Chapter 3

Minimal reducing subspaces of the unilateral shift U_{+}on $H^{2}(B)$

3.1 Introduction

Our aim in this chapter is to investigate the minimal reducing subspaces of a unilateral shift U_{+}on an operator weighted sequence space $H^{2}(B)$. We consider the operator weights $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ on the separable Hilbert space K as a sequence of uniformly bounded invertible linear operators in the class \mathcal{T}. We recall that the unilateral shift U_{+}is defined on $H^{2}(B)$ as

$$
U_{+}\left(f_{0}, f_{1}, \ldots\right)=\left(0, f_{0}, f_{1}, \ldots\right)
$$

for $\left(f_{0}, f_{1}, \ldots\right)$ in $H^{2}(B)$. Clearly, U_{+}is bounded if and only if $\sup _{i, j} \frac{\left\|B_{j+1} e_{i}\right\|}{\left\|B_{j} e_{i}\right\|}<\infty$.

In Corollary 2 of Theorem 3 [48], Shields has shown that U_{+}on $H^{2}(\beta)$ is irreducible. Here, β denotes a sequence of positive numbers $\left\{\beta_{n}\right\}_{n \in \mathbb{N}_{0}}$ with $\beta_{0}=1$. In the case of operator shifts, the reducing subspaces of U_{+}on $H^{2}(B)$ has been determined under specific assumptions on the weight sequence $\left\{B_{n}\right\}$. In [17], the weights $\left\{B_{n}\right\}$ are assumed to be commuting normal operators; in [50] it is assumed that $\operatorname{dim} K=N<\infty$ and the weights $\left\{B_{n}\right\}$ are positive diagonal with respect to a fixed basis for K; in [20] $\operatorname{dim} K=\aleph_{0}$ and $\left\{B_{n}\right\}$ are positive diagonals on K. In all these
results we observe that B_{n} 's are always assumed to be mutually commuting. Hence, in this chapter, we try to drop this assumption and consider the weight sequence $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ to be in the more general class of operators \mathcal{T}.

As we are considering the operator weighted sequence space $H^{2}(B)$, where the uniformly bounded weight sequence $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is in \mathcal{T}, so for each $n \in \mathbb{N}_{0}$ there exists a unique bijective map ψ_{n} on \mathbb{N}_{0} such that $B_{n} e_{j}=\gamma_{j}^{(n)} e_{\psi_{n}(j)}$, where $\gamma_{j}^{(n)}$ denotes the unique non zero entry occurring in the $j^{\text {th }}$ column of the matrix of B_{n}.

Theorem 3.1.1. For $i, j \in \mathbb{N}_{0}$, let $f_{i, j}\left(\right.$ or $\left.x^{i} y^{j}\right) \in H^{2}(B)$ be the vector that has e_{i} as the j th entry and zero as all other entries. Then, $\left\{f_{i, j}\right\}_{i, j \in \mathbb{N}_{0}}$ is an orthogonal basis for $H^{2}(B)$.

Proof. For $i, j \in \mathbb{N}_{0}$, we get $\left\|f_{i, j}\right\|_{B}^{2}=\left\|B_{j} e_{i}\right\|^{2}=\left|\gamma_{i}^{(j)}\right|^{2}$.

$$
\left\langle f_{i, j}, f_{p, q}\right\rangle_{B}= \begin{cases}\left\langle B_{j} e_{i}, B_{q} e_{p}\right\rangle, & \text { if } j=q ; \\ 0, & \text { if } j \neq q\end{cases}
$$

Since ψ_{n} is a bijective function for each $n \in \mathbb{N}_{0}$, so we get

$$
\left\langle f_{i, j}, f_{p, q}\right\rangle_{B}= \begin{cases}\gamma_{i}^{(j)} \bar{\gamma}_{p}^{(q)}, & \text { if } j=q, i=p \\ 0, & \text { otherwise }\end{cases}
$$

i.e,

$$
\left\langle f_{i, j}, f_{p, q}\right\rangle_{B}:= \begin{cases}\left|\gamma_{i}^{(j)}\right|^{2}, & \text { if } j=q, i=p \\ 0, & \text { otherwise }\end{cases}
$$

Let $X=\left(X_{0}, X_{1}, \ldots\right) \in H^{2}(B)$ such that $\left\langle X, f_{i, j}\right\rangle_{B}=0$ for all $i, j \in \mathbb{N}_{0}$. Also,
$X_{0}=\sum_{p \in \mathbb{N}_{0}} \lambda_{p} e_{p}$, where $\left\{\lambda_{p}\right\}_{p \in \mathbb{N}_{0}}$ is a sequence of scalars. Thus for each $i \in \mathbb{N}_{0}$,

$$
\begin{aligned}
& \left\langle X, f_{i, 0}\right\rangle_{B}=0 \\
\Rightarrow & \left\langle B_{0} X_{0}, B_{0} e_{i}\right\rangle=0 \\
\Rightarrow & \sum_{p \in \mathbb{N}_{0}} \lambda_{p}\left\langle B_{0} e_{p}, B_{0} e_{i}\right\rangle=0 \\
\Rightarrow & \lambda_{i}\left\|B_{0} e_{i}\right\|^{2}=0 \\
\Rightarrow & \lambda_{i}=0 .
\end{aligned}
$$

Therefore, $X_{0}=0$. Similarly, $X_{1}=0, X_{2}=0$ and so on. Thus for all $i, j \in \mathbb{N}_{0}$, $\left\langle X, f_{i, j}\right\rangle_{B}=0$ implies that $X=0$. This implies that $\left\{f_{i, j}\right\}_{i, j \in \mathbb{N}_{0}}$ is an orthogonal basis for $H^{2}(B)$.

On the orthogonal basis $\left\{f_{i, j}\right\}_{i, j \in \mathbb{N}_{0}}$, the unilateral shift U_{+}acts as $U_{+} f_{i, j}=f_{i, j+1}$, or equivalently $U_{+}\left(x^{i} y^{j}\right)=x^{i} y^{j+1}$ for each $i, j \in \mathbb{N}_{0}$. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the j th column of the matrix of B_{n}. On the basis of these scalars $\gamma_{j}^{(n)}$, we classify the weights into three classes: types I, II and III.

Definition 3.1.2. The weight sequence $\left\{B_{n}\right\}$ is said to be of type I if for each pair of distinct non negative integers m and n there exist some positive integer k such that

$$
\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}} \neq \frac{\gamma_{n}^{(k)}}{\gamma_{n}^{(0)}}
$$

Otherwise, it is said to be of type II. Thus $\left\{B_{n}\right\}$ is of type II if there exist distinct non negative integers m and n such that

$$
\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}=\frac{\gamma_{n}^{(k)}}{\gamma_{n}^{(0)}}
$$

for every positive integer k.

Definition 3.1.3. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the j th column of the matrix of B_{n}. Two non negative integers m and n are said to be B-related (denoted by $m \sim^{B} n$) if for every positive integer k, we have

$$
\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}=\frac{\gamma_{n}^{(k)}}{\gamma_{n}^{(0)}}
$$

Clearly, \sim^{B} is an equivalence relation on the set \mathbb{N}_{0}.
Definition 3.1.4. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}. A weight sequence $\left\{B_{n}\right\}$ of type II is said to be of type III if \sim^{B} partitions \mathbb{N}_{0} into a finite number of equivalence classes.

Remark 3.1.5. The above definitions are motivated by similar definitions given in [50]. In fact for $\operatorname{dim} K=N<\infty$ the two definitions refer to the same idea. In [50] the minimal reducing subspaces of $M_{z}^{N}(N>1)$ on the space $H^{2}(\beta)$ is determined, where $\beta=\left\{\beta_{0}, \beta_{1}, \ldots\right\}$ is a sequence of positive numbers. If in the present study, we consider $\operatorname{dim} K=N$, and for each $n \in \mathbb{N}_{0}$ if we define

$$
B_{n}=\operatorname{diag}\left(\sqrt{\beta_{n N}}, \sqrt{\beta_{n N+1}}, \ldots, \sqrt{\beta_{(n+1) N-1}}\right)
$$

then M_{z}^{N} on $H^{2}(\beta)$ is unitarily equivalent to the unilateral shift U_{+}on $H^{2}(B)$.
Definition 3.1.6. Let $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ be a non-zero vector in $H^{2}(B)$. The order of F, denoted as $o(F)$, is defined as the smallest non negative integer m such that $\alpha_{m} \neq 0$.

Definition 3.1.7. If $f=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} e_{i}$ is a non-zero vector in K, then order of f, denoted as $o(f)$, is defined to be the smallest non negative integer m such that $\alpha_{m} \neq 0$.

Definition 3.1.8. Let Y be a non-zero non-empty subset of K. Then order of Y, denoted as $o(Y)$, is defined to be the non negative integer m satisfying the following
conditions:
(i) $o(f) \geq m$ for all $f \in Y$, and
(ii) there exists $\tilde{f} \in Y$ such that $o(\tilde{f})=m$.

Definition 3.1.9. Let X be a subset of $H^{2}(B)$ and $\mathcal{L}_{X}:=\left\{f_{0}:\left(f_{0}, f_{1}, \ldots\right) \in X\right\}$. If \mathcal{L}_{X} is a non-zero subset of K, then order of X, denoted as $o(X)$, is defined as $o\left(\mathcal{L}_{X}\right)$.

Definition 3.1.10. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}. A linear expression $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ in $H^{2}(B)$ is said to be B-transparent if for every pair of non-zero scalars α_{i} and α_{j}, we have $i \sim^{B} j$.

Definition 3.1.11. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. Let \mathcal{S} be the vector space of all finite linear combinations of finite products of U_{+}and U_{+}^{*}. For non-zero $F \in H^{2}(B)$, let $\mathcal{S F}:=\{T F: T \in \mathcal{S}\}$. Then the closure of $\mathcal{S} F$ in $H^{2}(B)$ is a reducing subspace of U_{+}, denoted by X_{F}. Clearly X_{F} is the smallest reducing subspace of $H^{2}(B)$ containing F.

Lemma 3.1.12. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the $j^{\text {th }}$ column of the matrix of B_{n}. If U_{+}is the unilateral shift on $H^{2}(B)$, then for $i, j \in \mathbb{N}_{0}$, the following will hold:
(i) $U_{+}^{*} f_{i, j}= \begin{cases}0 & \text { if } j=0, \\ \left|\frac{\gamma_{i}^{(j)}}{\gamma_{i}^{(j-1)}}\right| f_{i, j-1} & \text { if } j>0 .\end{cases}$
(ii) For any non negative integer $k,\left(U_{+}^{k}\right)^{*} U_{+}^{k} f_{i, j}=\left|\frac{\gamma_{i}^{(j+k)}}{\gamma_{i}^{(j)}}\right|^{2} f_{i, j}$.

Proof. (i) For $i \in \mathbb{N}_{0}$, we have $\left\langle U_{+} X, f_{i, 0}\right\rangle=0$ for all $X \in H^{2}(B)$. This implies $U_{+}^{*} f_{i, 0}=0$.

Next we consider $X=\left(x_{0}, x_{1}, \ldots\right)$ in $H^{2}(B)$, where $x_{j}=\sum_{t \in \mathbb{N}_{0}} \alpha_{t}^{(j)} e_{t}$ for each $j \in \mathbb{N}_{0}$. Then for $j>0$, we have

$$
\left\langle U_{+} X, f_{i, j}\right\rangle=\frac{1}{\left|\gamma_{i}^{(j)}\right|}\left\langle B_{j} x_{j-1}, B_{j} e_{i}\right\rangle=\alpha_{i}^{(j-1)}\left|\gamma_{i}^{(j)}\right| .
$$

Choosing $\lambda_{i, j}=\left|\frac{\gamma_{i}^{(j)}}{\gamma_{i}^{(j-1)}}\right|$, we get

$$
\begin{aligned}
\left\langle X, \lambda_{i, j} f_{i, j-1}\right\rangle & =\frac{\lambda_{i, j}}{\left|\gamma_{i}^{(j-1)}\right|}\left\langle B_{j-1} x_{j-1}, B_{j-1} e_{i}\right\rangle \\
& =\frac{\lambda_{i, j}}{\left|\gamma_{i}^{(j-1)}\right|} \alpha_{i}^{(j-1)}\left\|B_{j-1} e_{i}\right\|^{2} \\
& =\alpha_{i}^{(j-1)}\left|\gamma_{i}^{(j)}\right| .
\end{aligned}
$$

Therefore, $\left\langle U_{+} X, f_{i, j}\right\rangle=\left\langle X, \lambda_{i, j} f_{i, j-1}\right\rangle$, and so $U_{+}^{*} f_{i, j}=\lambda_{i, j} f_{i, j-1}$ for $j>0$.
(ii) As $U_{+}^{*} U_{+} f_{i, j}=\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| U_{+}^{*} f_{i, j+1}=\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|^{2} f_{i, j}$, so the result holds for $k=1$.

Suppose, $\left(U_{+}^{*}\right)^{n} U_{+}^{n} f_{i, j}=\left|\frac{\gamma_{i}^{(j+n)}}{\gamma_{i}^{(j)}}\right|^{2} f_{i, j}$ holds for $n=k$. We will show that it also holds for $n=k+1$.

$$
\begin{aligned}
\left(U_{+}^{*}\right)^{k+1} U_{+}^{k+1} f_{i, j} & =\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| U_{+}^{*}\left(U_{+}^{*^{k}} U_{+}^{k}\right) f_{i, j+1} \\
& =\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1)}}\right|^{2} U_{+}^{*} f_{i, j+1} \\
& =\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1)}}\right|^{2}\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| f_{i, j} \\
& =\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j)}}\right|^{2} f_{i, j} .
\end{aligned}
$$

Thus, the results holds for all $k \in \mathbb{N}_{0}$ by induction.
Lemma 3.1.13. If U_{+}is the unilateral shift on $H^{2}(B)$, then for any non negative integer $k,\left(U_{+}^{k}\right)^{*} U_{+}^{k}\left(x^{i} y^{j}\right)=\left|\frac{\gamma_{i}^{(j+k)}}{\gamma_{i}^{(j)}}\right|^{2} x^{i} y^{j}$.
Proof. As $U_{+}^{*} U_{+}\left(x^{i} y^{j}\right)=U_{+}^{*}\left(x^{i} y^{j+1}\right)=\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|^{2} x^{i} y^{j}$, so the result holds for $k=1$.

Suppose, $\left(U_{+}^{*}\right)^{n} U_{+}^{n}\left(x^{i} y^{j}\right)=\left|\frac{\gamma_{i}^{(j+n)}}{\gamma_{i}^{(j)}}\right|^{2} x^{i} y^{j}$ holds for all $n=k$. We will show that it also holds for $n=k+1$.

$$
\begin{aligned}
\left(U_{+}^{*}\right)^{k+1} U_{+}^{k+1}\left(x^{i} y^{j}\right) & =U_{+}^{*}\left(U_{+}^{*^{k}} U_{+}^{k}\right)\left(x^{i} y^{j+1}\right) \\
& =U_{+}^{*}\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1)}}\right|^{2} x^{i} y^{j+1} \\
& =\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j+1)}}\right|^{2}\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right|^{2} x^{i} y^{j} \\
& =\left|\frac{\gamma_{i}^{(j+1+k)}}{\gamma_{i}^{(j)}}\right|^{2} x^{i} y^{j} .
\end{aligned}
$$

Thus, the results holds for all $k \in \mathbb{N}_{0}$ by induction.

Lemma 3.1.14. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the $j^{\text {th }}$ column of the matrix of B_{n}. Let $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ be B-transparent in $H^{2}(B)$ with $o(F)=m$. If for each $k \in \mathbb{N}_{0}, \tilde{F}_{k}:=\left|\frac{\gamma_{(k)}^{(k)}}{\gamma_{m}^{(0)}}\right| \sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, k}$, then the following will hold:
(i) $\left(U_{+}^{k}\right)^{*} U_{+}^{k} F=\left\lvert\, \frac{\left.\gamma_{\gamma_{(k)}^{(k)}}^{\gamma_{m}^{(0)}}\right|^{2} F \text {. } \quad \text {. } \quad \text {. }}{}\right.$
(ii) $U_{+} \tilde{F}_{k}=\tilde{F}_{k+1}$ and $U_{+}^{*} \tilde{F}_{k}= \begin{cases}0, & \text { if } k=0 ; \\ \left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(k-1)}}\right|^{2} \tilde{F}_{k-1}, & \text { if } k>0 .\end{cases}$
(iii) X_{F} is the closed linear span of $\left\{\tilde{F}_{k}: k \in \mathbb{N}_{0}\right\}$.

Proof. Since $o(F)=m$, so $\alpha_{i}=0$ for all $i<m$. Let, $\Lambda=\left\{i \geq m: \alpha_{i} \neq 0\right\}$. Then $m \in \Lambda$, and for $i \in \Lambda, \frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(0)}}=\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}$ for each positive integer k.
(i) For $i \in \Lambda$ and positive integer k, by Lemma 3.1.12 (ii) we have

$$
\left(U_{+}^{k}\right)^{*} U_{+}^{k} f_{i, 0}=\left|\frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(0)}}\right|^{2} f_{i, 0}=\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right|^{2} f_{i, 0} .
$$

Thus, we have

$$
\begin{aligned}
\left(U_{+}^{k}\right)^{*} U_{+}^{k} F & =\left(U_{+}^{k}\right)^{*} U_{+}^{k}\left(\sum_{i \in \Lambda} \alpha_{i} f_{i, 0}\right) \\
& =\sum_{i \in \Lambda} \alpha_{i}\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right|^{2} f_{i, 0} \\
& =\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right|^{2} F
\end{aligned}
$$

(ii) For $i, j \in \mathbb{N}_{0}, U_{+} f_{i, j}=\left|\frac{\gamma_{i}^{(j+1)}}{\gamma_{i}^{(j)}}\right| f_{i, j+1}$, and so

$$
\begin{aligned}
U_{+} \tilde{F}_{k} & =\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right| \sum_{i \in \Lambda} \alpha_{i} U_{+} f_{i, k} \\
& =\sum_{i \in \Lambda} \alpha_{i}\left|\frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(0)}}\right|\left|\frac{\gamma_{i}^{(k+1)}}{\gamma_{i}^{(k)}}\right| f_{i, k+1} \\
& =\left|\frac{\gamma_{m}^{(k+1)}}{\gamma_{m}^{(0)}}\right| \sum_{i \in \Lambda} \alpha_{i} f_{i, k+1} \\
& =\tilde{F}_{k+1}
\end{aligned}
$$

As $U_{+}^{*} f_{i, 0}=0$, so we have $U_{+}^{*} \tilde{F}_{0}=0$.
For $k>0$,

$$
\begin{aligned}
U_{+}^{*} \tilde{F}_{k} & =\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right| \sum_{i \in \mathbb{N}_{0}} \alpha_{i} U_{+}^{*} f_{i, k} \\
& =\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(0)}}\right| \sum_{i \in \mathbb{N}_{0}} \alpha_{i}\left|\frac{\gamma_{i}^{(k)}}{\gamma_{i}^{(k-1)}}\right| f_{i, k-1} \\
& =\left|\frac{\gamma_{m}^{(k)}}{\gamma_{m}^{(k-1)}}\right|^{2} \tilde{F}_{k-1} .
\end{aligned}
$$

(iii) By (ii), each $\tilde{F}_{k} \in X_{F}$ and so the closed linear $\operatorname{span}\left\{\tilde{F}_{k}: k \in \mathbb{N}_{0}\right\}$ is a non-zero reducing subspace of U_{+}contained in X_{F}. Thus, by minimality of X_{F}, we have $X_{F}=$ closed linear $\operatorname{span}\left\{\tilde{F}_{k}: k \in \mathbb{N}_{0}\right\}$.

Lemma 3.1.15. If $F=f(x)$ in $H^{2}(B)$ is transparent, then $X_{F}=\operatorname{Span}\left\{F y^{k}: k \in\right.$ $\left.\mathbb{N}_{0}\right\}$.

Proof. Let $X=\operatorname{Span}\left\{F y^{k}: k \in \mathbb{N}_{0}\right\}$ and let $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} x_{i}$. Then

$$
U_{+}^{k} F=U_{+}^{k}\left(\sum_{i \in \mathbb{N}_{0}} \alpha_{i} x_{i}\right)=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} S^{k} x^{i}=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} x^{i} y^{k}=F y^{k}
$$

Hence, $F y^{k}=S^{k} F \in X_{F}$ for all $k \in \mathbb{N}_{0}$. So $F \in X \subseteq X_{F}$. We claim that X is reducing for S.

For any $G \in X, S G=G y$ and $X \subseteq H^{2}(B)$. So X is invariant under U_{+}. Also $U_{+}^{*}\left(x^{i}\right)=0$ for all $i \geq 0$ and $F=f(x)$. So $U_{+}^{*}(F)=0$. For any positive integer k, $U_{+}^{*}\left(F y^{k}\right)=U_{+}^{*} U_{+}\left(F y^{c}\right)$ where $c=k-1 \geq 0$. If the order of zero of F at the origin is m, then since F is transparent, so by Lemma 3.1.14 we have

$$
\begin{aligned}
U_{+}^{*}\left(F y^{k}\right) & =U_{+}^{*} U_{+}\left(F y^{c}\right) \\
& =U_{+}^{*} U_{+}\left(\sum_{i \in \mathbb{N}_{0}} \alpha_{i} x^{i} y^{c}\right) \\
& =\sum_{i \in \mathbb{N}_{0}} \alpha_{i} U_{+}^{*} U_{+} x^{i} y^{c} \\
& =\sum_{i \in \mathbb{N}_{0}} \alpha_{i}\left|\frac{\alpha_{i}^{(c+1)}}{\alpha_{i}^{(c)}}\right|^{2} x^{i} y^{c} \\
& =\sum_{i \in \mathbb{N}_{0}} \alpha_{i}\left|\frac{\alpha_{i}^{(k)}}{\alpha_{i}^{(c)}}\right|^{2} x^{i} y^{c} \in X .
\end{aligned}
$$

Thus for any $G \in X, U_{+}^{*} G \in X$. Therefore, X is reducing under U_{+}. Since X_{F} is the smallest reducing subspace of U_{+}containing F, so we must have $X=X_{F}$.

Definition 3.1.16. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. Let $\Omega_{1}, \Omega_{2}, \ldots$ be the disjoint equivalence classes of \mathbb{N}_{0} under the relation \sim^{B}. Consider $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ in $H^{2}(B)$. For each $k=1,2, \ldots$, let $q_{k}:=\sum_{i \in \Omega_{k}} \alpha_{i} g_{i, 0}$. Dropping those q_{k} which are zero, the remaining q_{k} 's are arranged as f_{1}, f_{2}, \ldots in such a way that for $i<j$ we have $o\left(f_{i}\right)<o\left(f_{j}\right)$. The resulting decomposition $F=f_{1}+f_{2}+\ldots$ is called the canonical decomposition of F. Clearly each f_{i} is B-transparent in $H^{2}(B)$. If there exists a finite positive integer n such that $F=f_{1}+f_{2}+\cdots+f_{n}$, then F in the above case is said to have a finite canonical decomposition.

Lemma 3.1.17. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the $j^{\text {th }}$ column of the matrix of B_{n}. Let U_{+}be the unilateral shift on $H^{2}(B)$, and X be a reducing subspace of U_{+}in $H^{2}(B)$. If $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ in X has a finite canonical decomposition $F=f_{1}+f_{2}+\cdots+f_{n}$, then each f_{i} is in X_{F}.

Proof. Let $o\left(f_{i}\right)=m_{i}$ so that $m_{1}<m_{2}<\cdots<m_{n}$ and no two of them are Brelated. For $2 \leq i \leq n$, as $m_{1} \nsim^{B} m_{i}$, and so there exists a positive integer k_{i} such that $\frac{\gamma_{m_{i}}^{\left(k_{i}\right)}}{\gamma_{m_{1}}^{(0)}} \neq \frac{\gamma_{m_{i}}^{\left(k_{i}\right)}}{\gamma_{m_{i}}^{(0)}}$. Let k_{i} be the smallest positive integer having this property.
Let $q_{1}:=F$ and for $2 \leq i \leq n, q_{i}:=\left[\left|\frac{\gamma_{m_{i}}^{\left(k_{i}\right)}}{\gamma_{m_{i}}^{(0)}}\right|^{2}-\left(U_{+}^{k_{i}}\right)^{*} U_{+}^{k_{i}}\right] q_{i-1}$. Then $q_{i} \in X_{F}$ for all $1 \leq i \leq n$. Also $q_{n}=\left(\beta_{2} \ldots \beta_{n}\right) f_{1}$, where $\beta_{i}=\left|\frac{\gamma_{m_{i}}^{\left(k_{i}\right)}}{\gamma_{m_{i}}^{(0)}}\right|^{2}-\left|\frac{\gamma_{m_{1}}^{\left(k_{i}\right)}}{\gamma_{m_{1}}^{(0)}}\right|^{2}$ for $2 \leq i \leq n$. As each $\beta_{i} \neq 0$, so $q_{n} \in X_{F}$ implies that $f_{1} \in X_{F}$.

In a similar way it can be shown that f_{2}, \ldots, f_{n} are also in X_{F}.

3.2 An Extremal Problem

Theorem 3.2.1. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. Let X be a non zero reducing subspace of U_{+}in $H^{2}(B)$ with $o(X)=m$. Then the extremal problem

$$
\sup \left\{R e \alpha_{m}: F=\left(f_{0}, f_{1}, \ldots\right) \in X,\|F\| \leq 1, f_{0}=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} e_{i} .\right\}
$$

has a unique solution $G=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} g_{i, 0} \in X$ with $\|G\|=1$ and $o(G)=m$.
Proof. For $F=\left(f_{0}, f_{1}, \ldots\right) \in X$, we define $\varphi: X \rightarrow \mathbb{C}$ as $\varphi(F)=\alpha_{m}$ where $f_{0}=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} e_{i}$. Since $o(X)=m$, so φ is a non zero bounded linear functional on X. From [8], it follows that the extremal problem has a unique solution G in X
such that $\|G\|=1, \varphi(G)>0$ and

$$
\begin{aligned}
\varphi(G) & =\sup \{\operatorname{Re} \varphi(F): F \in X,\|F\| \leq 1\} \\
& =\sup \left\{\operatorname{Re} \alpha_{m}: F=\left(f_{0}, f_{1}, \ldots\right) \in X,\|F\| \leq 1, f_{0}=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} e_{i} .\right\}
\end{aligned}
$$

We claim that G has the form $G=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ with $o(G)=m$.
If $F \in X$ and $\|F\|<1$, then by the maximality of G we must have $\operatorname{Re\varphi }(F)<\varphi(G)$.
Now as $\operatorname{Re} \varphi(G+S F)=\varphi(G)$ for all $F \in X$, so we must have $\|G+S F\| \geq 1$. This implies that $G \perp S F$ for all $F \in X$. In particular $\left\langle G, U_{+} U_{+}^{*} G\right\rangle=0$ which implies that $U_{+}^{*} G=0$. Thus G is of the form $G=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$. Also $\varphi(G)>0$ and $o(X)=m$ together imply $o(G)=m$.

Note: The function G in Theorem 3.2.1 will be called the extremal function of X.
Theorem 3.2.2. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. If the extremal function of a non-zero reducing subspace of U_{+}in $H^{2}(B)$ has a finite canonical decomposition, then it must be B-transparent.

Proof. Let X be a non-zero reducing subspace of U_{+}in $H^{2}(B)$ and $G=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ be its extremal function with $o(G)=m$. Let $G=g_{1}+g_{2}+\cdots+g_{n}$ be the finite canonical decomposition of G. Each g_{i} is B-transparent and also by Lemma 3.1.17, each of them is in X_{G}. Clearly $o\left(g_{1}\right)=m$ and $\left\|g_{1}\right\| \leq\|G\|=1$. So by the extremality of G, we must have $G=g_{1}$. Thus G is B-transparent.

3.3 Minimal reducing subspaces

Theorem 3.3.1. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and for each $n \in \mathbb{N}_{0}$ let $\gamma_{j}^{(n)}$ denote the unique non zero entry occurring in the $j^{\text {th }}$ column of the matrix of B_{n}. Also let U_{+}be the unilateral shift on $H^{2}(B)$. If X
is a minimal reducing subspace of U_{+}in $H^{2}(B)$ and $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ is in X, then F is B-transparent.

Proof. Let $o(F)=m$, and if possible, F is not B-transparent. So we must have a positive integer $k>m$ such that $\alpha_{k} \neq 0$ and $k \nsim^{B} m$. This means that there exists a positive integer l such that $\frac{\gamma_{k}^{(l)}}{\gamma_{k}^{(0)}} \neq \frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}$.
We define $G:=\left(U_{+}^{l}\right)^{*} U_{+}^{l} F-\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2} F$. Clearly, G is in X, and we get

$$
\begin{aligned}
G & =\left(U_{+}^{l}\right)^{*} U_{+}^{l} F-\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2} F \\
& =\left(U_{+}^{l}\right)^{*} U_{+}^{l}\left(\sum_{i=m}^{\infty} \alpha_{i} f_{i, 0}\right)-\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}\left(\sum_{i=m}^{\infty} \alpha_{i} f_{i, 0}\right) \\
& =\sum_{i=m}^{\infty} \alpha_{i}\left|\frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}}\right|^{2} f_{i, 0}-\sum_{i=m}^{\infty} \alpha_{i}\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2} f_{i, 0} \\
& =\sum_{i=m+1}^{\infty} \alpha_{i}\left[\left|\frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}}\right|^{2}-\left|\frac{\gamma_{m}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}\right] f_{i, 0} .
\end{aligned}
$$

Thus, $G=\sum_{i=m+1}^{\infty} \gamma_{i} f_{i, 0}$, where $\gamma_{i}=\alpha_{i}\left[\left|\frac{\gamma_{i}^{(l)}}{\gamma_{i}^{(0)}}\right|^{2}-\left|\frac{\gamma_{\gamma}^{(l)}}{\gamma_{m}^{(0)}}\right|^{2}\right]$. Also since $\gamma_{k} \neq 0$, so $G \neq 0$. Moreover, $o(F)<o(G)$ implies $F \notin X_{G}$. Hence X_{G} is a non-zero reducing subspace properly contained in X which contradicts the minimality of X. Hence F must be B-transparent.

As an immediate corollary of the above result we have the following :
Corollary 3.3.2. The extremal function of a minimal reducing subspace of U_{+}in $H^{2}(B)$ is always B-transparent.

Theorem 3.3.3. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. Let X be a reducing subspace of U_{+} in $H^{2}(B)$. Then X is minimal if and only if $X=X_{F}$ where F is B-transparent.

Proof. If X is a minimal reducing subspace and G is the associated extremal function, then the reducing subspace $X_{G} \subseteq X$. The minimality of X gives $X=X_{G}$.

Note that by Corollary 3.3.2, G is B-transparent.
Conversely, let $X=X_{F}$, where F is B-transparent. Clearly X_{F} is a reducing subspace. We claim that X_{F} is minimal. Let Y be a non zero reducing subspace of U_{+}contained in X_{F} and H be its extremal function, which is transparent. Then $H \in X_{F}$ and so by Lemma 3.1.14 (i), H is a scalar multiple of F. In particular, $F \in Y$. Thus, $Y=X_{F}$ which means that X_{F} must be minimal.

Corollary 3.3.4. Every reducing subspace of U_{+}in $H^{2}(B)$, whose extremal function has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. Let X be a reducing subspace of U_{+}in $H^{2}(B)$ whose associated extremal function G has a finite canonical decomposition. By Theorem 3.2.2, G is B-transparent and so X_{G} is a minimal reducing subspace of U_{+}which is contained in X. Hence, the result.

3.4 Conclusion

Theorem 3.4.1. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. If the weight sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type I, then $X_{f_{n, 0}}$ for $n \in \mathbb{N}_{0}$ are the only minimal reducing subspaces of U_{+}in $H^{2}(B)$.

Proof. Let X be a minimal reducing subspace of U_{+}and G be its extremal function so that $X=X_{G}$. Since the weight sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type I , so the only transparent functions are $f_{n, 0}$ for $n \in \mathbb{N}_{0}$ and their scalar multiples. The result now follows from Theorem 3.3.3.

Theorem 3.4.2. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. If $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type II, then U_{+} has minimal reducing subspaces other than $X_{f_{n, 0}}, n \in \mathbb{N}_{0}$.

Proof. Since the weight sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type II, so we can form a transparent function $F=\sum_{i \in \mathbb{N}_{0}} \alpha_{i} f_{i, 0}$ where more than one α_{i} 's are non zero. Clearly, X_{F} is a minimal reducing subspace of U_{+}in $H^{2}(B)$ such that $X_{F} \neq X_{f_{n, 0}}$ for any $n \in \mathbb{N}_{0}$.

Theorem 3.4.3. Let $B=\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ be a uniformly bounded sequence of operators in \mathcal{T}, and U_{+}be the unilateral shift on $H^{2}(B)$. If $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type III, then every reducing subspace of U_{+}in $H^{2}(B)$ must contain a minimal reducing subspace.

Proof. Let X be a reducing subspace of U_{+}and G be its extremal function. Since the weight sequence $\left\{B_{n}\right\}_{n \in \mathbb{N}_{0}}$ is of type III, so G must have a finite canonical decomposition, say $g_{1}+g_{2}+\cdots+g_{n}$. By Lemma 3.1.17, for each $1 \leq i \leq n, g_{i} \in X$ and so each $X_{g_{i}}$ is a minimal reducing subspace of U_{+}in $H^{2}(B)$ contained in X.

