Chapter 3

Minimal reducing subspaces of the
unilateral shift U, on H?(B)

3.1 Introduction

Our aim in this chapter is to investigate the minimal reducing subspaces of a uni-
lateral shift U, on an operator weighted sequence space H*(B). We consider the
operator weights B = {B, },en, on the separable Hilbert space K as a sequence of
uniformly bounded invertible linear operators in the class 7. We recall that the

unilateral shift U, is defined on H?(B) as

Us(fo f1,---) = (0, fo, f1,--+)

for (fo, f1,...) in H*(B). Clearly, U, is bounded if and only if sup, Hfg;ji” < 0.
In Corollary 2 of Theorem 3 [48], Shields has shown that U, on H?*(j3) is irre-
ducible. Here, § denotes a sequence of positive numbers {3, },en, with Sy = 1. In
the case of operator shifts, the reducing subspaces of U, on H*(B) has been deter-
mined under specific assumptions on the weight sequence {B,,}. In [17], the weights
{B,} are assumed to be commuting normal operators; in [50] it is assumed that
dim K = N < oo and the weights {B,,} are positive diagonal with respect to a fixed

basis for K; in [20] dim K = X, and {B, } are positive diagonals on K. In all these
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results we observe that B,,’s are always assumed to be mutually commuting. Hence,
in this chapter, we try to drop this assumption and consider the weight sequence

B = {B,}nen, to be in the more general class of operators 7.

As we are considering the operator weighted sequence space H?(B), where the uni-
formly bounded weight sequence B = {B,,},en, is in T, so for each n € Ny there
(n)

exists a unique bijective map v, on Ny such that Bhe; = ;" ey, (), where 73(»”) de-

notes the unique non zero entry occurring in the j** column of the matrix of B,.

Theorem 3.1.1. For i,j € Ny, let f;; (or x'y’) € H*(B) be the vector that has
e; as the jth entry and zero as all other entries. Then, {fi;}ijen, is an orthogonal

basis for H*(B).

Proof. For i,j € Ny, we get || fi; |5=| Bje:i [|*= |%(J)|2.

o o <Bj6i>Bq6P>> lf] =q;
<fmafp,q>B - { 0, if j #q.

Since 1, is a bijective function for each n € Ny, so we get

D@ 47— i —
i dpadn={ 3 7 B wi=r

, otherwise.
ie,
Gofory e PP i i=a, i=p
.3 Jp,q/ B + 0, otherwise.

Let X = (Xo,X1,...) € H*B) such that (X, fi;)p = 0 for all 4,5 € Ny. Also,
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Xo =D en, MWweps Where {Ap}pen, is a sequence of scalars. Thus for each i € Ny,

(X, fio)p =0

:><BQXO, Boe,-> =0

= Z )\p<B()6p, B()6Z'> =0
p€No

:>)\Z||B()€Z||2 =0

Therefore, Xq = 0. Similarly, X; = 0, X5 = 0 and so on. Thus for all 7,5 € Ny,
(X, fi;)B = 0 implies that X = 0. This implies that {f;;}i jen, is an orthogonal
basis for H%(B). O

On the orthogonal basis { f; ; }: jen,, the unilateral shift U, acts as Uy f; ; = f; j11, or

equivalently U, (z'y?) = z'y’*! for each 7,7 € Ny. Let B = { B, }nen, be a uniformly

bounded sequence of operators in 7 , and for each n € Ny let 7](-") denote the unique

non zero entry occurring in the jth column of the matrix of B,,. On the basis of
(n)

these scalars 7,77, we classify the weights into three classes: types I, IT and IIL.

Definition 3.1.2. The weight sequence {B,} is said to be of type I if for each pair
of distinct non negative integers m and n there exist some positive integer k such
that

W owm
Otherwise, it is said to be of type II. Thus {B,} is of type II if there exist distinct
non negative integers m and n such that

(k) (k)

Jm__ O

0 0
SO

for every positive integer k.
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Definition 3.1.3. Let B = {Bn}neNO be a uniformly bounded sequence of operators
in 7 , and for each n € Ny let fy] ) denote the unique non zero entry occurring in
the jth column of the matrix of B,. Two non negative integers m and n are said to

be B-related (denoted by m ~% n) if for every positive integer k, we have

k
NO)

Clearly, ~? is an equivalence relation on the set Nj.

Definition 3.1.4. Let B = { B, }sen, be a uniformly bounded sequence of operators
in 7. A weight sequence {B,} of type II is said to be of type III if ~ partitions Ny

into a finite number of equivalence classes.

Remark 3.1.5. The above definitions are motivated by similar definitions given in
[50]. In fact for dim K = N < oo the two definitions refer to the same idea. In [50]
the minimal reducing subspaces of M~ (N > 1) on the space H?(f3) is determined,
where 8 = {fo, b1, ..} is a sequence of positive numbers. If in the present study,

we consider dim K = N, and for each n € Ny if we define

B, —dmg(\/ﬁn VBNt - - \/ n+1N1

then MY on H?(3) is unitarily equivalent to the unilateral shift U, on H?(B).

Definition 3.1.6. Let F =, «;fio be a non-zero vector in H%(B). The order

1€Np

of F, denoted as o(F'), is defined as the smallest non negative integer m such that

am # 0.

Definition 3.1.7. If f = >, ae; is a non-zero vector in K, then order of f,

denoted as o(f), is defined to be the smallest non negative integer m such that

am # 0.

Definition 3.1.8. Let Y be a non-zero non-empty subset of K. Then order of Y,

denoted as o(Y"), is defined to be the non negative integer m satisfying the following
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conditions:
(i) o(f) > m for all f €Y, and

(i) there exists f € Y such that o(f) = m.

Definition 3.1.9. Let X be a subset of H*(B) and Lx := {fo : (fo, f1,-..) € X}.
If Ly is a non-zero subset of K, then order of X, denoted as o(X), is defined as
O(ﬁx).

Definition 3.1.10. Let B = {B, },en, be a uniformly bounded sequence of opera-
torsin 7. A linear expression F' = ) ien, Qifio in H 2(B) is said to be B-transparent

if for every pair of non-zero scalars «; and a;, we have i ~7 j.

Definition 3.1.11. Let B = {B, },en, be a uniformly bounded sequence of opera-
tors in 7, and U, be the unilateral shift on H?*(B). Let S be the vector space of all
finite linear combinations of finite products of U, and U}. For non-zero I € H?*(B),
let SF := {TF : T € 8}. Then the closure of SF in H?*(B) is a reducing subspace
of Uy, denoted by Xp. Clearly Xp is the smallest reducing subspace of H?(B)

containing F'.

Lemma 3.1.12. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and for each n € Ny let 7](-") denote the unique non zero entry occurring in
the j" column of the matrixz of B,. If U, is the unilateral shift on H?(B), then for

1, € Ny , the following will hold:

0 0 if 7 =0,
i) Uy fi,‘ = () o
I ﬁ fig—r if3>0.
. L . (G+k) 9
(ii) For any non negative integer k, (UX)*UX f; ; = ‘%‘ fij-

Proof. (i) For i € Ny, we have (U, X, f;o) = 0 for all X € H?*(B). This implies
Ul fio=0.
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Next we consider X = (zq,x1,...) in H*(B), where z; = Y, aiVe, for each
7 € Ng. Then for 7 > 0, we have

_1 1)
(X, fus) = N (Bjzj1, Bjes) = o V).
N

i

()

Choosing \; ; = ||, we get
i
Aij
(X, Aijfij—1) = 57557 (Bjm1j-1, Bj€:)
|%‘ ‘
Aij (1) 5
= ——2=a; || Bj_iei
—1 J
™)

= a7,

Therefore, <U+X, fi,j> = <X, >\i,jfi,j—1>7 and so U—T—fi,j = >\i,jfi,j—1 fOI'j > 0.

(G+1)

(5+1)
(i) As UUL fi; = “’;T‘Uifmﬂ ‘ pon ‘ fij» so the result holds for k = 1.

(G+n) |2
Suppose, (U3)"UY f;; = ’V;T‘ fij holds for n = k. We will show that it also holds

forn=Fk+ 1.
k+177k+1 V(JH) korrk
(UJ*F) - U++ fu = ;() Ui(Ui U+>fz’,j+1
B %(]Jrl) %(]-i-l—i-k -
- () (+1) fz ,J+1
Vi i
B %(g+1) %(g+1+k) 9 i(g+1) f |
= - iy
%( ) 7(J+ )
B %(]-i-l—i-k)‘ f |
- %’j v
Thus, the results holds for all £ € Ny by induction. !

Lemma 3.1.13. If U, is the unilateral shift on H*(B), then for any non negative

(J+k) j
& } 'y’

integer k, (UR)* Uk (x'y7) =

(j+1)

Proof. As UrU,(2'y?) = Ut (a'y’ ™) = |1 oN ‘ x'y!, so the result holds for k = 1.
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Suppose, (UL)"UL(z'y’) =

(j+n) o
%J(j) }2:)3’y] holds for all n = k. We will show that it
i

also holds for n = k + 1.

(U)MUE ') =UL(UF U (')

fy(]+1+k)
* 7 +1
=Us (G+1) ‘ v y]
_ R g Y

‘ j+1 ‘ ‘ (] ‘

%(]-i-l—i-k)

=| [Faty
Thus, the results holds for all £ € Ny by induction. !

Lemma 3.1.14. Let B = {B, }neNO be a uniformly bounded sequence of operators
in T, and for each n € Ny let 7] ) denote the unique non zero entry occurring in the

§™" column of the matriz of B,,. Let F =Y. aifio be B-transparent in H?*(B)

iENo

with o(F) = m. If for each k € No, F, := ‘ LS

> ien, i fik, then the following will
hold:
. (k)12
(i) (UE)ULF = |25 ]°F.
8 . 5 0, if k=0;
i) U, F, = = 2
(1) Uy Fip = Fepy and ULy { ) | Ry, it k>0,
(iii) Xp is the closed linear span of {Fk ke Np}.

Proof. Since o(F) = m, so a; = 0 for all i < m. Let, A ={i > m: a; # 0}. Then

(*) (k)
4 P
(0) = I for each positive integer k.

PY’UL

(i) For i € A and positive integer k, by Lemma 3.1.12 (ii) we have

(UL)UL fip =

k k

ﬁrf.o_ ’ﬂrf.o
0 L0 0 5,0~
(0) %(n)
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Thus, we have

ieA
(k) o
_ Jm
- Z Q; (0) ’ fl 0
ieA m
(k) o
Tm ’
— | g
0
=
(J+ )
(ii) For i,j € No, Uy fi; = ‘ geon fij+1, and so

UL = ‘%‘ > aUit

Im T en
(k) (k+1)
77, 7
= (0)’ g% (k) fi,k+1
= 7 72
(k+1)
‘ 'Vm ’ Z azfz k+1
€A
= Fk+1-
As U fio = 0, so we have UJ*FFO = 0.
For k > 0,
Ut Fy = ) S Ul fin
m 1€Np
(k) (k)
TYm Vi
= ’ fzk 1
NO) _(k=1)
f}/m ZENO ’y’l
(k) 9
Tm -
= || e

(i) By (i), each F; € Xp and so the closed linear span{F}, : k € Ny} is a non-zero
reducing subspace of U, contained in Xp. Thus, by minimality of Xg, we have

Xr = closed linear span{ﬁk k€ Ng}. O

Lemma 3.1.15. If F' = f(z) in H*(B) is transparent, then Xp = Span{Fy* : k €
No}.
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Proof. Let X = Span{Fy* : k € No} and let F' =", a;z;. Then

U_’iF = Uf(z ;L) = Z ;% = Zaiziyk = Fy*.

1€Np 1€Np 1€Ng

Hence, Fy* = S¥F € Xp for all k € Ny. So F € X C Xp. We claim that X is
reducing for S.

For any G € X, SG = Gy and X C H?*(B). So X is invariant under U,. Also
Ui(z') =0 for all i > 0 and ' = f(z). So Ui(F) = 0. For any positive integer F,
Us(Fy*) = UiU4(Fy©) where ¢ = k — 1 > 0. If the order of zero of F' at the origin

is m, then since F' is transparent, so by Lemma 3.1.14 we have

UL (Fy") =ULUL(Fy°)

UUL(Y ')
1€Np
= Z aiU_”;UJr:ciyc
1€Np
(c+1
_ Z o —— 5 7 c
i€Np a;
NG
:Z il ’( ‘ 'yt e X.
i€Ng az

Thus for any G € X, UG € X. Therefore, X is reducing under U,. Since Xp is

the smallest reducing subspace of U, containing F', so we must have X = Xp. O

Definition 3.1.16. Let B = { B, },en, be a uniformly bounded sequence of opera-
tors in T, and U, be the unilateral shift on H?(B). Let Q1,s,... be the disjoint
equivalence classes of Ny under the relation ~?. Consider F' = ZieNO a;fio in
H?(B). For each k = 1,2,..., let q; := Zz’eﬂk @;g;0. Dropping those g, which are
zero, the remaining ¢x’s are arranged as fi, fo,... in such a way that for i < j we
have o(f;) < o(f;). The resulting decomposition F' = f; + fo + ... is called the
canonical decomposition of F. Clearly each f; is B-transparent in H?(B).

If there exists a finite positive integer n such that F' = f1 + fo + -+ f,, then F' in

the above case is said to have a finite canonical decomposition.
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Lemma 3.1.17. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and for each n € Ny let %(-n) denote the unique non zero entry occurring in the
§™" column of the matriz of B,,. Let U, be the unilateral shift on H*(B), and X be a
reducing subspace of Uy in H*(B). If F =3,y aifio in X has a finite canonical

decomposition F' = f1 + fo+ -+ f,, then each f; is in Xp.

Proof. Let o(f;) = m; so that my < my < --- < m, and no two of them are B-

related. For 2 < i < n, as m; =% m;, and so there exists a positive integer k; such

(k;) (k;)
that 121 7’?—0) Let k; be the smallest positive integer having this property.

0
v v

(k3)
Let ¢; := F and for 2 <i <mn, ¢; :== U%Zﬁ)
S

P (U_]ﬁi)*U_]ﬁi]qi_l. Then ¢; € X for all

(ki) |2 (k) 12

1<i<n. Also g, = (B2...0,) f1, where B; = || — [Z2| for 2 < i < n. As
™ Ymj

each ; # 0, so g, € Xp implies that f; € Xp.

In a similar way it can be shown that f,,..., f, are also in Xp. !

3.2 An Extremal Problem

Theorem 3.2.1. Let B = {B,, }nen, be a uniformly bounded sequence of operators in
T, and Uy be the unilateral shift on H*(B). Let X be a non zero reducing subspace
of Uy in H*(B) with o(X) = m. Then the extremal problem

sup{Re ap : F = (fo, fr... ) €X, |IFI <L, fo=) e}

i€Ng

has a unique solution G =}, .\ aigio € X with |G| =1 and o(G) = m.

Proof. For F' = (fo, f1,...) € X, we define ¢ : X — C as ¢(F) = «,, where
fo =D ien, Qi€i- Since o(X) = m, so ¢ is a non zero bounded linear functional on

X. From [8], it follows that the extremal problem has a unique solution G in X
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such that |G|l =1, ¢(G) > 0 and

p(G) = sup{Re o(F) : F € X, ||[F[| < 1}

=sup{Re a,, : F' = (fo, fr,.-.) € X, |[F]| <1, fozz:aiei.}

i€No

We claim that G has the form G = ), @ifio with o(G) = m.

If F € X and ||F|| < 1, then by the maximality of G we must have Rep(F') < ¢(G).
Now as Rep(G + SF) = ¢(G) for all F' € X, so we must have |G + SF| > 1.
This implies that G L SF for all F € X. In particular (G,U,U;G) = 0 which
implies that UjG = 0. Thus G is of the form G = ), .\ aifio. Also ¢(G) > 0 and

o(X) = m together imply o(G) = m. O
Note: The function GG in Theorem 3.2.1 will be called the extremal function of X.

Theorem 3.2.2. Let B = {B, }nen, be a uniformly bounded sequence of operators
inT, and U, be the unilateral shift on H*(B). If the extremal function of a non-zero
reducing subspace of U, in H?*(B) has a finite canonical decomposition, then it must

be B-transparent.

Proof. Let X be a non-zero reducing subspace of U, in H?(B) and G = ZieNO a; fio
be its extremal function with o(G) = m. Let G = g; + g2 + - - - + g, be the finite
canonical decomposition of G. Each g; is B-transparent and also by Lemma 3.1.17,
each of them is in X¢. Clearly o(g1) = m and ||g1]| < ||G|| = 1. So by the extremality

of G, we must have G = g;. Thus G is B-transparent. O

3.3 Minimal reducing subspaces

Theorem 3.3.1. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and for each n € Ny let 73(»") denote the unique non zero entry occurring in the

g™ column of the matriz of B,,. Also let U, be the unilateral shift on H*(B). If X
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is a minimal reducing subspace of U, in H*(B) and F = > ien, @ifio is in X, then

F'is B-transparent.

Proof. Let o(F') = m, and if possible, F' is not B-transparent. So we must have a

positive integer k& > m such that oy # 0 and k ~” m. This means that there exists

)
a positive integer [ such that 'y(o) 7é 'Y:

We define G := (UL )*ULF

%(3) F Clearly, GG is in X, and we get
l l %(n)

G =(UL)'ULF — (0)} F

Tm

:(Ufk)*U—li-(Z aisz ‘f)/m Zazfzo

00 00 1)
sz Z%‘%‘Zfi,o

=2

o o o
Vi Ym
= > all-Gl - 15 T
i=m-+1 z m
Thus, G = > 2, .1 Vifio, where v; = [ V}(O)) — ‘ (((l)))‘ } Also since v, # 0, so

G # 0. Moreover, o(F') < o(G) implies F' ¢ Xg. Hence X¢ is a non-zero reducing
subspace properly contained in X which contradicts the minimality of X. Hence F'

must be B-transparent. O
As an immediate corollary of the above result we have the following :

Corollary 3.3.2. The extremal function of a minimal reducing subspace of U, in

H?(B) is always B-transparent.

Theorem 3.3.3. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and Uy be the unilateral shift on H*(B). Let X be a reducing subspace of U,

in H*(B). Then X is minimal if and only if X = Xp where F is B-transparent.

Proof. If X is a minimal reducing subspace and G is the associated extremal func-

tion, then the reducing subspace X C X. The minimality of X gives X = X .
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Note that by Corollary 3.3.2, G is B-transparent.

Conversely, let X = Xp, where F'is B-transparent. Clearly Xy is a reducing sub-
space. We claim that Xp is minimal. Let Y be a non zero reducing subspace of
U, contained in Xr and H be its extremal function, which is transparent. Then
H € Xp and so by Lemma 3.1.14 (i), H is a scalar multiple of F. In particular,

F €Y. Thus, Y = X which means that Xy must be minimal. OJ

Corollary 3.3.4. Every reducing subspace of U, in H*(B), whose extremal function

has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. Let X be a reducing subspace of U, in H?(B) whose associated extremal
function G has a finite canonical decomposition. By Theorem 3.2.2, G is B-transparent
and so X is a minimal reducing subspace of U, which is contained in X. Hence,

the result. m

3.4 Conclusion

Theorem 3.4.1. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and Uy be the unilateral shift on H*(B). If the weight sequence { By }nen, 1S
of type I, then Xy, , for n € Ny are the only minimal reducing subspaces of U, in

H2(B).

Proof. Let X be a minimal reducing subspace of U, and G be its extremal function
so that X = Xg. Since the weight sequence {B,}.en, is of type I, so the only
transparent functions are f,, o for n € Ny and their scalar multiples. The result now

follows from Theorem 3.3.3. O

Theorem 3.4.2. Let B = {B, }nen, be a uniformly bounded sequence of operators
in T, and U, be the unilateral shift on H*(B). If {Byn}nen, is of type II, then U,

has minimal reducing subspaces other than Xy, ;, n € Ny.
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Proof. Since the weight sequence { B, },en, is of type 11, so we can form a transparent

uncti = «; f; 0 wher r ;s ar Zero. r Jalt
function F .0 where more than one o;’s are non zero. Clearly, Xr is a

i€Np

minimal reducing subspace of Uy in H?(B) such that Xp # X, , forany n € No. O

Theorem 3.4.3. Let B = { B, }nen, be a uniformly bounded sequence of operators
in T, and Uy be the unilateral shift on H*(B). If { B, }nen, s of type III, then every

reducing subspace of U, in H?(B) must contain a minimal reducing subspace.

Proof. Let X be a reducing subspace of U, and G be its extremal function. Since
the weight sequence {B, }nen, is of type III, so G must have a finite canonical
decomposition, say g1 + g2 + - - - + ¢g,. By Lemma 3.1.17, foreach 1 << mn, g, € X

and so each X, is a minimal reducing subspace of U, in H?*(B) contained in X. [
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