Chapter 3

Minimal reducing subspaces of the unilateral shift U_+ on $H^2(B)$

3.1 Introduction

Our aim in this chapter is to investigate the minimal reducing subspaces of a unilateral shift U_+ on an operator weighted sequence space $H^2(B)$. We consider the operator weights $B = \{B_n\}_{n \in \mathbb{N}_0}$ on the separable Hilbert space K as a sequence of uniformly bounded invertible linear operators in the class \mathcal{T} . We recall that the unilateral shift U_+ is defined on $H^2(B)$ as

$$U_{+}(f_0, f_1, \dots) = (0, f_0, f_1, \dots)$$

for (f_0, f_1, \dots) in $H^2(B)$. Clearly, U_+ is bounded if and only if $\sup_{i,j} \frac{\|B_{j+1}e_i\|}{\|B_je_i\|} < \infty$.

In Corollary 2 of Theorem 3 [48], Shields has shown that U_+ on $H^2(\beta)$ is irreducible. Here, β denotes a sequence of positive numbers $\{\beta_n\}_{n\in\mathbb{N}_0}$ with $\beta_0=1$. In the case of operator shifts, the reducing subspaces of U_+ on $H^2(B)$ has been determined under specific assumptions on the weight sequence $\{B_n\}$. In [17], the weights $\{B_n\}$ are assumed to be commuting normal operators; in [50] it is assumed that $\dim K = N < \infty$ and the weights $\{B_n\}$ are positive diagonal with respect to a fixed basis for K; in [20] $\dim K = \aleph_0$ and $\{B_n\}$ are positive diagonals on K. In all these

Chapter 3

results we observe that B_n 's are always assumed to be mutually commuting. Hence, in this chapter, we try to drop this assumption and consider the weight sequence $B = \{B_n\}_{n \in \mathbb{N}_0}$ to be in the more general class of operators \mathcal{T} .

As we are considering the operator weighted sequence space $H^2(B)$, where the uniformly bounded weight sequence $B = \{B_n\}_{n \in \mathbb{N}_0}$ is in \mathcal{T} , so for each $n \in \mathbb{N}_0$ there exists a unique bijective map ψ_n on \mathbb{N}_0 such that $B_n e_j = \gamma_j^{(n)} e_{\psi_n(j)}$, where $\gamma_j^{(n)}$ denotes the unique non zero entry occurring in the j^{th} column of the matrix of B_n .

Theorem 3.1.1. For $i, j \in \mathbb{N}_0$, let $f_{i,j}$ (or $x^i y^j$) $\in H^2(B)$ be the vector that has e_i as the jth entry and zero as all other entries. Then, $\{f_{i,j}\}_{i,j\in\mathbb{N}_0}$ is an orthogonal basis for $H^2(B)$.

Proof. For $i, j \in \mathbb{N}_0$, we get $||f_{i,j}||_B^2 = ||B_j e_i||^2 = |\gamma_i^{(j)}|^2$.

$$\langle f_{i,j}, f_{p,q} \rangle_B = \begin{cases} \langle B_j e_i, B_q e_p \rangle, & \text{if } j = q; \\ 0, & \text{if } j \neq q. \end{cases}$$

Since ψ_n is a bijective function for each $n \in \mathbb{N}_0$, so we get

$$\langle f_{i,j}, f_{p,q} \rangle_B = \begin{cases} \gamma_i^{(j)} \bar{\gamma}_p^{(q)}, & \text{if } j = q, i = p; \\ 0, & \text{otherwise.} \end{cases}$$

i.e,

$$\langle f_{i,j}, f_{p,q} \rangle_B := \begin{cases} |\gamma_i^{(j)}|^2, & \text{if } j = q, \ i = p; \\ 0, & \text{otherwise.} \end{cases}$$

Let $X=(X_0,X_1,\dots)\in H^2(B)$ such that $\langle X,f_{i,j}\rangle_B=0$ for all $i,j\in\mathbb{N}_0$. Also,

Chapter 3

 $X_0 = \sum_{p \in \mathbb{N}_0} \lambda_p e_p$, where $\{\lambda_p\}_{p \in \mathbb{N}_0}$ is a sequence of scalars. Thus for each $i \in \mathbb{N}_0$,

$$\langle X, f_{i,0} \rangle_B = 0$$

$$\Rightarrow \langle B_0 X_0, B_0 e_i \rangle = 0$$

$$\Rightarrow \sum_{p \in \mathbb{N}_0} \lambda_p \langle B_0 e_p, B_0 e_i \rangle = 0$$

$$\Rightarrow \lambda_i \|B_0 e_i\|^2 = 0$$

$$\Rightarrow \lambda_i = 0.$$

Therefore, $X_0 = 0$. Similarly, $X_1 = 0$, $X_2 = 0$ and so on. Thus for all $i, j \in \mathbb{N}_0$, $\langle X, f_{i,j} \rangle_B = 0$ implies that X = 0. This implies that $\{f_{i,j}\}_{i,j\in\mathbb{N}_0}$ is an orthogonal basis for $H^2(B)$.

On the orthogonal basis $\{f_{i,j}\}_{i,j\in\mathbb{N}_0}$, the unilateral shift U_+ acts as $U_+f_{i,j}=f_{i,j+1}$, or equivalently $U_+(x^iy^j)=x^iy^{j+1}$ for each $i,j\in\mathbb{N}_0$. Let $B=\{B_n\}_{n\in\mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n\in\mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the jth column of the matrix of B_n . On the basis of these scalars $\gamma_j^{(n)}$, we classify the weights into three classes: types I, II and III.

Definition 3.1.2. The weight sequence $\{B_n\}$ is said to be of *type* I if for each pair of distinct non negative integers m and n there exist some positive integer k such that

$$\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \neq \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}.$$

Otherwise, it is said to be of type II. Thus $\{B_n\}$ is of type II if there exist distinct non negative integers m and n such that

$$\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} = \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}$$

for every positive integer k.

Definition 3.1.3. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the jth column of the matrix of B_n . Two non negative integers m and n are said to be B-related (denoted by $m \sim^B n$) if for every positive integer k, we have

$$\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} = \frac{\gamma_n^{(k)}}{\gamma_n^{(0)}}.$$

Clearly, \sim^B is an equivalence relation on the set \mathbb{N}_0 .

Definition 3.1.4. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} . A weight sequence $\{B_n\}$ of type II is said to be of type III if \sim^B partitions \mathbb{N}_0 into a finite number of equivalence classes.

Remark 3.1.5. The above definitions are motivated by similar definitions given in [50]. In fact for $\dim K = N < \infty$ the two definitions refer to the same idea. In [50] the minimal reducing subspaces of $M_z^N(N > 1)$ on the space $H^2(\beta)$ is determined, where $\beta = \{\beta_0, \beta_1, \dots\}$ is a sequence of positive numbers. If in the present study, we consider $\dim K = N$, and for each $n \in \mathbb{N}_0$ if we define

$$B_n = diag(\sqrt{\beta_{nN}}, \sqrt{\beta_{nN+1}}, \dots, \sqrt{\beta_{(n+1)N-1}}),$$

then M_z^N on $H^2(\beta)$ is unitarily equivalent to the unilateral shift U_+ on $H^2(B)$.

Definition 3.1.6. Let $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ be a non-zero vector in $H^2(B)$. The order of F, denoted as o(F), is defined as the smallest non negative integer m such that $\alpha_m \neq 0$.

Definition 3.1.7. If $f = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$ is a non-zero vector in K, then order of f, denoted as o(f), is defined to be the smallest non negative integer m such that $\alpha_m \neq 0$.

Definition 3.1.8. Let Y be a non-zero non-empty subset of K. Then order of Y, denoted as o(Y), is defined to be the non negative integer m satisfying the following

conditions:

- (i) $o(f) \ge m$ for all $f \in Y$, and
- (ii) there exists $\tilde{f} \in Y$ such that $o(\tilde{f}) = m$.

Definition 3.1.9. Let X be a subset of $H^2(B)$ and $\mathcal{L}_X := \{f_0 : (f_0, f_1, \dots) \in X\}$. If \mathcal{L}_X is a non-zero subset of K, then order of X, denoted as o(X), is defined as $o(\mathcal{L}_X)$.

Definition 3.1.10. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} . A linear expression $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ in $H^2(B)$ is said to be B-transparent if for every pair of non-zero scalars α_i and α_j , we have $i \sim^B j$.

Definition 3.1.11. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. Let \mathcal{S} be the vector space of all finite linear combinations of finite products of U_+ and U_+^* . For non-zero $F \in H^2(B)$, let $\mathcal{S}F := \{TF : T \in \mathcal{S}\}$. Then the closure of $\mathcal{S}F$ in $H^2(B)$ is a reducing subspace of U_+ , denoted by X_F . Clearly X_F is the smallest reducing subspace of $H^2(B)$ containing F.

Lemma 3.1.12. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the j^{th} column of the matrix of B_n . If U_+ is the unilateral shift on $H^2(B)$, then for $i, j \in \mathbb{N}_0$, the following will hold:

(i)
$$U_{+}^{*}f_{i,j} = \begin{cases} 0 & \text{if } j = 0, \\ \left| \frac{\gamma_{i}^{(j)}}{\gamma_{i}^{(j-1)}} \right| f_{i,j-1} & \text{if } j > 0. \end{cases}$$

(ii) For any non negative integer k, $(U_+^k)^*U_+^k f_{i,j} = \left|\frac{\gamma_i^{(j+k)}}{\gamma_i^{(j)}}\right|^2 f_{i,j}$.

Proof. (i) For $i \in \mathbb{N}_0$, we have $\langle U_+X, f_{i,0} \rangle = 0$ for all $X \in H^2(B)$. This implies $U_+^*f_{i,0} = 0$.

Next we consider $X = (x_0, x_1, ...)$ in $H^2(B)$, where $x_j = \sum_{t \in \mathbb{N}_0} \alpha_t^{(j)} e_t$ for each $j \in \mathbb{N}_0$. Then for j > 0, we have

$$\langle U_+ X, f_{i,j} \rangle = \frac{1}{|\gamma_i^{(j)}|} \langle B_j x_{j-1}, B_j e_i \rangle = \alpha_i^{(j-1)} |\gamma_i^{(j)}|.$$

Choosing $\lambda_{i,j} = \left| \frac{\gamma_i^{(j)}}{\gamma_i^{(j-1)}} \right|$, we get

$$\langle X, \lambda_{i,j} f_{i,j-1} \rangle = \frac{\lambda_{i,j}}{|\gamma_i^{(j-1)}|} \langle B_{j-1} x_{j-1}, B_{j-1} e_i \rangle$$

$$= \frac{\lambda_{i,j}}{|\gamma_i^{(j-1)}|} \alpha_i^{(j-1)} ||B_{j-1} e_i||^2$$

$$= \alpha_i^{(j-1)} |\gamma_i^{(j)}|.$$

Therefore, $\langle U_+X, f_{i,j} \rangle = \langle X, \lambda_{i,j}f_{i,j-1} \rangle$, and so $U_+^*f_{i,j} = \lambda_{i,j}f_{i,j-1}$ for j > 0.

(ii) As $U_{+}^{*}U_{+}f_{i,j} = \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|U_{+}^{*}f_{i,j+1} = \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|^{2}f_{i,j}$, so the result holds for k=1. Suppose, $(U_{+}^{*})^{n}U_{+}^{n}f_{i,j} = \left|\frac{\gamma_{i}^{(j+n)}}{\gamma_{i}^{(j)}}\right|^{2}f_{i,j}$ holds for n=k. We will show that it also holds for n=k+1.

$$(U_{+}^{*})^{k+1}U_{+}^{k+1}f_{i,j} = \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| U_{+}^{*}(U_{+}^{*k}U_{+}^{k})f_{i,j+1}$$

$$= \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| \left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1)}}\right|^{2} U_{+}^{*}f_{i,j+1}$$

$$= \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| \left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1+k)}}\right|^{2} \left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| f_{i,j}$$

$$= \left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j)}}\right|^{2} f_{i,j}.$$

Thus, the results holds for all $k \in \mathbb{N}_0$ by induction.

Lemma 3.1.13. If U_+ is the unilateral shift on $H^2(B)$, then for any non negative integer k, $(U_+^k)^*U_+^k(x^iy^j) = \left|\frac{\gamma_i^{(j+k)}}{\gamma_i^{(j)}}\right|^2x^iy^j$.

Proof. As $U_+^*U_+(x^iy^j) = U_+^*(x^iy^{j+1}) = \left|\frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}}\right|^2 x^iy^j$, so the result holds for k = 1.

Suppose, $(U_+^*)^n U_+^n(x^i y^j) = \left|\frac{\gamma_i^{(j+n)}}{\gamma_i^{(j)}}\right|^2 x^i y^j$ holds for all n=k. We will show that it also holds for n=k+1.

$$\begin{split} (U_+^*)^{k+1} U_+^{k+1} (x^i y^j) &= U_+^* (U_+^{*^k} U_+^k) (x^i y^{j+1}) \\ &= U_+^* \big| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j+1)}} \big|^2 x^i y^{j+1} \\ &= \big| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j+1)}} \big|^2 \big| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \big|^2 x^i y^j \\ &= \big| \frac{\gamma_i^{(j+1+k)}}{\gamma_i^{(j)}} \big|^2 x^i y^j. \end{split}$$

Thus, the results holds for all $k \in \mathbb{N}_0$ by induction.

Lemma 3.1.14. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the j^{th} column of the matrix of B_n . Let $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ be B-transparent in $H^2(B)$ with o(F) = m. If for each $k \in \mathbb{N}_0$, $\tilde{F}_k := \left|\frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}\right| \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,k}$, then the following will hold:

(i)
$$(U_+^k)^* U_+^k F = \left| \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}} \right|^2 F$$
.

(ii)
$$U_{+}\tilde{F}_{k} = \tilde{F}_{k+1}$$
 and $U_{+}^{*}\tilde{F}_{k} = \begin{cases} 0, & \text{if } k = 0; \\ \left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(k-1)}}\right|^{2} \tilde{F}_{k-1}, & \text{if } k > 0. \end{cases}$

(iii) X_F is the closed linear span of $\{\tilde{F}_k : k \in \mathbb{N}_0\}$.

Proof. Since o(F) = m, so $\alpha_i = 0$ for all i < m. Let, $\Lambda = \{i \ge m : \alpha_i \ne 0\}$. Then $m \in \Lambda$, and for $i \in \Lambda$, $\frac{\gamma_i^{(k)}}{\gamma_i^{(0)}} = \frac{\gamma_m^{(k)}}{\gamma_m^{(0)}}$ for each positive integer k.

(i) For $i \in \Lambda$ and positive integer k, by Lemma 3.1.12 (ii) we have

$$(U_{+}^{k})^{*}U_{+}^{k}f_{i,0} = \left|\frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(0)}}\right|^{2}f_{i,0} = \left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right|^{2}f_{i,0}.$$

Thus, we have

$$(U_{+}^{k})^{*}U_{+}^{k}F = (U_{+}^{k})^{*}U_{+}^{k}(\sum_{i \in \Lambda} \alpha_{i}f_{i,0})$$

$$= \sum_{i \in \Lambda} \alpha_{i} \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \right|^{2} f_{i,0}$$

$$= \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \right|^{2} F.$$

(ii) For $i, j \in \mathbb{N}_0$, $U_+ f_{i,j} = \left| \frac{\gamma_i^{(j+1)}}{\gamma_i^{(j)}} \right| f_{i,j+1}$, and so

$$U_{+}\tilde{F}_{k} = \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \right| \sum_{i \in \Lambda} \alpha_{i} U_{+} f_{i,k}$$

$$= \sum_{i \in \Lambda} \alpha_{i} \left| \frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(0)}} \right| \left| \frac{\gamma_{i}^{(k+1)}}{\gamma_{i}^{(k)}} \right| f_{i,k+1}$$

$$= \left| \frac{\gamma_{m}^{(k+1)}}{\gamma_{m}^{(0)}} \right| \sum_{i \in \Lambda} \alpha_{i} f_{i,k+1}$$

$$= \tilde{F}_{k+1}.$$

As $U_{+}^{*}f_{i,0} = 0$, so we have $U_{+}^{*}\tilde{F}_{0} = 0$. For k > 0,

$$U_{+}^{*}\tilde{F}_{k} = \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \right| \sum_{i \in \mathbb{N}_{0}} \alpha_{i} U_{+}^{*} f_{i,k}$$

$$= \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \right| \sum_{i \in \mathbb{N}_{0}} \alpha_{i} \left| \frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(k-1)}} \right| f_{i,k-1}$$

$$= \left| \frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(k-1)}} \right|^{2} \tilde{F}_{k-1}.$$

(iii) By (ii), each $\tilde{F}_k \in X_F$ and so the closed linear $span\{\tilde{F}_k : k \in \mathbb{N}_0\}$ is a non-zero reducing subspace of U_+ contained in X_F . Thus, by minimality of X_F , we have $X_F = closed\ linear\ span\{\tilde{F}_k : k \in \mathbb{N}_0\}.$

Lemma 3.1.15. If F = f(x) in $H^2(B)$ is transparent, then $X_F = Span\{Fy^k : k \in \mathbb{N}_0\}$.

Proof. Let $X = Span\{Fy^k : k \in \mathbb{N}_0\}$ and let $F = \sum_{i \in \mathbb{N}_0} \alpha_i x_i$. Then

$$U_+^k F = U_+^k (\sum_{i \in \mathbb{N}_0} \alpha_i x_i) = \sum_{i \in \mathbb{N}_0} \alpha_i S^k x^i = \sum_{i \in \mathbb{N}_0} \alpha_i x^i y^k = F y^k.$$

Hence, $Fy^k = S^k F \in X_F$ for all $k \in \mathbb{N}_0$. So $F \in X \subseteq X_F$. We claim that X is reducing for S.

For any $G \in X$, SG = Gy and $X \subseteq H^2(B)$. So X is invariant under U_+ . Also $U_+^*(x^i) = 0$ for all $i \ge 0$ and F = f(x). So $U_+^*(F) = 0$. For any positive integer k, $U_+^*(Fy^k) = U_+^*U_+(Fy^c)$ where $c = k - 1 \ge 0$. If the order of zero of F at the origin is m, then since F is transparent, so by Lemma 3.1.14 we have

$$U_{+}^{*}(Fy^{k}) = U_{+}^{*}U_{+}(Fy^{c})$$

$$= U_{+}^{*}U_{+}\left(\sum_{i \in \mathbb{N}_{0}} \alpha_{i}x^{i}y^{c}\right)$$

$$= \sum_{i \in \mathbb{N}_{0}} \alpha_{i}U_{+}^{*}U_{+}x^{i}y^{c}$$

$$= \sum_{i \in \mathbb{N}_{0}} \alpha_{i}\left|\frac{\alpha_{i}^{(c+1)}}{\alpha_{i}^{(c)}}\right|^{2}x^{i}y^{c}$$

$$= \sum_{i \in \mathbb{N}_{0}} \alpha_{i}\left|\frac{\alpha_{i}^{(k)}}{\alpha_{i}^{(c)}}\right|^{2}x^{i}y^{c} \in X.$$

Thus for any $G \in X$, $U_+^*G \in X$. Therefore, X is reducing under U_+ . Since X_F is the smallest reducing subspace of U_+ containing F, so we must have $X = X_F$. \square

Definition 3.1.16. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. Let $\Omega_1, \Omega_2, \ldots$ be the disjoint equivalence classes of \mathbb{N}_0 under the relation \sim^B . Consider $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ in $H^2(B)$. For each $k = 1, 2, \ldots$, let $q_k := \sum_{i \in \Omega_k} \alpha_i g_{i,0}$. Dropping those q_k which are zero, the remaining q_k 's are arranged as f_1, f_2, \ldots in such a way that for i < j we have $o(f_i) < o(f_j)$. The resulting decomposition $F = f_1 + f_2 + \ldots$ is called the canonical decomposition of F. Clearly each f_i is B-transparent in $H^2(B)$.

If there exists a finite positive integer n such that $F = f_1 + f_2 + \cdots + f_n$, then F in the above case is said to have a finite canonical decomposition.

Lemma 3.1.17. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the j^{th} column of the matrix of B_n . Let U_+ be the unilateral shift on $H^2(B)$, and X be a reducing subspace of U_+ in $H^2(B)$. If $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ in X has a finite canonical decomposition $F = f_1 + f_2 + \cdots + f_n$, then each f_i is in X_F .

Proof. Let $o(f_i) = m_i$ so that $m_1 < m_2 < \cdots < m_n$ and no two of them are B-related. For $2 \le i \le n$, as $m_1 \nsim^B m_i$, and so there exists a positive integer k_i such that $\frac{\gamma_{m_1}^{(k_i)}}{\gamma_{m_1}^{(0)}} \ne \frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}}$. Let k_i be the smallest positive integer having this property.

Let $q_1 := F$ and for $2 \le i \le n$, $q_i := \left[\left| \frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}} \right|^2 - (U_+^{k_i})^* U_+^{k_i} \right] q_{i-1}$. Then $q_i \in X_F$ for all $1 \le i \le n$. Also $q_n = (\beta_2 \dots \beta_n) f_1$, where $\beta_i = \left| \frac{\gamma_{m_i}^{(k_i)}}{\gamma_{m_i}^{(0)}} \right|^2 - \left| \frac{\gamma_{m_1}^{(k_i)}}{\gamma_{m_1}^{(0)}} \right|^2$ for $2 \le i \le n$. As each $\beta_i \ne 0$, so $q_n \in X_F$ implies that $f_1 \in X_F$.

In a similar way it can be shown that f_2, \ldots, f_n are also in X_F .

3.2 An Extremal Problem

Theorem 3.2.1. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. Let X be a non-zero reducing subspace of U_+ in $H^2(B)$ with o(X) = m. Then the extremal problem

$$\sup\{Re \ \alpha_m : F = (f_0, f_1, \dots) \in X, \ \|F\| \le 1, \ f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i.\}$$

has a unique solution $G = \sum_{i \in \mathbb{N}_0} \alpha_i g_{i,0} \in X$ with ||G|| = 1 and o(G) = m.

Proof. For $F = (f_0, f_1, ...) \in X$, we define $\varphi : X \to \mathbb{C}$ as $\varphi(F) = \alpha_m$ where $f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i$. Since o(X) = m, so φ is a non zero bounded linear functional on X. From [8], it follows that the extremal problem has a unique solution G in X

such that ||G|| = 1, $\varphi(G) > 0$ and

$$\varphi(G) = \sup\{Re \ \varphi(F) : F \in X, \ ||F|| \le 1\}$$
$$= \sup\{Re \ \alpha_m : F = (f_0, f_1, \dots) \in X, \ ||F|| \le 1, \ f_0 = \sum_{i \in \mathbb{N}_0} \alpha_i e_i.\}$$

We claim that G has the form $G = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ with o(G) = m.

If $F \in X$ and ||F|| < 1, then by the maximality of G we must have $Re\varphi(F) < \varphi(G)$. Now as $Re\varphi(G+SF) = \varphi(G)$ for all $F \in X$, so we must have $||G+SF|| \ge 1$. This implies that $G \perp SF$ for all $F \in X$. In particular $\langle G, U_+U_+^*G \rangle = 0$ which implies that $U_+^*G = 0$. Thus G is of the form $G = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$. Also $\varphi(G) > 0$ and o(X) = m together imply o(G) = m.

Note: The function G in Theorem 3.2.1 will be called the *extremal function* of X.

Theorem 3.2.2. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. If the extremal function of a non-zero reducing subspace of U_+ in $H^2(B)$ has a finite canonical decomposition, then it must be B-transparent.

Proof. Let X be a non-zero reducing subspace of U_+ in $H^2(B)$ and $G = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ be its extremal function with o(G) = m. Let $G = g_1 + g_2 + \cdots + g_n$ be the finite canonical decomposition of G. Each g_i is B-transparent and also by Lemma 3.1.17, each of them is in X_G . Clearly $o(g_1) = m$ and $||g_1|| \le ||G|| = 1$. So by the extremality of G, we must have $G = g_1$. Thus G is B-transparent.

3.3 Minimal reducing subspaces

Theorem 3.3.1. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and for each $n \in \mathbb{N}_0$ let $\gamma_j^{(n)}$ denote the unique non zero entry occurring in the j^{th} column of the matrix of B_n . Also let U_+ be the unilateral shift on $H^2(B)$. If X

is a minimal reducing subspace of U_+ in $H^2(B)$ and $F = \sum_{i \in \mathbb{N}_0} \alpha_i f_{i,0}$ is in X, then F is B-transparent.

Proof. Let o(F) = m, and if possible, F is not B-transparent. So we must have a positive integer k > m such that $\alpha_k \neq 0$ and $k \nsim^B m$. This means that there exists a positive integer l such that $\frac{\gamma_k^{(l)}}{\gamma_k^{(0)}} \neq \frac{\gamma_m^{(l)}}{\gamma_m^{(0)}}$.

We define $G := (U_+^l)^* U_+^l F - \left| \frac{\gamma_m^{(l)}}{\gamma_m^{(0)}} \right|^2 F$. Clearly, G is in X, and we get

$$G = (U_{+}^{l})^{*}U_{+}^{l}F - \left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}F$$

$$= (U_{+}^{l})^{*}U_{+}^{l}(\sum_{i=m}^{\infty}\alpha_{i}f_{i,0}) - \left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}(\sum_{i=m}^{\infty}\alpha_{i}f_{i,0})$$

$$= \sum_{i=m}^{\infty}\alpha_{i}\left|\frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}}\right|^{2}f_{i,0} - \sum_{i=m}^{\infty}\alpha_{i}\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}f_{i,0}$$

$$= \sum_{i=m+1}^{\infty}\alpha_{i}\left[\left|\frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}}\right|^{2} - \left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}\right]f_{i,0}.$$

Thus, $G = \sum_{i=m+1}^{\infty} \gamma_i f_{i,0}$, where $\gamma_i = \alpha_i \left[\left| \frac{\gamma_i^{(l)}}{\gamma_i^{(0)}} \right|^2 - \left| \frac{\gamma_m^{(l)}}{\gamma_m^{(0)}} \right|^2 \right]$. Also since $\gamma_k \neq 0$, so $G \neq 0$. Moreover, o(F) < o(G) implies $F \notin X_G$. Hence X_G is a non-zero reducing subspace properly contained in X which contradicts the minimality of X. Hence F must be B-transparent.

As an immediate corollary of the above result we have the following:

Corollary 3.3.2. The extremal function of a minimal reducing subspace of U_+ in $H^2(B)$ is always B-transparent.

Theorem 3.3.3. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. Let X be a reducing subspace of U_+ in $H^2(B)$. Then X is minimal if and only if $X = X_F$ where F is B-transparent.

Proof. If X is a minimal reducing subspace and G is the associated extremal function, then the reducing subspace $X_G \subseteq X$. The minimality of X gives $X = X_G$.

Note that by Corollary 3.3.2, G is B-transparent.

Conversely, let $X = X_F$, where F is B-transparent. Clearly X_F is a reducing subspace. We claim that X_F is minimal. Let Y be a non zero reducing subspace of U_+ contained in X_F and H be its extremal function, which is transparent. Then $H \in X_F$ and so by Lemma 3.1.14 (i), H is a scalar multiple of F. In particular, $F \in Y$. Thus, $Y = X_F$ which means that X_F must be minimal. \square

Corollary 3.3.4. Every reducing subspace of U_+ in $H^2(B)$, whose extremal function has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. Let X be a reducing subspace of U_+ in $H^2(B)$ whose associated extremal function G has a finite canonical decomposition. By Theorem 3.2.2, G is B-transparent and so X_G is a minimal reducing subspace of U_+ which is contained in X. Hence, the result.

3.4 Conclusion

Theorem 3.4.1. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. If the weight sequence $\{B_n\}_{n \in \mathbb{N}_0}$ is of type I, then $X_{f_{n,0}}$ for $n \in \mathbb{N}_0$ are the only minimal reducing subspaces of U_+ in $H^2(B)$.

Proof. Let X be a minimal reducing subspace of U_+ and G be its extremal function so that $X = X_G$. Since the weight sequence $\{B_n\}_{n \in \mathbb{N}_0}$ is of type I, so the only transparent functions are $f_{n,0}$ for $n \in \mathbb{N}_0$ and their scalar multiples. The result now follows from Theorem 3.3.3.

Theorem 3.4.2. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. If $\{B_n\}_{n \in \mathbb{N}_0}$ is of type II, then U_+ has minimal reducing subspaces other than $X_{f_{n,0}}$, $n \in \mathbb{N}_0$.

Proof. Since the weight sequence $\{B_n\}_{n\in\mathbb{N}_0}$ is of type II, so we can form a transparent function $F = \sum_{i\in\mathbb{N}_0} \alpha_i f_{i,0}$ where more than one α_i 's are non zero. Clearly, X_F is a minimal reducing subspace of U_+ in $H^2(B)$ such that $X_F \neq X_{f_{n,0}}$ for any $n \in \mathbb{N}_0$. \square

Theorem 3.4.3. Let $B = \{B_n\}_{n \in \mathbb{N}_0}$ be a uniformly bounded sequence of operators in \mathcal{T} , and U_+ be the unilateral shift on $H^2(B)$. If $\{B_n\}_{n \in \mathbb{N}_0}$ is of type III, then every reducing subspace of U_+ in $H^2(B)$ must contain a minimal reducing subspace.

Proof. Let X be a reducing subspace of U_+ and G be its extremal function. Since the weight sequence $\{B_n\}_{n\in\mathbb{N}_0}$ is of type III, so G must have a finite canonical decomposition, say $g_1 + g_2 + \cdots + g_n$. By Lemma 3.1.17, for each $1 \leq i \leq n$, $g_i \in X$ and so each X_{g_i} is a minimal reducing subspace of U_+ in $H^2(B)$ contained in X. \square