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CHAPTER 3 

A generalized electrochemical model for high-κ dielectric and 

nanomaterial based ENFETs 

3.1. High-κ dielectric and nanomaterial based ENFETs  

The high-κ dielectric and nanomaterial based ENFETs consists of high-κ dielectric 

materials such as HfO2, ZrO2, Ta2O5, etc. as the gate insulating material and 

nanomaterials such as graphene and CNT as the substrate. Graphene and CNT forms 

good interface with high-κ dielectrics as discussed in Chapter 2. Few graphene and 

CNT based ENFETs with high-κ dielectrics, as insulating material has been fabricated 

displaying excellent characteristics and response [6-8].  To study the behavior of such 

devices, a model is desired. In order to develop a generalized electrochemical model 

for such ENFET devices, the basic structure of the device needs to be known. 

Considering the fabricated nanomaterial based ENFET devices, the general structure of 

such ENFETs along the diffusion length (𝑥) with the enzyme-insulator interface as 

origin has been shown in Fig. 3.1. The structure consists of a bottom substrate on which 

the whole device is fabricated. On top of the substrate, an insulating material is present 

which prevents leakage of current from the nanomaterial towards the bottom substrate. 

The high- κ dielectric is present on the nanomaterial. Enzyme sensing layer is deposited 

on the high- κ dielectric material to hold the enzymes. Enzymes directly cannot be 

immobilized on the dielectric, so, enzyme sensing layer is required which extends from 

origin (0) to length of enzyme sensing membrane (𝐿𝑒). The device is immersed in the 

electrolyte solution, which consists of the biomolecules to be detected. 

 

Fig. 3.1. General structure of high-κ dielectric nanomaterial based ENFET device 
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3.2. ENFET modeling 

As discussed in the previous section, the whole ENFET device can be divided into 

different layers. The variations that occur in one layer is transferred to the other layer 

from electrolyte towards the nanomaterial. Firstly, the enzymes act upon the 

biomolecules to give the products. The substrate and product diffuses into the enzyme 

sensing layer following the Fick’s law of diffusion. The products produces pH 

variations at the oxide surface, which results in potential variation at the surface. The 

variation in surface potential varies the threshold voltage of the device, which is the 

input parameter for the ENFET. These variations in threshold voltage at different 

concentration of the biomolecules produces different drain current values, which can 

be measured. Thus, modeling of ENFET device is done in different phases. The key 

steps involved in the unique approach for electrochemical modeling of ENFETs are 

discussed in details in the later sub-sections. 

 

3.2.1. Modeling of enzymatic reactions 

The rate of enzymatic reactions depends on the concentration of the biomolecules 

involved in the reaction.  The relation between concentration of biomolecules and the 

rate of enzymatic reactions is established using the Michaelis Menten equation. The 

relationship is found out using an enzymatic reaction as given below [34]: 

𝐸 + 𝑆 
k

k

1

1

 𝐸𝑆
k 2

  𝐸 + 𝑃                                                                                                    (3.1)  

where, 𝐸, 𝑆, 𝑃 and 𝐸𝑆 represents enzyme, substrate, product and enzyme substrate 

intermediate respectively. 𝑘1 and 𝑘2 are the rate of forward reaction resulting in 

formation of enzyme substrate intermediate and product respectively and 𝑘−1 is the rate 

of backward reaction resulting in formation of substrate. Therefore, the rate of 

formation of enzyme substrate intermediate should be equal to its breakdown 

𝑘1[𝐸][𝑆] = 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆]                                                                                           (3.2) 
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[𝐸𝑆] =
𝑘1[𝐸][𝑆]

𝑘−1 + 𝑘2
=

[𝐸][𝑆]

𝐾𝑀
                                                                                                 (3.3) 

where, 𝐾𝑀 =
𝑘−1 + 𝑘2

𝑘1
                                                                                                       (3.4) 

The total enzyme concentration,𝐸0, is given as, 

 [𝐸0] = [𝐸] + [𝐸𝑆]                                                                                                                (3.5)  

[𝐸𝑆] =
([𝐸0] − [𝐸𝑆])[𝑆]

𝐾𝑀
=

[𝐸0][𝑆]

[𝑆] + 𝐾𝑀
                                                                              (3.6) 

The rate of formation of products is given by 

𝑑𝑃

𝑑𝑇
= 𝑎 = 𝑘2[𝐸𝑆] = 𝑘2

[𝐸0][𝑆]

[𝑆] + 𝐾𝑀
                                                                                     (3.7) 

𝑎 = 𝑎𝑀

[𝑆]

[𝑆] + 𝐾𝑀
                                                                                                                  (3.8) 

This equation is known as Michaelis Menten equation and 𝑎𝑀 = 𝑘2[𝐸0], is the maximal 

enzyme activity for one enzyme unit. 𝐾𝑀 is known as Michaelis Menten constant, 

which is the substrate concentration at which the reaction rate is half of 𝑎𝑀.  

 

3.2.2. Modeling of the diffusion phenomena of substrate and products in 

electrolyte 

The substrate biomolecules present in the electrolyte solution diffuses into the 

enzymatic layer, where the enzymatic reactions occur giving products. The diffusion of 

substrate and product biomolecules follows the Fick’s law of diffusion. If [S] denotes 

the substrate concentration and [P] denotes the product concentration, then following 

the Fick’s second law of diffusion, the variations in [S] and [P] can be modeled as 

shown in Eqs. (3.9) and (3.10) respectively [16]. 

𝜕[𝑆](𝑥, 𝑡)

𝜕𝑡
=  𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
− 𝑅(𝑥, 𝑡)                                                                              (3.9) 
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𝜕[𝑃](𝑥, 𝑡)

𝜕𝑡
=  𝐷𝑃

𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2
+ 𝑅(𝑥, 𝑡)                                                                          (3.10) 

where, 𝐷𝑆 and 𝐷𝑃 are the diffusion coefficients of substrate and product present in the 

electrolyte solution.  

The diffusion constant is calculated using the Archimede’s law and Einstein’s equation. 

As per Archimede’s law, the equivalent volumic mass ρ' of a spherical molecule having 

equivalent radius r' and mass m when diluted in a given fluid of volumic mass ρ and 

viscosity η is similar to the fluid volumic mass ρ. Hence, according to the Einstein’s 

equation, the fluidic diffusion coefficient D of the studied molecules can be found as 

shown by Eq. (3.11) [15]:  

𝐷 =
𝑘𝑇

6𝜋𝜂𝑟 '
=  

1

6𝜋𝜂
√

4𝜋𝜌'𝑁AV

3𝑀

3

𝑘𝑇 =
1

6𝜋𝜂
√

4𝜋𝜌𝑁AV

3𝑀

3

𝑘𝑇 = 𝐴𝑓

𝑘𝑇

√𝑀
3                         (3.11) 

where, 𝑘 is the Boltzmann constant, 𝑀 is the molar mass of the molecule under study, 

𝑇 is the absolute temperature, 𝑁AV  is the Avogadro’s number and 𝐴𝑓 is a fluid 

dependent constant. 

𝑅 represents the enzymatic reactions in the enzymatic layer (length 𝐿𝑒) as shown in Fig. 

3.1. The origin for measurement of length is taken at the enzyme insulator interface. 

The length 𝐿𝑒, of the enzyme layer which is also called enzyme layer thickness is 

measured from the origin. As seen in Eq. (3.12), all the enzymatic activities occur in 

the region from 0 to 𝐿𝑒. Beyond which, the activities are negligible and considered to 

be almost zero. So, all the calculations are done in this region.  

𝑅(𝑥, 𝑡) = 𝑎M𝑛enz

[𝑆](𝑥, 𝑡)

[𝑆](𝑥, 𝑡) + 𝐾M

 , 0 ≤ 𝑥 ≤ 𝐿𝑒                                                    (3.12) 

𝑅(𝑥, 𝑡) = 0, 𝑥 > 𝐿𝑒  

where, 𝑛enz in the number of enzymatic units per volume unit in the enzyme sensing 

layer.  

For solving the Eqs. (3.9) and (3.10), to obtain [S] and [P], certain initial and boundary 

conditions are required which can be set as per enzyme kinetics. Accordingly, initially 
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(i.e. at t = 0) when no reaction takes place, [S] and [P] are zero in the region from 0 to 

𝐿𝑒. The boundary conditions are defined at 𝑥 = 0 (i.e. interface of oxide and enzyme 

layer) and  𝑥 = 𝐿𝑒 (i.e. interface of enzyme layer and bulk electrolyte). As per enzyme 

kinetics, the substrate biomolecules diffuse from bulk electrolyte to the enzyme layer, 

but products formed in the enzyme layer do not diffuse back into the electrolyte. 

Instead, they bind with the sites available at the oxide-enzyme interface in accordance 

with the site binding theory. Therefore, the variations in substrate and product 

concentrations is negligible with respect to 𝑥 at 𝑥 = 0. Again, at 𝑥 = 𝐿𝑒, the substrate 

concentration is taken to be equal to the initial substrate concentration as the enzymatic 

reactions are almost negligible here and hence, the product concentration is zero. In the 

bulk electrolyte beyond the enzyme layer, almost no reactions take place, therefore, no 

variation occur in substrate and product concentrations here. Thus, the initial and 

boundary conditions are shown in Eq. (3.13).  

at t = 0, 0 ≤ 𝑥 ≤ 𝐿𝑒:   [𝑆](𝑥, 𝑡) = 0, [𝑃] (𝑥, 𝑡)  = 0                       

at 𝑡 > 0, 𝑥 = 0:  
𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥
 = 0,

𝜕[𝑃](𝑥, 𝑡)

𝜕𝑥
 = 0                                                                      (3.13) 

at t > 0, 𝑥 = 𝐿𝑒:   [𝑆](𝑥, 𝑡) = 𝑆0, [𝑃] (𝑥, 𝑡)  = 0                             

at 𝑥 > 𝐿𝑒:   [𝑆](𝑥, 𝑡) = 𝑆0, [𝑃] (𝑥, 𝑡)  = 0                                         

Now, considering steady state response, the time derivative will be set to zero, so, Eqs. 

(3.9) and (3.10) reduces to the form, 

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
=  

𝑅(𝑥, 𝑡)

𝐷𝑆
                                                                                                       (3.14) 

𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2
=  − 

𝑅(𝑥, 𝑡)

𝐷𝑃
                                                                                                  (3.15) 

Using the boundary conditions, the Eqs. (3.14) and (3.15) are solved to get the substrate 

and product concentrations. The solutions can be done either numerically without any 

limiting condition or analytically using three limiting cases either [𝑆] ≪  𝐾M or [𝑆] ≫

 𝐾M or [𝑆] ≈  𝐾M as shown under.  
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Case 1: [𝑺] ≪  𝑲𝐌 

This case represents enzyme kinetics that is much faster than the transport through the 

enzymatic layer, the substrate concentration being the limiting factor. Applying this 

condition, Eq. (3.12) reduces to the form as given below 

𝑅 (𝑥, 𝑡) =  𝑎M𝑛enz

[𝑆](𝑥, 𝑡)

𝐾𝑀
 , 0 ≤ 𝑥 ≤ 𝐿𝑒                                                              (3.16) 

𝑅 (𝑥, 𝑡) = 0  ,            x > 𝐿𝑒 

Using Eq. (3.16) in Eq. (3.14) we get, 

𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
=  𝑎M𝑛enz

[𝑆](𝑥, 𝑡)

𝐾𝑀
 ,         0 ≤ 𝑥 ≤ 𝐿𝑒 

⇒
𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
− 𝛼[𝑆](𝑥, 𝑡) = 0 ,          0 ≤ 𝑥 ≤ 𝐿𝑒                                                     (3.17) 

where, 𝛼 =
𝑎M𝑛enz

𝐷𝑆𝐾𝑀
=

𝑘2[𝐸0]

𝐷𝑆𝐾𝑀
= enzyme loading factor/diffusion modulus. 

Integrating Eq. (3.17) and using the boundary conditions for substrate concentration 

from Eq. (3.13) we get, 

∫
𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2

𝐿𝑒

𝑥=0

= 𝛼 ∫ [𝑆](𝑥, 𝑡)

𝐿𝑒

𝑥=0

,                0 ≤ 𝑥 ≤ 𝐿𝑒 

[𝑆](𝑥, 𝑡) =
cosh (𝑥√𝛼)

cosh (𝐿√𝛼)
 [𝑆](𝐿𝑒 , 𝑡),              0 ≤ 𝑥 ≤ 𝐿𝑒                                             (3.18) 

Putting [𝑆](𝐿𝑒 , 𝑡) in Eq. (3.14), we get, 

𝜕[𝑆](𝐿𝑒 , 𝑡)

𝜕𝑡
=  −𝑎M𝑛enz

[𝑆](𝐿𝑒 , 𝑡)

𝐾𝑀
,                     [∵ 𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
= 0] 

Integrating the above equation, we get, 

ln([𝑆](𝐿𝑒 , 𝑡)) = −
𝑎M𝑛enz𝑡

𝐾𝑀
+ 𝐶                    
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𝐴𝑡 𝑡 = 0, [𝑆](𝐿𝑒 , 𝑡) = 𝑆0 ⇒ 𝐶 = 𝑙𝑛 (𝑆0) 

∴ ln ([𝑆](𝐿𝑒 , 𝑡)) = −
𝑎M𝑛enz𝑡

𝐾𝑀
+ ln(𝑆0)  ⇒ ln (

[𝑆](𝐿𝑒 , 𝑡)

𝑆0
) = −

𝑎M𝑛enz𝑡

𝐾𝑀
 

⇒ [𝑆](𝐿𝑒 , 𝑡) = 𝑒𝑥𝑝 (−
𝑎M𝑛enz𝑡

𝐾𝑀
) 𝑆0                                                                                (3.19) 

The product concentration can be determined from the substrate concentration. From 

Eqs. (3.14) and (3.15) we get, 

𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
+  𝐷𝑃

𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2
= 0                                                                             (3.20) 

In the above equation, the kinetic term 𝑅 (𝑥, 𝑡) is removed. Integrating the above 

equation for 0 ≤ 𝑥 ≤ 𝐿𝑒, we get, 

𝐷𝑆 ∫
𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2

𝐿𝑒

𝑥=0

+ 𝐷𝑃 ∫
𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2

𝐿𝑒

𝑥=0

= 𝐶 

⇒ 𝐷𝑆

𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥
+ 𝐷𝑃

𝜕[𝑃](𝑥, 𝑡)

𝜕𝑥
= 𝐶                                                                             (3.21) 

At the insulating surface, 𝑥 = 0, the product concentration [𝑃]𝑥=0 = [𝑃]0 is desired as 

it is proportional to the output signal of the ENFET. 

Integrating Eq. (3.21), we get, 

𝐷𝑆[𝑆](𝐿𝑒 , 𝑡) + 𝐷𝑃[𝑃](𝐿𝑒 , 𝑡) = 𝐷𝑆[𝑆](𝑥, 𝑡) + 𝐷𝑃[𝑃](𝑥, 𝑡) = 𝐶,              0 ≤ 𝑥 ≤ 𝐿𝑒 

⇒ 𝐷𝑃[𝑃](𝑥, 𝑡) = 𝐷𝑆[𝑆](𝐿𝑒 , 𝑡) + 𝐷𝑃[𝑃](𝐿𝑒 , 𝑡) − 𝐷𝑆[𝑆](𝑥, 𝑡)

= 𝐷𝑆[𝑆](𝐿𝑒 , 𝑡) − 𝐷𝑆

cosh (𝑥√𝛼)

cosh (𝐿𝑒√𝛼)
 [𝑆](𝐿𝑒 , 𝑡) + 𝐷𝑃[𝑃](𝐿𝑒 , 𝑡) 

⇒ [𝑃](𝑥, 𝑡) =
𝐷𝑆

𝐷𝑃
[1 −

cosh (𝑥√𝛼)

cosh (𝐿𝑒√𝛼)
] [𝑆](𝐿𝑒 , 𝑡) + [𝑃](𝐿𝑒 , 𝑡)                                  (3.22) 

𝐴𝑡 𝑥 = 0, [𝑃]0 =
𝐷𝑆

𝐷𝑃
[1 −

1

cosh (𝐿𝑒√𝛼)
] [𝑆](𝐿𝑒 , 𝑡) + [𝑃](𝐿𝑒 , 𝑡) 
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Putting [𝑃](𝐿𝑒 , 𝑡) in Eq. (3.10), we get, 

𝜕[𝑃](𝐿𝑒 , 𝑡)

𝜕𝑡
=  𝑎M𝑛enz

[𝑆](𝐿𝑒 , 𝑡)

𝐾𝑀
⇒ [𝑃](𝐿𝑒 , 𝑡) = − 𝑒𝑥𝑝 (−

𝑎M𝑛enz𝑡

𝐾𝑀
) 𝑆0 + 𝐶 

𝐴𝑡 𝑡 = 0, [𝑃](𝐿𝑒 , 𝑡) = 0 ∴ 𝐶 = 𝑆0 

∴ [𝑃](𝐿𝑒 , 𝑡) = 𝑆0 − 𝑒𝑥𝑝 (−
𝑎M𝑛enz𝑡

𝐾𝑀
) 𝑆0                                                                       (3.23) 

Case 2: [𝑺] ≫  𝑲𝐌 

This case represents very high substrate concentration that saturates the enzyme. 

Applying this condition, Eq. (3.12) reduces to the form as given below 

𝑅 (𝑥, 𝑡) =  𝑎M𝑛enz     , 0 ≤ 𝑥 ≤ 𝐿𝑒                                                                           (3.24) 

𝑅 (𝑥, 𝑡) = 0  ,            x > 𝐿𝑒 

Using Eq. (3.24) in Eq. (3.14), we get, 

𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
=  𝑎M𝑛enz ⇒

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
=

𝑎M𝑛enz

𝐷𝑆
 ,            0 ≤ 𝑥 ≤ 𝐿𝑒                                

Integrating the above equation for 0 ≤ 𝑥 ≤ 𝐿𝑒, we get, 

⇒ ∫
𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2

𝐿𝑒

𝑥=0

= ∫
𝑎M𝑛enz

𝐷𝑆

𝐿𝑒

𝑥=0

                                                                                                   

𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥
=

𝑎M𝑛enz

𝐷𝑆
𝑥 + 𝐶 = 𝛼′𝑥 + 𝐶,                   0 ≤ 𝑥 ≤ 𝐿𝑒                                  (3.25) 

where, 𝛼′ =
𝑎M𝑛enz

𝐷𝑆
 

Using the first boundary condition for substrate concentration in Eq. (3.25), we get, 

𝐶 = 0 

Again, integrating Eq. (3.25), we get, 
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∫
𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥

𝐿𝑒

𝑥=0

= ∫ 𝛼′𝑥

𝐿𝑒

𝑥=0

⇒ [𝑆](𝑥, 𝑡) =
𝛼′𝑥2

2
+ 𝐶1  ,                         0 ≤ 𝑥 ≤ 𝐿𝑒  

Using the second boundary condition, we get, 

𝐶1 = [𝑆](𝐿𝑒 , 𝑡) −
𝛼′𝐿𝑒

2

2
 

∴ [𝑆](𝑥, 𝑡) = [𝑆](𝐿𝑒 , 𝑡) +
𝛼′

2
(𝑥2 − 𝐿𝑒

2) 

⇒ [𝑆](𝑥, 𝑡) = [𝑆](𝐿𝑒 , 𝑡) +
𝑎M𝑛enz

2𝐷𝑆
(𝑥2 − 𝐿𝑒

2),     0 ≤ 𝑥 ≤ 𝐿𝑒                                  (3.26) 

Putting [𝑆](𝐿𝑒 , 𝑡) in Eq. (3.9), we get, 

𝜕[𝑆](𝐿𝑒 , 𝑡)

𝜕𝑡
=  −𝑎M𝑛enz 

Integrating the above equation we get, 

[𝑆](𝐿𝑒 , 𝑡) = −𝑎M𝑛enz𝑡 + 𝐶 

At 𝑡 = 0, [𝑆](𝐿𝑒 , 𝑡) = 𝑆0, ∴ 𝐶 = 𝑆0 

∴ [𝑆](𝐿𝑒 , 𝑡) = −𝑎M𝑛enz𝑡 + 𝑆0                                                                                          (3.27) 

Again,  

𝐷𝑃[𝑃](𝑥, 𝑡) = 𝐷𝑆[𝑆](𝐿𝑒 , 𝑡) + 𝐷𝑃[𝑃](𝐿𝑒 , 𝑡) − 𝐷𝑆[𝑆](𝑥, 𝑡)  ,                   0 ≤ 𝑥 ≤ 𝐿𝑒 

⇒ 𝐷𝑃[𝑃](𝑥, 𝑡) = 𝐷𝑆[𝑆](𝐿𝑒 , 𝑡) + 𝐷𝑃[𝑃](𝐿𝑒 , 𝑡) − 𝐷𝑆 {[𝑆](𝐿𝑒 , 𝑡) +
𝑎M𝑛enz

2𝐷𝑆
(𝑥2 − 𝐿𝑒

2)} 

⇒ [𝑃](𝑥, 𝑡) = [𝑃](𝐿𝑒 , 𝑡) −
𝑎M𝑛enz

2𝐷𝑃
(𝑥2 − 𝐿𝑒

2)                                                            (3.28) 

Placing [𝑃](𝐿𝑒 , 𝑡) in Eq. (3.10),  we get, 

𝜕[𝑃](𝐿𝑒 , 𝑡)

𝜕𝑡
=  𝑎M𝑛enz ⇒ [𝑃](𝐿𝑒 , 𝑡) = 𝑎M𝑛enz𝑡 + 𝐶 
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At 𝑡 = 0, [𝑃](𝐿𝑒 , 𝑡) = 0, ∴ 𝐶 = 0 

∴ [𝑃](𝐿𝑒 , 𝑡) = 𝑎M𝑛enz𝑡                                                                                                      (3.29) 

Case 3: [𝑺] ≈  𝑲𝐌 

In this case, the substrate concentration is comparable to enzyme kinetics. Applying 

this condition, Eq. (3.12) reduces to the form as given below 

𝑅 (𝑥, 𝑡) =  
𝑎M𝑛enz

2
, 0 ≤ 𝑥 ≤ 𝐿𝑒                                                                               (3.30) 

𝑅 (𝑥, 𝑡) = 0  ,            x > 𝐿𝑒 

Solving Eqs. (3.9) and (3.10) as per the above condition we get, 

[𝑆](𝑥, 𝑡) = [𝑆](𝐿𝑒 , 𝑡) +
𝑎𝑀𝑛𝑒𝑛𝑧

4𝐷𝑆
(𝑥2 −  𝐿𝑒

2)                                                                (3.31) 

[𝑃](𝑥, 𝑡) = [𝑃](𝐿𝑒 , 𝑡) −
𝑎𝑀𝑛𝑒𝑛𝑧

4𝐷𝑃
 (𝑥2 −  𝐿𝑒

2)                                                              (3.32) 

where, 

[𝑆](𝐿𝑒 , 𝑡) = −
𝑎𝑀𝑛𝑒𝑛𝑧𝑡

2
+ 𝑆0                                                                                           (3.33) 

[𝑃](𝐿𝑒 , 𝑡) =
𝑎𝑀𝑛𝑒𝑛𝑧𝑡

2
                                                                                                        (3.34) 

Now, for the condition 𝑥 > 𝐿𝑒, i.e. going beyond the enzyme layer, deep into the bulk 

electrolyte, the substrate and product concentrations are determined as shown below. 

As 𝑅(𝑥, 𝑡) = 0, so, Eq. (3.9) becomes, 

𝜕[𝑆](𝑥, 𝑡)

𝜕𝑡
=  𝐷𝑆

𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
 

Assuming steady state, we get,    
𝜕2[𝑆](𝑥, 𝑡)

𝜕𝑥2
= 0 

Integrating, we get,   
𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥
= 𝐶 = 0                     [∵

𝜕[𝑆](𝑥, 𝑡)

𝜕𝑥
= 0 𝑎𝑡 𝑥 = ∞] 
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Integrating the above equation, we get,  

[𝑆](𝑥, 𝑡) = 𝐶 = 𝑆0                                                               [∵ [𝑆](𝑥, 𝑡) = 𝑆0𝑎𝑡 𝑥 = ∞]  

∴ [𝑆](𝑥, 𝑡) = 𝑆0,              𝑥 > 𝐿𝑒                                                                                       (3.35) 

Again,
𝜕[𝑃](𝑥, 𝑡)

𝜕𝑡
=  𝐷𝑃

𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2
 

Assuming steady state, we get,    
𝜕2[𝑃](𝑥, 𝑡)

𝜕𝑥2
= 0 

Integrating, we get,   
𝜕[𝑃](𝑥, 𝑡)

𝜕𝑥
= 𝐶 = 0                     [∵

𝜕[𝑃](𝑥, 𝑡)

𝜕𝑥
= 0 𝑎𝑡 𝑥 = ∞] 

Integrating the above equation, we get, 

[𝑃](𝑥, 𝑡) = 𝐶 = 0                                                                   [∵ [𝑃](𝑥, 𝑡) = 0 𝑎𝑡 𝑥 = ∞]  

∴ [𝑃](𝑥, 𝑡) = 0,              𝑥 > 𝐿𝑒                                                                                        (3.36) 

In this way, the concentration of products is obtained which further contributes to 

acid/base reactions resulting in pH variations at the oxide surface. 

 

3.2.3. Modeling of acid/base reactions of the product in the electrolyte 

The product produced in the reactions releases 𝐻+/𝑂𝐻−ions depending on whether it 

is acidic or basic. The resulting concentration of 𝐻+ions can be determined by solving 

the equations obtained by using various parameters such as acid dissociation constant 

of the product (𝐾a), water ionic product (𝐾e), charge neutrality concept and the 

acid/basic properties of the initial solution (𝐶𝑖).  

Let us consider [𝐻𝐴] to be the product involved in production of 𝐻+ions as given in 

Eq. (3.37). Therefore, the acid dissociation constant is given by Eq. (3.38). 

𝐻𝐴 + 𝐻2𝑂 ⟷ 𝐻+ + 𝐴−                                                                                                    (3.37) 

𝐾a =  
[𝐴−][𝐻+]

[𝐻𝐴]
                                                                                                                  (3.38) 
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Water can be both an acid and a base. This results in the equillibrium reaction given by 

Eq. (3.39). This equillibrium reaction gives water ionic product as given by Eq. (3.40). 

𝐻2𝑂 ⟷ 𝐻+ + 𝑂𝐻−                                                                                                            (3.39) 

𝐾𝑒 = [𝐻+][𝑂𝐻−]                                                                                                                (3.40)              

The initial value of acid/basic nature of the solution can be determined by using the pH 

of the buffer solution (𝑝𝐻0) and the water ionic product as shown in Eq. (3.41) [16]. 

The charge neutrality concept is shown in shown in Eq. (3.42).   

𝐶i =  10−𝑝𝐻0 − 10−(𝑝𝐾𝑒−𝑝𝐻0)                                                                                           (3.41)                                                                                                                                                                                          

[𝐻+] = [𝐴−] + [𝑂𝐻−] + 𝐶𝑖                                                                                               (3.42)  

Solving the Eqs. (3.38) to (3.42), the we get the concentration of 𝐻+ions. These 

equations and solutions may vary depending on the nature of product. The resulting pH 

of the solution is determined based on the concentration of 𝐻+ions produced as given 

by Eq. (3.43). 

𝑝𝐻(𝑥, 𝑡) =  − log[𝐻+](𝑥, 𝑡)                                                                                                           (3.43)   

The values of 𝑝𝐻, thus obtained at different diffusion length is further used to determine 

the surface potential at the oxide-electrolyte interface.  

 

3.2.4. ISFET Modeling 

The modeling of ISFET corresponds to the surface potential variation at the oxide-

electrolyte interface due to pH variations. This can be done by using the Bousse’s 

model, which has been discussed in details in Chapter 2. In this model, leaving aside 

the pH variations, the other factors that affect are the sensitivity parameter 𝛽 and the 

point of zero charge 𝑝𝐻𝑝𝑧𝑐. These factors depend on 𝐾𝑎 and 𝐾𝑏, which are the 

equilibrium constants at the acid and base point respectively. The equilibrium constants 

are almost fixed for a particular dielectric under certain conditions. Use of different 

dielectric materials in a device as gate insulator varies the device sensitivity.  
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The sensitivity 𝑠 of the device can be obtained from the Bousse model equation as 

shown in Eq. (3.44). It is the measure of the surface potential with the change in pH of 

the electrolyte at the surface of the insulator. It depends on the factor 𝛽, which shifts 

the sensitivity from the Nernstian sensitivity of 59 mV/pH. Since, the 𝛽 value is 

different for different insulating material, the sensitivity of the device also varies. 

Greater the value of 𝛽, the factor  𝛽/(𝛽 + 1)  approaches closer to unity and the device 

sensitivity approaches closer to Nernstian sensitivity. 

𝑆 =
𝜓

Δ𝑝𝐻
= 2.303 

𝑘𝑇

𝑞

𝛽

𝛽 + 1
                                                                                           (3.44) 

To test the sensitivity variation, different dielectric materials i.e. SiO2, Al2O3 HfO2, 

ZrO2, Ta2O5 and TiO2 were used and the simulation was done using MATLAB tool. 

The pH of the electrolyte was varied from 2-12 and consequently the other 

measurements were taken. The known values of dissociation constants and other 

calculated parameters for Al2O3 HfO2, ZrO2, Ta2O5 and TiO2 are listed in Table 3.1 at 

25 ºC. The 𝑝𝐻𝑝𝑧𝑐 value is found to be different for different dielectric materials. The 

site density from the available literature is taken. Taking 𝐶𝑒𝑞 as 20 µFcm-2 and 𝑁𝑆 

values from Table 3.1, the 𝛽 value was calculated for different dielectrics followed by 

the sensitivity. Fig. 3.2 shows the surface potential variation with pH for different 

dielectric materials depicting variations in sensitivity. It is seen that Al2O3 has a very 

low sensitivity as compared to the other materials, whose sensitivity are almost 

comparable.  The sensitivity has been found highest for Ta2O5 and ZrO2, which is 

comparable to Nernstian sensitivity.  Thus, the use of high-κ dielectric material is 

preferred over low-κ materials. 

 

3.2.5. Current transport model for high-κ dielectric nanomaterial based ENFETs 

The change in potential seen in the previous section affects the threshold voltage and 

hence, the drain current of the device. In nanomaterial based FET such as G-ENFET 

and CNT-ENFET, the Si substrate is replaced by graphene and CNT respectively. From 

the fabricated device characteristics of such ENFETs [6-8], it was observed that 

nanomaterial based ENFETs behave like MOSFET. Moreover, from structural point of 

view ENFETs closely resemble MOSFET, so, the MOSFET or ISFET current 
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equations can be used along with the threshold voltage of ENFET as the input parameter 

(𝑉𝑇𝐻,𝐸𝑁𝐹𝐸𝑇).  

Table 3.1. Sensitivity of different dielectrics at 25 ºC 

Gate 

Insulating 

Material 

Dielectric 

Constant 

(𝜿) 

𝒑𝑲𝒂  𝒑𝑲𝒃  𝒑𝑯𝒑𝒛𝒄 Site 

Density 

𝑵𝑺 (cm-2) 

𝜷 Sensitivity 

𝑺 (mV/pH) 

Al2O3 9 10 6 8 [100] 8 × 1014 4.98 49.3 

ZrO2 25 7 5 6 [75] 10 ×1014 62.2 58.2 

HfO2 25 9 6 7.5 [72] 10 × 1014 19.68 56.3 

Ta2O5 26 4 2 3 [100] 10 × 1014 62.25 58.3 

TiO2 80 7.4 4.94 6.17 [19] 10 × 1014 36.65 57.6 

 

 

Fig. 3.2. Surface potential variation with pH for different dielectric materials 

depicting variations in sensitivity 
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The current equations for ENFET in linear and saturation regions are given by Eqs. 

(3.45) and (3.46) respectively. 

𝐼𝐷𝑆,𝑙𝑖𝑛 =  𝜇
𝑊

𝐿
 𝑉𝐷𝑆𝐶𝑜𝑥{(𝑉𝐺𝑆 − 𝑉𝑇𝐻,𝐸𝑁𝐹𝐸𝑇) − 0.5 𝑉𝐷𝑆}                                              (3.45) 

𝐼𝐷𝑆,𝑠𝑎𝑡 =  𝜇
𝑊

2𝐿
𝐶𝑜𝑥 (𝑉𝐺𝑆 − 𝑉𝑇𝐻,𝐸𝑁𝐹𝐸𝑇)2                                                                        (3.46) 

The determination of threshold voltage of nanomaterial based ENFETs is the critical 

factor. The calculation of parameters involved in the threshold voltage equation is 

different for graphene and CNT based ENFETs. It has been discussed in the later 

chapters. A sample code of the developed model in MATLAB tool has been shown in 

Appendix A. 

 

3.3. Summary 

In this chapter, the generalized steps required to develop an electrochemical model for 

high-κ dielectric nanomaterial based ENFETs has been shown. It is seen that the 

modeling is done in different phases considering the variations in the device layer by 

layer. From the modeling steps it can be summarized that the main activities on which 

ENFET modeling depends are the enzymatic reactions on the substrate biomolecules, 

diffusion phenomena of the main substrate in the electrolyte, acidic or basic reactions 

of the product in the electrolyte, the pH detection properties of ISFET and the current 

transport model of the nanomaterial based ENFET. The difference arises in the 

threshold voltage determination for different nanomaterials used as substrate. 

Moreover, for different biomolecules the acid/base reactions leading to the pH 

variations may vary. From the developed generalized model, it was found that the most 

influential parameters which produce variations in the device performance are 𝐾𝑀, 

𝑛𝑒𝑛𝑧, [𝑆], 𝐾𝑎, 𝑝𝐻𝑝𝑧𝑐, 𝑝𝐻0, 𝛽, 𝑁𝑠, 𝑉𝑇𝐻,𝐸𝑁𝐹𝐸𝑇, 𝜅, 𝜇, 𝑊, 𝐿 and 𝐶𝑜𝑥. Based on these 

parameters, the validation of the generalized model has been carried out using three 

different nanomaterial based ENFET devices as shown in the succeeding chapters.  
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