
Chapter 3

Minimal reducing subspaces of the
unilateral shift U+ on H2(B)

3.1 Introduction

Our aim in this chapter is to investigate the minimal reducing subspaces of a uni-

lateral shift U+ on an operator weighted sequence space H2(B). We consider the

operator weights B = {Bn}n∈N0 on the separable Hilbert space K as a sequence of

uniformly bounded invertible linear operators in the class T . We recall that the

unilateral shift U+ is defined on H2(B) as

U+(f0, f1, . . . ) = (0, f0, f1, . . . )

for (f0, f1, . . . ) in H
2(B). Clearly, U+ is bounded if and only if supi,j

‖Bj+1ei‖

‖Bjei‖
<∞.

In Corollary 2 of Theorem 3 [48], Shields has shown that U+ on H2(β) is irre-

ducible. Here, β denotes a sequence of positive numbers {βn}n∈N0 with β0 = 1. In

the case of operator shifts, the reducing subspaces of U+ on H2(B) has been deter-

mined under specific assumptions on the weight sequence {Bn}. In [17], the weights

{Bn} are assumed to be commuting normal operators; in [50] it is assumed that

dimK = N <∞ and the weights {Bn} are positive diagonal with respect to a fixed

basis for K; in [20] dimK = ℵ0 and {Bn} are positive diagonals on K. In all these
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results we observe that Bn’s are always assumed to be mutually commuting. Hence,

in this chapter, we try to drop this assumption and consider the weight sequence

B = {Bn}n∈N0 to be in the more general class of operators T .

As we are considering the operator weighted sequence space H2(B), where the uni-

formly bounded weight sequence B = {Bn}n∈N0 is in T , so for each n ∈ N0 there

exists a unique bijective map ψn on N0 such that Bnej = γ
(n)
j eψn(j), where γ

(n)
j de-

notes the unique non zero entry occurring in the jth column of the matrix of Bn.

Theorem 3.1.1. For i, j ∈ N0, let fi,j (or xiyj) ∈ H2(B) be the vector that has

ei as the jth entry and zero as all other entries. Then, {fi,j}i,j∈N0 is an orthogonal

basis for H2(B).

Proof. For i, j ∈ N0, we get ‖ fi,j ‖
2
B=‖ Bjei ‖

2= |γ
(j)
i |2.

〈fi,j, fp,q〉B =

{

〈Bjei, Bqep〉, if j = q;
0, if j 6= q.

Since ψn is a bijective function for each n ∈ N0, so we get

〈fi,j, fp,q〉B =

{

γ
(j)
i γ̄

(q)
p , if j = q, i = p;

0, otherwise.

i.e,

〈fi,j, fp,q〉B :=

{

|γ
(j)
i |2, if j = q, i = p;

0, otherwise.

Let X = (X0, X1, . . . ) ∈ H2(B) such that 〈X, fi,j〉B = 0 for all i, j ∈ N0. Also,
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X0 =
∑

p∈N0
λpep, where {λp}p∈N0 is a sequence of scalars. Thus for each i ∈ N0,

〈X, fi,0〉B = 0

⇒〈B0X0, B0ei〉 = 0

⇒
∑

p∈N0

λp〈B0ep, B0ei〉 = 0

⇒λi‖B0ei‖
2 = 0

⇒λi = 0.

Therefore, X0 = 0. Similarly, X1 = 0, X2 = 0 and so on. Thus for all i, j ∈ N0,

〈X, fi,j〉B = 0 implies that X = 0. This implies that {fi,j}i,j∈N0 is an orthogonal

basis for H2(B).

On the orthogonal basis {fi,j}i,j∈N0, the unilateral shift U+ acts as U+fi,j = fi,j+1, or

equivalently U+(x
iyj) = xiyj+1 for each i, j ∈ N0. Let B = {Bn}n∈N0 be a uniformly

bounded sequence of operators in T , and for each n ∈ N0 let γ
(n)
j denote the unique

non zero entry occurring in the jth column of the matrix of Bn. On the basis of

these scalars γ
(n)
j , we classify the weights into three classes: types I, II and III.

Definition 3.1.2. The weight sequence {Bn} is said to be of type I if for each pair

of distinct non negative integers m and n there exist some positive integer k such

that

γ
(k)
m

γ
(0)
m

6=
γ
(k)
n

γ
(0)
n

.

Otherwise, it is said to be of type II. Thus {Bn} is of type II if there exist distinct

non negative integers m and n such that

γ
(k)
m

γ
(0)
m

=
γ
(k)
n

γ
(0)
n

for every positive integer k.
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Definition 3.1.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and for each n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in

the jth column of the matrix of Bn. Two non negative integers m and n are said to

be B-related (denoted by m ∼B n) if for every positive integer k, we have

γ
(k)
m

γ
(0)
m

=
γ
(k)
n

γ
(0)
n

.

Clearly, ∼B is an equivalence relation on the set N0.

Definition 3.1.4. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T . A weight sequence {Bn} of type II is said to be of type III if ∼B partitions N0

into a finite number of equivalence classes.

Remark 3.1.5. The above definitions are motivated by similar definitions given in

[50]. In fact for dimK = N <∞ the two definitions refer to the same idea. In [50]

the minimal reducing subspaces of MN
z (N > 1) on the space H2(β) is determined,

where β = {β0, β1, . . . } is a sequence of positive numbers. If in the present study,

we consider dimK = N , and for each n ∈ N0 if we define

Bn = diag
(
√

βnN ,
√

βnN+1, . . . ,
√

β(n+1)N−1

)

,

then MN
z on H2(β) is unitarily equivalent to the unilateral shift U+ on H2(B).

Definition 3.1.6. Let F =
∑

i∈N0
αifi,0 be a non-zero vector in H2(B). The order

of F , denoted as o(F ), is defined as the smallest non negative integer m such that

αm 6= 0.

Definition 3.1.7. If f =
∑

i∈N0
αiei is a non-zero vector in K, then order of f ,

denoted as o(f), is defined to be the smallest non negative integer m such that

αm 6= 0.

Definition 3.1.8. Let Y be a non-zero non-empty subset of K. Then order of Y ,

denoted as o(Y ), is defined to be the non negative integer m satisfying the following
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conditions:

(i) o(f) ≥ m for all f ∈ Y , and

(ii) there exists f̃ ∈ Y such that o(f̃) = m.

Definition 3.1.9. Let X be a subset of H2(B) and LX := {f0 : (f0, f1, . . . ) ∈ X}.

If LX is a non-zero subset of K, then order of X , denoted as o(X), is defined as

o(LX).

Definition 3.1.10. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-

tors in T . A linear expression F =
∑

i∈N0
αifi,0 in H

2(B) is said to be B-transparent

if for every pair of non-zero scalars αi and αj , we have i ∼B j.

Definition 3.1.11. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-

tors in T , and U+ be the unilateral shift on H2(B). Let S be the vector space of all

finite linear combinations of finite products of U+ and U∗
+. For non-zero F ∈ H2(B),

let SF := {TF : T ∈ S}. Then the closure of SF in H2(B) is a reducing subspace

of U+, denoted by XF . Clearly XF is the smallest reducing subspace of H2(B)

containing F .

Lemma 3.1.12. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and for each n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in

the jth column of the matrix of Bn. If U+ is the unilateral shift on H2(B), then for

i, j ∈ N0 , the following will hold:

(i) U∗
+fi,j =







0 if j = 0,
∣

∣

∣

γ
(j)
i

γ
(j−1)
i

∣

∣

∣
fi,j−1 if j > 0.

(ii) For any non negative integer k, (Uk
+)

∗Uk
+fi,j =

∣

∣

γ
(j+k)
i

γ
(j)
i

∣

∣

2
fi,j.

Proof. (i) For i ∈ N0, we have 〈U+X, fi,0〉 = 0 for all X ∈ H2(B). This implies

U∗
+fi,0 = 0.
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Next we consider X = (x0, x1, . . . ) in H2(B), where xj =
∑

t∈N0
α
(j)
t et for each

j ∈ N0. Then for j > 0, we have

〈U+X, fi,j〉 =
1

|γ
(j)
i |

〈Bjxj−1, Bjei〉 = α
(j−1)
i |γ

(j)
i |.

Choosing λi,j =
∣

∣

∣

γ
(j)
i

γ
(j−1)
i

∣

∣

∣
, we get

〈X, λi,jfi,j−1〉 =
λi,j

|γ
(j−1)
i |

〈Bj−1xj−1, Bj−1ei〉

=
λi,j

|γ
(j−1)
i |

α
(j−1)
i ‖Bj−1ei‖

2

= α
(j−1)
i |γ

(j)
i |.

Therefore, 〈U+X, fi,j〉 = 〈X, λi,jfi,j−1〉, and so U∗
+fi,j = λi,jfi,j−1 for j > 0.

(ii) As U∗
+U+fi,j =

∣

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣
U∗
+fi,j+1 =

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

2
fi,j, so the result holds for k = 1.

Suppose, (U∗
+)

nUn
+fi,j =

∣

∣

∣

γ
(j+n)
i

γ
(j)
i

∣

∣

∣

2

fi,j holds for n = k. We will show that it also holds

for n = k + 1.

(U∗
+)

k+1Uk+1
+ fi,j =

∣

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣
U∗
+(U

∗k

+ Uk
+)fi,j+1

=
∣

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣

∣

∣

∣

γ
(j+1+k)
i

γ
(j+1)
i

∣

∣

∣

2

U∗
+fi,j+1

=
∣

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣

∣

∣

∣

γ
(j+1+k)
i

γ
(j+1)
i

∣

∣

∣

2∣
∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣
fi,j

=
∣

∣

∣

γ
(j+1+k)
i

γ
(j)
i

∣

∣

∣

2

fi,j.

Thus, the results holds for all k ∈ N0 by induction.

Lemma 3.1.13. If U+ is the unilateral shift on H2(B), then for any non negative

integer k, (Uk
+)

∗Uk
+(x

iyj) =
∣

∣

γ
(j+k)
i

γ
(j)
i

∣

∣

2
xiyj.

Proof. As U∗
+U+(x

iyj) = U∗
+(x

iyj+1) =
∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

2
xiyj, so the result holds for k = 1.
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Suppose, (U∗
+)

nUn
+(x

iyj) =
∣

∣

γ
(j+n)
i

γ
(j)
i

∣

∣

2
xiyj holds for all n = k. We will show that it

also holds for n = k + 1.

(U∗
+)

k+1Uk+1
+ (xiyj) =U∗

+(U
∗k

+ Uk
+)(x

iyj+1)

=U∗
+

∣

∣

γ
(j+1+k)
i

γ
(j+1)
i

∣

∣

2
xiyj+1

=
∣

∣

γ
(j+1+k)
i

γ
(j+1)
i

∣

∣

2∣
∣

γ
(j+1)
i

γ
(j)
i

∣

∣

2
xiyj

=
∣

∣

γ
(j+1+k)
i

γ
(j)
i

∣

∣

2
xiyj.

Thus, the results holds for all k ∈ N0 by induction.

Lemma 3.1.14. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and for each n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in the

jth column of the matrix of Bn. Let F =
∑

i∈N0
αifi,0 be B-transparent in H2(B)

with o(F ) = m. If for each k ∈ N0, F̃k :=
∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

∑

i∈N0
αi fi,k, then the following will

hold:

(i) (Uk
+)

∗Uk
+F =

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

2
F .

(ii) U+F̃k = F̃k+1 and U∗
+F̃k =

{

0, if k = 0;
∣

∣

∣

γ
(k)
m

γ
(k−1)
m

∣

∣

∣

2

F̃k−1, if k > 0.

(iii) XF is the closed linear span of {F̃k : k ∈ N0}.

Proof. Since o(F ) = m, so αi = 0 for all i < m. Let, Λ = {i ≥ m : αi 6= 0}. Then

m ∈ Λ, and for i ∈ Λ,
γ
(k)
i

γ
(0)
i

= γ
(k)
m

γ
(0)
m

for each positive integer k.

(i) For i ∈ Λ and positive integer k, by Lemma 3.1.12 (ii) we have

(Uk
+)

∗Uk
+fi,0 =

∣

∣

∣

γ
(k)
i

γ
(0)
i

∣

∣

∣

2

fi,0 =
∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

2

fi,0.
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Thus, we have

(Uk
+)

∗Uk
+F = (Uk

+)
∗Uk

+(
∑

i∈Λ

αifi,0)

=
∑

i∈Λ

αi

∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

2

fi,0

=
∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

2

F.

(ii) For i, j ∈ N0, U+fi,j =
∣

∣

∣

γ
(j+1)
i

γ
(j)
i

∣

∣

∣
fi,j+1, and so

U+F̃k =
∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

∑

i∈Λ

αi U+fi,k

=
∑

i∈Λ

αi

∣

∣

∣

γ
(k)
i

γ
(0)
i

∣

∣

∣

∣

∣

∣

γ
(k+1)
i

γ
(k)
i

∣

∣

∣
fi,k+1

=
∣

∣

∣

γ
(k+1)
m

γ
(0)
m

∣

∣

∣

∑

i∈Λ

αifi,k+1

= F̃k+1.

As U∗
+fi,0 = 0, so we have U∗

+F̃0 = 0.

For k > 0,

U∗
+F̃k =

∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

∑

i∈N0

αi U
∗
+fi,k

=
∣

∣

∣

γ
(k)
m

γ
(0)
m

∣

∣

∣

∑

i∈N0

αi

∣

∣

∣

γ
(k)
i

γ
(k−1)
i

∣

∣

∣
fi,k−1

=
∣

∣

∣

γ
(k)
m

γ
(k−1)
m

∣

∣

∣

2

F̃k−1.

(iii) By (ii), each F̃k ∈ XF and so the closed linear span{F̃k : k ∈ N0} is a non-zero

reducing subspace of U+ contained in XF . Thus, by minimality of XF , we have

XF = closed linear span{F̃k : k ∈ N0}.

Lemma 3.1.15. If F = f(x) in H2(B) is transparent, then XF = Span{Fyk : k ∈

N0}.
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Proof. Let X = Span{Fyk : k ∈ N0} and let F =
∑

i∈N0
αixi. Then

Uk
+F = Uk

+(
∑

i∈N0

αixi) =
∑

i∈N0

αiS
kxi =

∑

i∈N0

αix
iyk = Fyk.

Hence, Fyk = SkF ∈ XF for all k ∈ N0. So F ∈ X ⊆ XF . We claim that X is

reducing for S.

For any G ∈ X , SG = Gy and X ⊆ H2(B). So X is invariant under U+. Also

U∗
+(x

i) = 0 for all i ≥ 0 and F = f(x). So U∗
+(F ) = 0. For any positive integer k,

U∗
+(Fy

k) = U∗
+U+(Fy

c) where c = k − 1 ≥ 0. If the order of zero of F at the origin

is m, then since F is transparent, so by Lemma 3.1.14 we have

U∗
+(Fy

k) =U∗
+U+(Fy

c)

=U∗
+U+(

∑

i∈N0

αix
iyc)

=
∑

i∈N0

αiU
∗
+U+x

iyc

=
∑

i∈N0

αi
∣

∣

α
(c+1)
i

α
(c)
i

∣

∣

2
xiyc

=
∑

i∈N0

αi
∣

∣

α
(k)
i

α
(c)
i

∣

∣

2
xiyc ∈ X.

Thus for any G ∈ X, U∗
+G ∈ X . Therefore, X is reducing under U+. Since XF is

the smallest reducing subspace of U+ containing F , so we must have X = XF .

Definition 3.1.16. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-

tors in T , and U+ be the unilateral shift on H2(B). Let Ω1,Ω2, . . . be the disjoint

equivalence classes of N0 under the relation ∼B. Consider F =
∑

i∈N0
αifi,0 in

H2(B). For each k = 1, 2, . . . , let qk :=
∑

i∈Ωk
αigi,0. Dropping those qk which are

zero, the remaining qk’s are arranged as f1, f2, . . . in such a way that for i < j we

have o(fi) < o(fj). The resulting decomposition F = f1 + f2 + . . . is called the

canonical decomposition of F . Clearly each fi is B-transparent in H2(B).

If there exists a finite positive integer n such that F = f1 + f2 + · · ·+ fn, then F in

the above case is said to have a finite canonical decomposition.
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Lemma 3.1.17. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and for each n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in the

jth column of the matrix of Bn. Let U+ be the unilateral shift on H2(B), and X be a

reducing subspace of U+ in H2(B). If F =
∑

i∈N0
αifi,0 in X has a finite canonical

decomposition F = f1 + f2 + · · ·+ fn, then each fi is in XF .

Proof. Let o(fi) = mi so that m1 < m2 < · · · < mn and no two of them are B-

related. For 2 ≤ i ≤ n, as m1 ≁B mi, and so there exists a positive integer ki such

that
γ
(ki)
m1

γ
(0)
m1

6=
γ
(ki)
mi

γ
(0)
mi

. Let ki be the smallest positive integer having this property.

Let q1 := F and for 2 ≤ i ≤ n, qi :=
[

∣

∣

γ
(ki)
mi

γ
(0)
mi

∣

∣

2
− (Uki

+ )∗Uki
+

]

qi−1. Then qi ∈ XF for all

1 ≤ i ≤ n. Also qn = (β2 . . . βn) f1, where βi =
∣

∣

∣

γ
(ki)
mi

γ
(0)
mi

∣

∣

∣

2

−
∣

∣

∣

γ
(ki)
m1

γ
(0)
m1

∣

∣

∣

2

for 2 ≤ i ≤ n. As

each βi 6= 0, so qn ∈ XF implies that f1 ∈ XF .

In a similar way it can be shown that f2, . . . , fn are also in XF .

3.2 An Extremal Problem

Theorem 3.2.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators in

T , and U+ be the unilateral shift on H2(B). Let X be a non zero reducing subspace

of U+ in H2(B) with o(X) = m. Then the extremal problem

sup{Re αm : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, f0 =
∑

i∈N0

αiei.}

has a unique solution G =
∑

i∈N0
αigi,0 ∈ X with ‖G‖ = 1 and o(G) = m.

Proof. For F = (f0, f1, . . . ) ∈ X , we define ϕ : X → C as ϕ(F ) = αm where

f0 =
∑

i∈N0
αiei. Since o(X) = m, so ϕ is a non zero bounded linear functional on

X . From [8], it follows that the extremal problem has a unique solution G in X
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such that ‖G‖ = 1, ϕ(G) > 0 and

ϕ(G) = sup{Re ϕ(F ) : F ∈ X, ‖F‖ ≤ 1}

= sup{Re αm : F = (f0, f1, . . . ) ∈ X, ‖F‖ ≤ 1, f0 =
∑

i∈N0

αiei.}

We claim that G has the form G =
∑

i∈N0
αifi,0 with o(G) = m.

If F ∈ X and ‖F‖ < 1, then by the maximality of G we must have Reϕ(F ) < ϕ(G).

Now as Reϕ(G + SF ) = ϕ(G) for all F ∈ X , so we must have ‖G + SF‖ ≥ 1.

This implies that G ⊥ SF for all F ∈ X . In particular 〈G,U+U
∗
+G〉 = 0 which

implies that U∗
+G = 0. Thus G is of the form G =

∑

i∈N0
αifi,0. Also ϕ(G) > 0 and

o(X) = m together imply o(G) = m.

Note: The function G in Theorem 3.2.1 will be called the extremal function of X .

Theorem 3.2.2. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and U+ be the unilateral shift on H2(B). If the extremal function of a non-zero

reducing subspace of U+ in H2(B) has a finite canonical decomposition, then it must

be B-transparent.

Proof. Let X be a non-zero reducing subspace of U+ in H2(B) and G =
∑

i∈N0
αifi,0

be its extremal function with o(G) = m. Let G = g1 + g2 + · · · + gn be the finite

canonical decomposition of G. Each gi is B-transparent and also by Lemma 3.1.17,

each of them is inXG. Clearly o(g1) = m and ‖g1‖ ≤ ‖G‖ = 1. So by the extremality

of G, we must have G = g1. Thus G is B-transparent.

3.3 Minimal reducing subspaces

Theorem 3.3.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and for each n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in the

jth column of the matrix of Bn. Also let U+ be the unilateral shift on H2(B). If X
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is a minimal reducing subspace of U+ in H2(B) and F =
∑

i∈N0
αifi,0 is in X, then

F is B-transparent.

Proof. Let o(F ) = m, and if possible, F is not B-transparent. So we must have a

positive integer k > m such that αk 6= 0 and k ≁B m. This means that there exists

a positive integer l such that
γ
(l)
k

γ
(0)
k

6= γ
(l)
m

γ
(0)
m

.

We define G := (U l
+)

∗U l
+F −

∣

∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

∣

2

F . Clearly, G is in X , and we get

G =(U l
+)

∗U l
+F −

∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

2
F

=(U l
+)

∗U l
+(

∞
∑

i=m

αifi,0)−
∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

2
(

∞
∑

i=m

αifi,0)

=
∞
∑

i=m

αi
∣

∣

γ
(l)
i

γ
(0)
i

∣

∣

2
fi,0 −

∞
∑

i=m

αi
∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

2
fi,0

=

∞
∑

i=m+1

αi
[∣

∣

γ
(l)
i

γ
(0)
i

∣

∣

2
−

∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

2]
fi,0.

Thus, G =
∑∞

i=m+1 γifi,0, where γi = αi
[∣

∣

γ
(l)
i

γ
(0)
i

∣

∣

2
−

∣

∣

γ
(l)
m

γ
(0)
m

∣

∣

2]
. Also since γk 6= 0, so

G 6= 0. Moreover, o(F ) < o(G) implies F /∈ XG. Hence XG is a non-zero reducing

subspace properly contained in X which contradicts the minimality of X . Hence F

must be B-transparent.

As an immediate corollary of the above result we have the following :

Corollary 3.3.2. The extremal function of a minimal reducing subspace of U+ in

H2(B) is always B-transparent.

Theorem 3.3.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and U+ be the unilateral shift on H2(B). Let X be a reducing subspace of U+

in H2(B). Then X is minimal if and only if X = XF where F is B-transparent.

Proof. If X is a minimal reducing subspace and G is the associated extremal func-

tion, then the reducing subspace XG ⊆ X . The minimality of X gives X = XG.



Chapter 3 49

Note that by Corollary 3.3.2, G is B-transparent.

Conversely, let X = XF , where F is B-transparent. Clearly XF is a reducing sub-

space. We claim that XF is minimal. Let Y be a non zero reducing subspace of

U+ contained in XF and H be its extremal function, which is transparent. Then

H ∈ XF and so by Lemma 3.1.14 (i), H is a scalar multiple of F . In particular,

F ∈ Y . Thus, Y = XF which means that XF must be minimal.

Corollary 3.3.4. Every reducing subspace of U+ in H2(B), whose extremal function

has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. Let X be a reducing subspace of U+ in H2(B) whose associated extremal

functionG has a finite canonical decomposition. By Theorem 3.2.2,G isB-transparent

and so XG is a minimal reducing subspace of U+ which is contained in X . Hence,

the result.

3.4 Conclusion

Theorem 3.4.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and U+ be the unilateral shift on H2(B). If the weight sequence {Bn}n∈N0 is

of type I, then Xfn,0 for n ∈ N0 are the only minimal reducing subspaces of U+ in

H2(B).

Proof. Let X be a minimal reducing subspace of U+ and G be its extremal function

so that X = XG. Since the weight sequence {Bn}n∈N0 is of type I, so the only

transparent functions are fn,0 for n ∈ N0 and their scalar multiples. The result now

follows from Theorem 3.3.3.

Theorem 3.4.2. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and U+ be the unilateral shift on H2(B). If {Bn}n∈N0 is of type II, then U+

has minimal reducing subspaces other than Xfn,0, n ∈ N0.
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Proof. Since the weight sequence {Bn}n∈N0 is of type II, so we can form a transparent

function F =
∑

i∈N0
αifi,0 where more than one αi’s are non zero. Clearly, XF is a

minimal reducing subspace of U+ inH2(B) such thatXF 6= Xfn,0 for any n ∈ N0.

Theorem 3.4.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators

in T , and U+ be the unilateral shift on H2(B). If {Bn}n∈N0 is of type III, then every

reducing subspace of U+ in H2(B) must contain a minimal reducing subspace.

Proof. Let X be a reducing subspace of U+ and G be its extremal function. Since

the weight sequence {Bn}n∈N0 is of type III, so G must have a finite canonical

decomposition, say g1 + g2 + · · ·+ gn. By Lemma 3.1.17, for each 1 ≤ i ≤ n, gi ∈ X

and so each Xgi is a minimal reducing subspace of U+ in H2(B) contained in X .
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