Then

{gi,j}i,j∈N0 is an orthonormal basis for ℓ2+(K).

We now consider the operator weighted sequence space H2(B), where B denotes a

uniformly bounded sequence of operators {Bn}n∈N0 on K. As ‖gi,j‖B = ‖Bjei‖, so if

fi,j :=
gi,j

‖Bjei‖
, then {fi,j}i,j∈N0 is an orthonormal basis for the Hilbert space H2(B).
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The unilateral shift U+ on H2(B) is then defined as U+(f0, f1, . . . ) = (0, f0, f1, . . . )

and is bounded if and only if supi,j
‖Bj+1ei‖

‖Bjei‖
<∞.

Theorem 2.2.1. Let U+ be the unilateral shift on H2(B), and for each n ∈ N0, we

define the operator An on K as Anei =
(

‖Bn+1ei‖
‖Bnei‖

)

ei. Then U+ is unitarily equivalent

to the unilateral operator weighted shift S on ℓ2+(K) with weight sequence {An}n∈N0.

Proof. Let V : H2(B) → ℓ2+(K) be defined as V fi,j = gi,j for all i, j ∈ N0, and

extend linearly. Then V is unitary and V ∗gi,j = fi,j .

We claim: U+ = V ∗SV . To establish our claim choose i, j ∈ N0. Then,

U+fi,j =
1

‖Bjei‖
Sgi,j

=
gi,j+1

‖Bjei‖

=
‖Bj+1ei‖

‖Bjei‖
fi,j+1.

Also, we have

V ∗SV fi,j = V ∗S(0, . . . , ei, 0, . . . )

= V ∗(0, . . . , Ajei, 0, . . . ),

which implies V ∗SV fi,j =
‖Bj+1ei‖

‖Bjei‖
fi,j+1. Hence, V

∗SV = U+.

For the converse, we consider a sequence {An}n∈N0 of bounded linear operators on K

such that supn ‖An‖ <∞. We first consider the case where An’s are simultaneously

diagonalizable with respect to {ei}i∈N0.

Theorem 2.2.2. For n ∈ N0, let An be an invertible bounded linear operator on

K such that the matrix of An with respect to {ei}i∈N0 is diag(δ
(n)
0 , δ

(n)
1 , δ

(n)
2 , . . . ).

Also let supn‖An‖ < ∞. If S is the unilateral operator weighted shift on ℓ2+(K)

with weight sequence {An}n∈N0, then S is unitarily equivalent to the unilateral shift

U+ on H2(B), where B denotes the sequence {Bn}n∈N0 with B0 := I and Bn+1 :=

AnAn−1An−2 . . . A0 for n ∈ N0.
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Proof. By Theorem 3.4 [34] we may assume that each An is positive. If V :

H2(B) → ℓ2+(K) is defined linearly such that V fi,j = gi,j for all i, j ∈ N0, then

V is unitary. Let B0 := I and Bn+1 := AnAn−1An−2 . . . A0 for n ∈ N0. Then

‖Bn+1ei‖ = δ
(n)
i δ

(n−1)
i . . . δ

(0)
i for all i, n ∈ N0 so that ‖Bn+1ei‖

‖Bnei‖
= δ

(n)
i . Then as in

Theorem 2.2.1, it can be shown that V ∗SV = U+.

Next, we consider the case where each An is in T . Now, elements of T have a specific

type of matrix representation with respect to {ei}i∈N0 . Let T ∈ T and for j ∈ N0,

let γj denote the non zero entry occurring in the jth column of the matrix of T with

respect to {ei}i∈N0 . Then there exists a unique bijective map ψ : N0 → N0 such that

γj occurs at the ψ(j)
th row. Thus, if [ai,j] (i, j ∈ N0) denotes the matrix of T with

respect to {ei}i∈N0 , then

ai,j :=

{

γj, if i = ψ(j);

0, otherwise.

Thus for each j ∈ N0, Tej = γjeψ(j). Also ‖T‖ = supj |γj|.

Since T is invertible in B(K), so γj 6= 0 for each j ∈ N0 and T
−1eψ(j) =

1
γj
ej. Hence

if ϕ := ψ−1, then for each i ∈ N0,

T−1ei =
1

γϕ(i)
eϕ(i), and

‖T−1‖ = sup
i

1

|γϕ(i)|
=

1

inf i |γϕ(i)|
=

1

infj |γj|
.

If βi denotes the non-zero entry in the ith row of [ai,j ], then for x =
∑

i∈N0
xiei ∈ K,

T (x0, x1, x2, . . . ) = (β0xϕ(0), β1xϕ(1), . . . ).

Note that K ∼= ℓ2+(C), so x ∼= (x0, x1, . . . ). In [35], this operator T is called weighted

pseudo shift and is denoted by Tb,ϕ, where b = {βi}i∈N0 . We study this operator in

Chapters 4 and 5.
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Theorem 2.2.3. Let {An}n∈N0 be a sequence in T and supn ‖An‖ < ∞. Then

there exists a sequence B = {Bn}n∈N0 of positive invertible diagonal bounded linear

operators on K such that the unilateral operator weighted shift S on ℓ2+(K) with

weight sequence {An}n∈N0 is unitarily equivalent to the unilateral shift U+ on H2(B).

To prove the above theorem, we first prove the following lemmas.

Lemma 2.2.4. Let T ∈ T and for i ∈ N0, let γi denote the only non zero entry in

the matrix of T occurring in the ith column. If T = UP is the polar decomposition

of T , then P with respect to {ei}i∈N0 is diag(|γ0|, |γ1|, |γ2|, . . . ) and U is unitary such

that U ∈ T and γi
|γi|

is the only non-zero entry occurring in the ith column of the

matrix of U with respect to the orthonormal basis {ei}i∈N0 of K.

The proof being obvious is omitted.

Lemma 2.2.5. Let {An}n∈N0 be a sequence in T with supn‖An‖ < ∞, and S be a

unilateral operator weighted shift on ℓ2+(K) with weight sequence {An}n∈N0. Then

there exists a sequence {Dn}n∈N0 of positive invertible diagonal operators on K such

that S is unitarily equivalent to the operator weighted shift T on ℓ2+(K) with weight

sequence {Dn}n∈N0.

Proof. For each n ∈ N0, there exists a bijective map ψn : N0 → N0 such that

Anei = γ
(n)
i eψn(i) for non-zero scalars γ

(n)
i and i ∈ N0.

Let An = UnPn be the polar decomposition of An. Then Pn ≥ 0 is invertible diagonal

and Pnei = |γ
(n)
i |ei for all i ∈ N0. Also Un is unitary with Unei =

γ
(n)
i

|γ
(n)
i |
eψn(i) for all

i ∈ N0. Define P,M,U+ : ℓ2+(K) → ℓ2+(K) as follows:

P (x0, x1, . . . ) = (P0x0, P1x1, . . . )

M(x0, x1, . . . ) = (U0x0, U1x1, . . . )

U+(x0, x1, . . . ) = (0, x0, x1, . . . ).
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Then S = (U+M)P , which is in fact the polar decomposition of S.

Let V0 = I and Vn+1 = UnVn for all n ∈ N0. Then each Vn is unitary on K. Let

V : ℓ2+(K) → ℓ2+(K) be defined as V (x0, x1, . . . ) = (V0x0, V1x1, . . . ). Then V is

unitary and U+M = V U+V
∗. Thus,

S = U+MP = V U+V
∗P = V (U+V

∗PV )V ∗.

As V is unitary, hence S is unitarily equivalent to U+V
∗PV .

Let Dn := V ∗
nPnVn for all n ∈ N0. For each x ∈ K,

〈Dnx, x〉 = 〈V ∗
nPnVnx, x〉 = 〈PnVnx, Vnx〉 ≥ 0.

This implies Dn ≥ 0.

Also, as Pn is diagonal and Vn is unitary, so Dn is diagonal. If T = U+V
∗PV then

T (x0, x1, . . . ) = (0, D0x0, D1x1, . . . )

i.e, T is an operator weighted shift on ℓ2+(K) with weight sequence {Dn}n∈N0 of

positive invertible diagonal operators on K.

Proof. Proof of Theorem 2.2.3.

By Lemma 2.2.5, there exists a sequence {Dn}n∈N0 of positive invertible diagonal

operators on K and an operator weighted shift T on ℓ2+(K) with weight sequence

{Dn}n∈N0 such that S is unitarily equivalent to T . By Theorem 2.2.2, T is unitarily

equivalent to the unilateral shift U+ on H2(B) with B = {Bn}n∈N0 where B0 := I

and Bn := DnDn−1 . . .D0 for n ∈ N0. Thus, S is also unitarily equivalent to U+ on

H2(B).

Remark 2.2.6. Suppose we consider an operator A ∈ T , whose matrix representation

is





0 a 0
0 0 b
c 0 0



. The polar decomposition of A is then given by A = V P , where
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V =







0 a
|a|

0

0 0 b
|b|

c
|c|

0 0






is the unitary matrix and P =





|c| 0 0
0 |a| 0
0 0 |b|



 is the positive

semi-definite matrix.

We can find {Dn}n∈N0 as given in Lemma 2.2.5 in the following manner: Let An ∈ T

and Anei = γ
(n)
i eψn(i), i.e, γ

(n)
i occurs at the ψn(i)th row and ith column of the matrix

representation of An. For each n ∈ N0, the polar decomposition of An is given by

An = UnPn, where

Pn = diag(|γ
(n)
0 |, |γ

(n)
1 |, |γ

(n)
2 |, . . . ) (2.2.1)

and if [ai,j] is the matrix representation of Un with respect to {ek}k∈N0, then for each

j ∈ N0, we must have

ai,j :=







γ
(n)
j

|γ
(n)
j |
, if i = ψn(j);

0, elsewhere.
(2.2.2)

From Lemma 2.2.5, we have for each n ∈ N0, Vn : K → K such that Vn is a unitary

operator defined as

V0 = I andVn+1 = UnVn for alln ∈ N0. (2.2.3)

Also, Dn := V ∗
nPnVn for all n ∈ N0. Then 2.2.1 gives us Pnei = |γ

(n)
i |ei which

clearly implies that P ∗
nei = |γ

(n)
i |ei. Again, 2.2.2 gives Unei =

γ
(n)
i

|γ
(n)
i |
eψn(i) so that

U∗
nei =

|γ
(n)

ψ
−1
n (i)

|

γ
ψ
−1
n (i)

eψ−1
n (i).

The recurrence relation 2.2.3 gives

Vnei =
γ
(0)
i γ

(1)
ψ0(i)

. . . γ
(n−1)
ψn−2ψn−3...ψ0(i)

∣

∣γ
(0)
i γ

(1)
ψ0(i)

. . . γ
(n−1)
ψn−2ψn−3...ψ0(i)

∣

∣

eψn−1ψn−2...ψ0(i). (2.2.4)

2.2.4 gives us the adjoint of V , i.e,

V ∗
n ei =

∣

∣γ
(n−1)

ψ−1
n−1(i)

γ
(n−2)

ψ−1
n−2ψ

−1
n−1(i)

. . . γ
(0)

ψ−1
0 ψ−1

1 ...ψ−1
n−1(i)

∣

∣

γ
(n−1)

ψ−1
n−1(i)

γ
(n−2)

ψ−1
n−2ψ

−1
n−1(i)

. . . γ
(0)

ψ−1
0 ψ−1

1 ...ψ−1
n−1(i)

eψ−1
0 ψ−1

1 ...ψ−1
n−1(i)

. (2.2.5)
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Hence, with the help of the relation Dn := V ∗
nPnVn, we find Dn for each n ∈ N0 as

D0ei = |γ
(0)
i |ei

D1ei = |γ
(1)
ψ0(i)

|ei

D2ei = |γ
(2)
ψ1ψ0(i)

|ei

D3ei = |γ
(3)
ψ2ψ1ψ0(i)

|ei, . . .

Hence, for each i ∈ N0, D0ei = |γ
(0)
i |ei, and Dnei = |γ

(n)
ψn−1ψn−2...ψ0(i)

|ei for n > 0.

Thus, for each An, n ∈ N0 we get a positive invertible diagonal operator such that

if An is given as An = (γ
(n)
0 , γ

(n)
1 , γ

(n)
2 , . . . ), where γ

(n)
i occurs at the ψn(i)th row and

ith column of the matrix representation of An, then the corresponding Dn is given

as

D0 = diag
(

|γ
(0)
0 |, |γ

(0)
1 |, |γ

(0)
2 |, . . .

)

for n = 0,

Dn = diag
(

|γ
(n)
ψn−1ψn−2...ψ0(0)

|, |γ
(n)
ψn−1ψn−2...ψ0(1)

|, |γ
(n)
ψn−1ψn−2...ψ0(2)

|, . . .
)

for n > 0.

The minimal reducing subspaces of U+ on H2(B) is determined in [20], where it

is assumed that B represents a uniformly bounded sequence of invertible diagonal

operators on K. So in view of Theorem 2.2.3 and [20], we should be able to deter-

mine the minimal reducing subspaces of the unilateral operator weighted shift S on

ℓ2+(K) with weights {An} in T . However, because of the complex transformations

involved in the process, it is quite difficult to easily appreciate the end result. Hence

in the present work, we adopt a different approach.

For unilateral operator weighted shift S with non diagonal operator weights, we first

try and represent S as a direct sum of scalar weighted shift operators, as suggested in

[44]. In this respect we have Theorem 3.9 [34] which we restate below for reference.

Theorem 2.2.7. [34] The unilateral operator weighted shift S on ℓ2+(K) with op-

erator weights {An}n∈N0 is a direct sum of scalar weighted shifts if and only if the
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weakly closed ∗ algebra generated by {I, A0, A1, . . . } is diagonalizable.

Note that an algebra B of operators is said to be diagonalizable if there is an or-

thonormal basis for the underlying space such that each operator in B is diagonal

with respect to this basis.

We consider the unilateral operator weighted shift S on ℓ2+(K) with weights An in

T . In view of Lemma 2.2.5 and Theorem 2.2.7, it is possible to express S as a direct

sum of scalar weighted shift operators. Based on these scalar weighted shifts, we

then proceed to determine the minimal reducing subspaces of S.

2.3 Direct sum of scalar shifts

Since K is assumed to be a separable complex Hilbert space, so K ∼= ℓ2+(C) where

ℓ2+(C) = {x = (x0, x1, . . . ) : xi ∈ C and
∑

i∈N0
|xi|

2 < ∞}. Let {ξi}i∈N0 denote the

standard orthonormal basis for ℓ2+(C). If µi,j := (0, 0, . . . , ξj, 0, . . . ) where ξj occurs

at the ith place, then {µi,j}i,j∈N0 is an orthonormal basis for ℓ2+(C)⊕ ℓ2+(C)⊕ . . . .

Theorem 2.3.1. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weight sequence {An}n∈N0 where each An is positive invertible diag-

onal with respect to the orthonormal basis {ei}i∈N0 of K. Then there exists scalar

weighted shift operators S0, S1,. . . on ℓ
2
+(C) such that S on ℓ2+(K) is unitarily equiv-

alent to S0 ⊕ S1 ⊕ . . . on ℓ2+(C)⊕ ℓ2+(C)⊕ . . . .

Proof. For n ∈ N0, let An with respect to {ei}i∈N0 be the diagonal matrix given by

diag(δ
(n)
0 , δ

(n)
1 , . . . ). Define Sn to be the scalar weighted shift on ℓ2+(C) with weight

sequence {δ
(j)
n }j∈N0. Then Snξj = δ

(j)
n ξj+1 for all j ∈ N0. Therefore,

(S0 ⊕ S1 ⊕ . . . )µi,j = δ
(j)
i µi,j+1.

Also, Sgi,j = δ
(j)
i gi,j+1. If V : ℓ2(K) → ℓ2+(C)⊕ℓ

2
+(C)⊕ . . . is defined by V gi,j = µi,j,
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then V is unitary and

V SV ∗µi,j = V Sgi,j

= δ
(j)
i V gi,j+1

= δ
(j)
i µi,j+1

= (S0 ⊕ S1 ⊕ . . . )µi,j.

Thus, S on ℓ2+(K) is unitarily equivalent to S0 ⊕ S1 ⊕ . . . on ℓ2+(C) ⊕ ℓ2+(C) ⊕ . . .

.

Remark 2.3.2. If dimK < ∞ then the above result can also be deduced using

Lemma 2.1 [36]. A similar discussion can also be found in [6].

Theorem 2.3.3. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded operator weights {An}n∈N0 where each An ∈ T . Then there exists

scalar weighted shift operators S0, S1,. . . on ℓ
2
+(C) such that S on ℓ2+(K) is unitarily

equivalent to S0 ⊕ S1 ⊕ . . . on ℓ2+(C)⊕ ℓ2+(C)⊕ . . . .

The proof follows immediately from Lemma 2.2.5 and Theorem 2.3.1. However, we

include an independent proof so that the structure of Sn, which is often used in later

sections, is explicitly given.

Proof. For each An ∈ T , there exists a unique bijective map ψn on N0 such that

Anej = γ
(n)
j eψn(j) for all j ∈ N0. Let, U : ℓ2+(K) → ℓ2+(C)⊕ ℓ2+(C)⊕ . . . be linearly

defined such that

Ugi,j :=

{

µi,0, if j = 0;
µψ−1

0 ψ−1
1 ...ψ−1

j−1(i),j
, if j > 0.

Then U is unitary. For n ∈ N0, let Sn be scalar weighted shift on ℓ2+(C) with weight

sequence {γ
(0)
n , γ

(1)
ψ0(n)

, γ
(2)
ψ1ψ0(n)

, . . . }. i.e,

Snξj :=

{

γ
(0)
n ξ1, if j = 0;

γ
(j)
ψj−1ψj−2...ψ0(n)

ξj+1, if j > 0.
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Therefore,

(S0 ⊕ S1 ⊕ . . . )µi,j =

{

γ
(0)
i µi,1, if j = 0;

γ
(j)
ψj−1ψj−2...ψ0(i)

µi,j+1, if j > 0.

Hence for j = 0,

USU∗µi,0 = USgi,0

= US(ei, 0, 0, . . . )

= U(0, A0ei, 0, . . . )

= U(0, γ
(0)
i eψ0(i), 0, . . . )

= γ
(0)
i Ugψ0(i),1

= γ
(0)
i µi,1

= (S0 ⊕ S1 ⊕ . . . )µi,0.

And for j > 0,

USU∗µi,j = USgψj−1ψj−2...ψ0(i),j

= US(0, . . . , eψj−1ψj−2...ψ0(i), 0, . . . )

= U(0, . . . , 0, Ajeψj−1ψj−2...ψ0(i), 0, . . . )

= γ
(j)
ψj−1ψj−2...ψ0(i)

gψjψj−1...ψ0(i),j+1

= γ
(j)
ψj−1ψj−2...ψ0(i)

µi,j+1

= (S0 ⊕ S1 ⊕ . . . )µi,j.

In view of Theorem 2.3.3, we now propose the following definitions.

Definition 2.3.4. Let S be a unilateral operator weighted shift on ℓ2+(K) with

uniformly bounded weights {An}n∈N0 in T . Let S0, S1, . . . be scalar weighted shifts

on ℓ2+(C) such that S is unitarily equivalent to S0⊕S1⊕ . . . . For n,m ∈ N0, we say
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‘n is related to m with respect to S’ denoted by n ∼S m if Sn and Sm are identical.

Clearly ∼S is an equivalence relation on N0.

Definition 2.3.5. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weight sequence {An}n∈N0 in T . Let S0, S1, . . . be scalar weighted

shifts on ℓ2+(C) such that S is unitarily equivalent to S0 ⊕ S1 ⊕ . . . . S is said to be

of Type I if no two Sn’s are identical. Otherwise, S is said to be of Type II. Thus,

S is of Type II if and only if there exist distinct non negative integers n and m such

that Sn and Sm are identical. An operator weighted shift S of Type II is said to be

of Type III if ∼S partitions N0 into finite number of equivalence classes.

The above definition is motivated by similar definitions given in [50]. In fact for

dimK = N <∞ the two definitions refer to the same idea, as can be seen from the

following discussion.

In [50], the minimal reducing subspaces of MN
z (N > 1) on the space H2(β) :=

{f(z) =
∑

n∈N0
fnz

n : ‖f‖2β =
∑

n∈N0
|fn|

2β2
n < ∞} is determined, where β =

{β0, β1, . . . } is a sequence of positive numbers.

If in the present study we consider dimK = N , and for each n ∈ N0, define

Bn := diag
(
√

βnN ,
√

βnN+1, . . . ,
√

β(n+1)N−1

)

,

then MN
z on H2(β) is unitarily equivalent to the unilateral shift U+ on H2(B).

Again if for each n ∈ N0, we define

An = diag
(

√

β(n+1)N

wnN
,

√

β(n+1)N+1

βnN+1
, . . . ,

√

β(n+2)N−1

β(n+1)N−1

)

and consider S to be the unilateral operator weighted shift on ℓ2+(K) with weights

{An}n∈N0 , then as in Theorem 2.2.1, U+ is unitarily equivalent to S. Thus MN
z on

H2(β) is unitarily equivalent to the unilateral operator weighted shift S on ℓ2+(K)
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with weights {An}n∈N0.

For 0 ≤ n ≤ N − 1, let Sn be the scalar weighted shift on ℓ2+(C) with weight se-

quence {
√

βn+N
βn

,
√

βn+2N

βn+N
,
√

βn+3N

βn+2N
, . . . }. Then, as in Theorem 2.3.1, the unilateral

operator weighted shift S on ℓ2+(K) with weights {An}n∈N0 is unitarily equivalent

to S0 ⊕ · · · ⊕ SN−1 on ℓ2+(C)⊕ ℓ2+(C)⊕ · · · ⊕ ℓ2+(C) (N copies).

By Definition 2.3.5, S is of Type I if no two Sn’s are identical. This means that

for each 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ N − 1 with n 6= m, there exists l > 0

such that
√

βn+lN
βn+(l−1)N

6=
√

βm+lN

βm+(l−1)N
. If k is the smallest positive integer for which

√

βn+kN
βn+(k−1)N

6=
√

βm+kN

βm+(k−1)N
, then

βn+kN
βn

6=
βm+kN

βm
. So S is of Type I if for each

0 ≤ n ≤ N − 1 and 0 ≤ m ≤ N − 1 with n 6= m, there exists k > 0 such that

βn+kN
wn

6= βm+kN

wm
, and this according to [50] implies that the sequence β is of Type I.

2.4 Extremal functions of reducing subspaces

We begin the section by introducing a few definitions and notations which are to be

used in subsequent results.

Definition 2.4.1. Let F =
∑

i∈N0
αigi,0 be a non-zero vector in ℓ2+(K). The order

of F , denoted as o(F ), is defined as the smallest non negative integer m such that

αm 6= 0.

Definition 2.4.2. If f =
∑

i∈N0
αiei is a non-zero vector in K, then order of f ,

denoted as o(f), is defined to be the smallest non negative integer m such that

αm 6= 0.

Definition 2.4.3. If f =
∑

i∈N0
αiei ∈ K then we define Ff in ℓ2+(K) as Ff =

∑

i∈N0
αigi,0. Clearly, for f 6= 0, o(f) = o(Ff).
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Definition 2.4.4. Let Y be a non-zero non-empty subset of K. Then order of Y ,

denoted as o(Y ), is defined to be the non negative integer m satisfying the following

conditions:

(i) o(f) ≥ m for all f ∈ Y , and

(ii) there exists f̃ ∈ Y such that o(f̃) = m.

Definition 2.4.5. Let X be a subset of ℓ2+(K) and LX := {f0 : (f0, f1, . . . ) ∈ X}.

If LX is a non-zero subset of K, then order of X , denoted as o(X), is defined as

o(LX).

Definition 2.4.6. Let S be a unilateral operator weighted shift on ℓ2+(K) with

uniformly bounded weights {An}n∈N0 in T . A linear expression F =
∑

i∈N0
αigi,0

is said to be S-transparent if for every pair of non-zero scalars αi and αj , we have

i ∼S j.

Definition 2.4.7. Let S be a unilateral operator weighted shift on ℓ2+(K) with

uniformly bounded weights {An}n∈N0 in T , and let S be the vector space of all finite

linear combinations of finite products of S and S∗. For non-zero F ∈ ℓ2+(K), let

SF := {TF : T ∈ S}. Then the closure of SF in ℓ2+(K) is a reducing subspace of S,

denoted by XF . Clearly XF is the smallest reducing subspace of ℓ2+(K) containing

F .

Lemma 2.4.8. Let {An}n∈N0 be a uniformly bounded sequence of operators in T and

S be the unilateral operator weighted shift on ℓ2+(K) with weight sequence {An}n∈N0.

Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j) with

γ
(n)
j > 0. The following will hold :

(i) For each n ∈ N0, A
∗
nei = γ

(n)

ψ−1
n (i)

eψ−1
n (i) for all i ∈ N0.
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(ii) S∗(f0, f1, . . . ) = (A∗
0f1, A

∗
1f2, . . . ) for (f0, f1, . . . ) ∈ ℓ2+(K).

(iii) For i, j ∈ N0, Sgi,j = γ
(j)
i gψj(i),j+1 and

S∗gi,j =

{

0, if j = 0;

γ
(j−1)

ψ−1
j−1(i)

gψ−1
j−1(i),j−1, if j > 0.

(iv) For i, j ∈ N0, (S
∗)kSkgi,j =







[γ
(j)
i ]2gi,j, if k = 1;

[

γ
(j)
i γ

(j+1)
ψj(i)

. . . γ
(j+k−1)
ψj+k−2...ψj(i)

]2

gi,j, if k > 1.

(v) For distinct non-negative integers n and m, if n ∼S m then
∥

∥(S∗)kSkgn,0
∥

∥ =
∥

∥(S∗)kSkgm,0
∥

∥ for each k ∈ N.

Proof. (i) For f =
∑

j∈N0
αjej ∈ K and n ∈ N0,

〈Anf, ei〉 =
∑

j

αj〈γ
(n)
j eψn(j), ei〉

= αψ−1
n (i)γ

(n)

ψ−1
n (i)

= 〈f, γ
(n)

ψ−1
n (i)

eψ−1
n (i)〉.

Hence A∗
nei = γ

(n)

ψ−1
n (i)

eψ−1
n (i) for all i ∈ N0.

(ii) For g = (g0, g1, . . . ) ∈ ℓ2+(K),

〈Sg, f〉 =
∑

i∈N0

〈Aigi, fi+1〉

=
∑

i∈N0

〈gi, A
∗
i fi+1〉

= 〈g, (A∗
0f1, A

∗
1f2, . . . )〉

and so S∗(f0, f1, . . . ) = (A∗
0f1, A

∗
1f2, . . . ) for f = (f0, f1, . . . ) ∈ ℓ2+(K).
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(iii) follows from (i) and (ii), and (iv) follows from (iii).

(v) For n ∈ N0, let Sn be the scalar weighted shift on ℓ2+(C) with weight sequence

{γ
(0)
n , γ

(1)
ψ0(n)

, γ
(2)
ψ1ψ0(n)

, . . . }. Then by Theorem 2.3.3, S is unitarily equivalent to S0 ⊕

S1 ⊕ . . . . As n ∼S m, so by Definition 2.3.4, Sn and Sm are identical. Therefore,

γ
(0)
n = γ

(0)
m and γ

(k+1)
ψkψk−1...ψ0(n)

= γ
(k+1)
ψkψk−1...ψ0(m) for all k ≥ 0. The result now follows

immediately from (iv).

Lemma 2.4.9. Let {An}n∈N0 be a uniformly bounded sequence of operators in T and

S be the unilateral operator weighted shift on ℓ2+(K) with weight sequence {An}n∈N0.

Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j) with

γ
(n)
j > 0. Let F =

∑

i∈N0
αigi,0 be S-transparent in ℓ2+(K) with o(F ) = m.

If F̃k :=

{

F, if k = 0;
∑

i∈N0
αigψk−1ψk−2...ψ0(i),k, if k > 1.

, then the following will hold :

(i) (S∗)kSkF =







[

γ
(0)
m

]2

F, if k = 1;
[

γ
(0)
m γ

(1)
ψ0(m) . . . γ

(k−1)
ψk−2...ψ0(m)

]2

F, if k > 1.

(ii) SF̃k =

{

γ
(0)
m F̃1, if k = 0;

γ
(k)
ψk−1...ψ0(m)F̃k+1, if k > 0.

(iii) S∗F̃k =











0, for k = 0;

γ
(0)
m F̃0, for k = 1;

γ
(k−1)
ψk−2...ψ0(m)F̃k−1, for k > 1,

(iv) XF is the closed linear span of {F̃k : k ∈ N0}.

Proof. As F =
∑

i∈N0
αigi,0 is S-transparent in ℓ2+(K) with o(F ) = m, so the fol-

lowing must hold:

(a) αm 6= 0 and αi = 0 for 0 ≤ i < m.

(b) If αi 6= 0 and αj 6= 0, then i ∼S j.
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Thus we must have i ∼S m for all i ∈ N0 with αi 6= 0, and so,

γ
(0)
i = γ(0)m and γ

(k+1)
ψkψk−1...ψ0(i)

= γ
(k+1)
ψkψk−1...ψ0(m) ∀ k ≥ 0 (2.4.1)

(i) Follows from 2.4.1 and Lemma 2.4.8(iv).

(ii) For k = 0, we get

SF̃0 = SF =
∑

i∈N0

αiSgi,0 =
∑

i∈N0

αiγ
(0)
i gψ0(i),1 = γ(0)m F̃1.

For k > 0,

SF̃k =
∑

i∈N0

αiSgψk−1...ψ0(i),k

=
∑

i∈N0

αiγ
(k)
ψk−1...ψ0(i)

gψk...ψ0(i),k+1

= γ
(k)
ψk−1...ψ0(m)F̃k+1.

(iii) can be similarly shown using 2.4.1 and Lemma 2.4.8(iii).

(iv) By (ii) and (iii) each F̃k ∈ XF and the closed linear span{F̃k : k ∈ N0} is a

non-zero reducing subspace of S contained in XF . Thus, by minimality of XF , we

have XF = closed linear span{F̃k : k ∈ N0}.

Definition 2.4.10. Let S be an operator weighted shift on ℓ2+(K) with uniformly

bounded weights {An}n∈N0 in T . Let Ω1,Ω2, . . . be the disjoint equivalence classes

of N0 under the relation ∼S. Consider F =
∑

i∈N0
αigi,0 ∈ l2+(K). For each k,

let qk :=
∑

i∈Ωk
αigi,0. Dropping those qk which are zero, the remaining qk’s are

arranged as f1, f2, . . . in such a way that for i < j we have o(fi) < o(fj). The

resulting decomposition F = f1 + f2 + . . . is called the canonical decomposition of

F with respect to S. Clearly each fi is S-transparent in ℓ
2
+(K).

If there exists a finite positive integer n such that F = f1 + f2 + · · ·+ fn, then F is

said to have a finite canonical decomposition.
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Lemma 2.4.11. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . Let X be a reducing subspace of S and F =

∑

i∈N0
αigi,0 be in X. If F has a finite canonical decomposition F = f1+f2+· · ·+fn,

then each fi ∈ XF .

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0. Let o(fi) = mi, so that m1 < m2 < · · · < mn. Clearly mi ≁S mj for

i 6= j.

Step I. As m1 ≁S mn so either γ
(0)
m1 6= γ

(0)
mn , or there exists k > 0 such that

γ
(k)
ψk−1...ψ0(m1)

6= γ
(k)
ψk−1...ψ0(mn)

.

In case γ
(0)
m1 = γ

(0)
mn, let k1 be the smallest positive integer such that γ

(k1)
ψk1−1...ψ0(m1)

6=

γ
(k1)
ψk1−1...ψ0(mn)

. Let

Q1 :=

{

[(γ
(0)
mn)

2 − S∗S]F, if γ
(0)
m1 6= γ

(0)
mn;

[

(γ
(0)
mnγ

(1)
ψ0(mn)

. . . γ
(k1)
ψk1−1...ψ0(mn)

)2 − (S∗)k1+1Sk1+1
]

F, otherwise.

For 1 ≤ i ≤ n− 1, let β
(1)
i := (γ

(0)
mn)

2 − (γ
(0)
mi )

2 if γ
(0)
m1 6= γ

(0)
mn; otherwise let

β
(1)
i := (γ(0)mn

γ
(1)
ψ0(mn)

. . . γ
(k1)
ψk1−1...ψ0(mn)

)2 − (γ(0)mi
γ
(1)
ψ0(mi)

. . . γ
(k1)
ψk1−1...ψ0(mi)

)2.

Then β
(1)
1 6= 0. Also since each fi is S-transparent, so by applying Lemma 2.4.9(i),

we get Q1 =
∑n−1

i=1 β
(1)
i fi ∈ XF .

Step II. As m1 ≁S mn−1, so either γ
(0)
m1 6= γ

(0)
mn−1 or k2 is the smallest positive integer

such that γ
(k2)
ψk2−1...ψ0(m1)

6= γ
(k2)
ψk2−1...ψ0(mn−1)

. Let

Q2 :=

{

[(γ
(0)
mn−1)

2 − S∗S]Q1, if γ
(0)
m1 6= γ

(0)
mn−1 ;

[

(γ
(0)
mn−1γ

(1)
ψ0(mn−1)

. . . γ
(k2)
ψk2−1...ψ0(mn−1)

)2 − (S∗)k2+1Sk2+1
]

Q1, otherwise.

For 1 ≤ i ≤ n− 2, let β
(2)
i := (γ

(0)
mn−1)

2 − (γ
(0)
mi )

2 if γ
(0)
m1 6= γ

(0)
mn−1 ; otherwise let

β
(2)
i := (γ(0)mn−1

γ
(1)
ψ0(mn−1)

. . . γ
(k2)
ψk2−1...ψ0(mn−1)

)2 − (γ(0)mi
γ
(1)
ψ0(mi)

. . . γ
(k2)
ψk2−1...ψ0(mi)

)2.
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Then β
(2)
1 6= 0 and Q2 =

∑n−2
i=1 β

(1)
i β

(2)
i fi ∈ XF .

Repeating the above argument n− 1 times we get Qn−1 = β
(1)
1 β

(2)
1 . . . β

(n−1)
1 f1 ∈ XF

with β
(i)
1 6= 0 for 1 ≤ i ≤ n− 1. This implies that f1 ∈ XF .

By a similar procedure it can be shown that fi ∈ XF for 1 < i ≤ n.

Lemma 2.4.12. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . If X is a reducing subspace of S then LX = 0

if and only if X = 0.

Proof. X = 0 ⇒ LX = 0.

Conversely, suppose X 6= 0, and let, if possible LX = 0. As X 6= 0 so we can choose

f = (0, f1, f2, . . . ) ∈ X with fn 6= 0. Then by Lemma 2.4.8(ii), (S∗)nf = (g1, g2, . . . )

where g1 6= 0. As (S∗)nf ∈ X , so g1 ∈ LX , which is a contradiction. Thus,

X 6= 0 ⇒ LX 6= 0.

Theorem 2.4.13. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . Let X be a non-zero reducing subspace of S

with o(X) = m. Then the extremal problem

sup{Re αm : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, f0 =
∑

i∈N0

αiei.}

has a unique solution G =
∑

i∈N0
αigi,0 ∈ X with ‖G‖ = 1 and o(G) = m.

Proof. Define ϕ : X → C as ϕ(F ) = αm, where F = (f0, f1, . . . ) and f0 =

∑

i∈N0
αiei. As X 6= 0, so by Lemma 2.4.12, LX 6= 0, and in view of Definition

2.4.5, o(LX) = m = o(X). Therefore ϕ is a non-zero bounded linear functional

on X . From [8] we know that there exists a unique G ∈ X such that ϕ(G) > 0,
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‖G‖ = 1 and

ϕ(G) = sup{Re ϕ(F ) : F ∈ X, ‖F‖ ≤ 1}

= sup{Re αm : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, f0 =
∑

i∈N0

αiei.}

We will show that G =
∑

i∈N0
αigi,0 and o(G) = m. For this we consider G =

(g0, g1, . . . ).

Claim I. If F ∈ X and ‖F‖ < 1, then Reϕ(F ) < ϕ(G).

Let, if possible, Reϕ(F ) = ϕ(G). Let H := F
‖F‖

. Then H ∈ X , ‖H‖ = 1 and

Reϕ(H) > ϕ(G), contradicting the extremality of G. Hence, claim I is established.

Now for each F ∈ X , Reϕ(G + SF ) = ϕ(G) and so by claim I, we must have

‖G+ SF‖ ≥ 1 which implies G ⊥ SF . In particular,

〈G, SS∗G〉 = 0

⇒A∗
i gi+1 = 0 ∀ i ≥ 0, by Lemma 2.4.8(ii)

⇒gi+1 = 0 ∀ i ≥ 0.

Thus, G = (g0, 0, 0, . . . ). Let g0 =
∑

i∈N0
αiei. Since, o(LX) = m, so αi = 0 for all

0 ≤ i < m. Also, ϕ(G) > 0 implies αm 6= 0.

Thus, G =
∑

i∈N0
αigi,0 and o(G) = m.

Remark 2.4.14. The function G in Theorem 2.4.13 is called the extremal function of

the non-zero reducing subspace X of S.

Theorem 2.4.15. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . If the extremal function of a non-zero re-

ducing subspace X of S has a finite canonical decomposition, then it must be S-

transparent.

Proof. Let X be a non-zero reducing subspace of order m and G =
∑

i∈N0
αigi,0

be its extremal function. Also let G = g1 + g2 + · · · + gn be the finite canonical
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decomposition of G.

Then, g1 =
∑

i∈N0
βigi,0, such that o(g1) = m and βm = αm. Also ‖g1‖ ≤ ‖G‖ = 1.

So by extremality of G, we must have G = g1. As g1, by definition, is S-transparent,

so G is also S-transparent.

2.5 Minimal Reducing subspaces

In this section we identify and study the minimal reducing subspaces of S in ℓ2+(K).

It may be noted that in general there are many operators which have reducing

subspaces that do not contain minimal reducing subspaces. One such operator is

the operator of multiplication by z on the Bergman space L2(D, dA), where D is the

unit disc and dA is the area measure [26], [55].

Lemma 2.5.1. Let S be a unilateral operator weighted shift on ℓ2+(K) with uniformly

bounded weights {An}n∈N0 in T . Let F be S-transparent and o(F ) = m. If G ∈ XF

is such that G is non zero and G =
∑

i∈N0
αigi,0, then G = λF for some non-zero

scalar λ.

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0.

As G = (g, 0, 0, . . . ) with g 6= 0 and F = (f, 0, 0, . . . ) with f 6= 0, so by Definition

2.4.7, G =
∑

k λk(S
∗)kSkF for scalars λk, not all zero. Let

βk :=

{

(γ
(0)
m )2, if k = 1;

(γ
(0)
m γ

(1)
ψ0(m) . . . γ

(k−1)
ψk−2···ψ0(m))

2, if k > 1.

Then by Lemma 2.4.9(i), (S∗)kSkF = βkF , where βk 6= 0 for all k.

Therefore, G = (
∑

k λkβk)F = λF for λ =
∑

k λkβk 6= 0.

Lemma 2.5.2. Let S be a unilateral operator weighted shift on ℓ2+(K) with uniformly

bounded weights {An}n∈N0 in T . Let F =
∑

i∈N0
αigi,0 with o(F ) = m1. If G ∈ XF

such that G is non zero and G =
∑

i∈N0
βigi,0, then o(G) ≥ m1.
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Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0.

Let F = f1 + f2 + . . . be the canonical decomposition of F with o(fi) = mi. If for

each i ∈ N0,

β
(i)
k :=

{

(γ
(0)
mi )

2, if k = 1;

(γ
(0)
miγ

(1)
ψ0(mi)

. . . γ
(k−1)
ψk−2...ψ0(mi)

)2, if k > 1.

then (S∗)kSkfi = β
(i)
k fi for all k ∈ N0 and i ∈ N. Now G ∈ XF implies

G =
∑

k∈N0

λk(S
∗)kSkF

=
∑

k∈N0

λk(
∑

i∈N

β
(i)
k fi)

=
∑

i∈N

(
∑

k∈N0

λkβ
(i)
k )fi.

Therefore, o(G) = o(f1) if
∑

k∈N0
λkβ

(1)
k 6= 0, otherwise o(G) > o(f1). Hence o(G) ≥

m1.

Theorem 2.5.3. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T , and let X be a minimal reducing subspace

of S . If F =
∑

i∈N0
αigi,0 ∈ X, then F must be S-transparent.

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0.

Let, if possible, F is not S-transparent. Then the canonical decomposition of

F = f1 + f2 + . . . will have at least two components f1 and f2.

Let o(fi) = ni. Then n1 ≁S n2 and so either γ
(0)
n1 6= γ

(0)
n2 or there exists a positive

integer k such that γ
(k)
ψk−1...ψ0(n1)

6= γ
(k)
ψk−1...ψ0(n2)

.

(i) If γ
(0)
n1 6= γ

(0)
n2 , then define G := S∗SF − (γ

(0)
n1 )

2F so that

G := [(γ(0)n2
)2 − (γ(0)n1

)2]f2 + [(γ(0)n3
)2 − (γ(0)n1

)2]f3 + . . . ,
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which implies o(G) = o(f2) = n2.

(ii) If γ
(0)
n1 = γ

(0)
n2 , then let k be the positive integer such that γ

(k)
ψk−1...ψ0(n1)

6=

γ
(k)
ψk−1...ψ0(n2)

and γ
(i)
ψi−1...ψ0(n1)

= γ
(i)
ψi−1...ψ0(n2)

for all 0 < i < k. Then

G : = (S∗)k+1Sk+1F − (γ(0)n1
γ
(1)
ψ0(n1)

. . . γ
(k)
ψk−1...ψ0(n1)

)2F

= [(γ(0)n2
γ
(1)
ψ0(n2)

. . . γ
(k)
ψk−1...ψ0(n2)

)2 − (γ(0)n1
γ
(1)
ψ0(n1)

. . . γ
(k)
ψk−1...ψ0(n1)

)2]f2 + . . .

which implies that o(G) = o(f2) = n2.

Thus, there exists 0 6= G ∈ X such that o(F ) < o(G). Therefore XG is a non-

zero reducing subspace of S contained in X . By minimality of X , we must have

XG = X . But this implies F ∈ XG so that by Lemma 2.5.2, o(F ) ≥ o(G) which is

a contradiction. Thus, F must be S-transparent.

Corollary 2.5.4. Let S be a unilateral operator weighted shift on ℓ2+(K) with weights

{An}n∈N0 in T . The extremal function of a minimal reducing subspace of S is always

S-transparent.

Theorem 2.5.5. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . Let X be a non-zero reducing subspace of

S. Then X is minimal if and only if X = XF where F ∈ X is S-transparent.

Proof. If X is minimal then X = XG where G is the extremal function of X . Also

by Corollary 2.5.4, G must be S-transparent.

Conversely, let X = XF where F ∈ X is S-transparent. Then by Lemma 2.4.9,

XF is a reducing subspace of S. Thus, we only need to show that XF is minimal

reducing.

For this, let Y be a non-zero reducing subspace of S contained in XF . If G is the

extremal function of Y , then G ∈ XF and so by Lemma 2.5.1, G = λF for a non
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zero scalar λ. This implies that F ∈ Y .

Therefore Y = XF , which shows that XF is minimal.

Corollary 2.5.6. Let S be an operator weighted shift on ℓ2+(K) with weights {An}n∈N0

in T . Every reducing subspace of S in ℓ2+(K), whose extremal function has a finite

canonical decomposition must contain a minimal reducing subspace.

The proof follows immediately from Lemma 2.4.11 and Theorem 2.5.5.

2.6 Conclusion

Theorem 2.6.1. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . If S is of Type I, then Xgn,0 for n ∈ N0 are

the only minimal reducing subspaces of S in ℓ2+(K).

Proof. Let X be a minimal reducing subspace of S and G be the extremal function

such that X = XG. As S is of Type I, so the only S-transparent functions are gn,0

and their scalar multiples. Hence, X = Xgn,0 for n ∈ N0.

Theorem 2.6.2. Let S be a unilateral operator weighted shift on ℓ2+(K) with uni-

formly bounded weights {An}n∈N0 in T . If S is of Type II, then S has minimal

reducing subspaces other than Xgn,0 (n ∈ N0). In fact, for every S-transparent F ,

XF is a minimal reducing subspace and hence S will have infinitely many minimal

reducing subspaces in ℓ2+(K).

Proof. Let Y be a non-zero reducing subspace of S such that Y ⊆ XF . Let Y = XG,

where G is the extremal function. Then G ∈ XF . So by Lemma 2.5.1, G = λF ,

λ 6= 0, which implies F ∈ Y . Therefore XF = Y . Hence, XF is minimal.

Theorem 2.6.3. Let S be an operator weighted shift on ℓ2+(K) with uniformly

bounded weights {An}n∈N0 in T . If S is of Type III, then every reducing subspace of

S must contain a minimal reducing subspace.
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Proof. Let X be a non-zero reducing subspace of S. If X = XF for some transparent

function F , then X is minimal. Otherwise let G =
∑

i∈N0
αigi,0 ∈ X and G =

f1 + f2 + · · · + fm be its canonical decomposition. Then by Lemma 2.4.11, each

fi ∈ X and so Xfi is a minimal reducing subspace in X .
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