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4.0. Introduction 

As mentioned in chapter 1 and chapter 3, direct interfacing circuit (DIC) based 

methods are gaining popularity for sensor response measurement due to their design 

simplicity, low power consumption, less space requirement and cost-effectiveness. 

However, DIC based model [4, 6, 26] that can minimize the errors in the measurement 

system for real-time applications with higher reliability is an essential requirement [7, 

20]. Although many research efforts have focused on the various application of DICs 

such as resistance [7, 17, 20, 21], capacitance [11, 15, 22, 24], inductance [16] and 

analog voltage [3, 18, 28], the possible framework that can minimize the error in the 

measurement is less exploited. 

In chapter 3, design, implementation and analysis of DIC based multisensory E-Nose 

framework was discussed. The capability to efficiently classify different gases is 

validated through a FFBP ANN implemented in µC. These results shows that it is 

possible without the need of an ADC to effectively measure the counter value as a 

feature of analog voltage by the MCU and also the measured counter values can be used 

to model pattern recognition tools. However, the DIC model poses nonlinearity error and 

fails to accurately interpret the measured voltage in terms of count value. This affects the 

accuracy of the measured responses from the sensor array by the E-Nose system, and can 

lead to inaccurate interpretation. Therefore, one of the objectives of this chapter is to 

incorporate an error compensation algorithm in the µC that will instantly reduce the 

nonlinearity error during measurement. 

Another objective of this chapter is detailed analysis of all the uncertainty sources 

inherent in a DIC-based E-Nose. The uncertainty caused by the sensor circuit and DIC 

parameters in measurement of output responses from a MOS gas sensor array is also 

estimated. In deriving such a setting, uncertainty principle is utilized to estimate ranges 

of the uncertainty of each parameter that causes a deviation in measurement from the 

true value. The efficiency of the E-Nose relies both on the DIC parameters and sensor 

parameters such as gas concentration, exponent of power law etc and therefore the 

uncertainties associated with these parameters, their estimations and control are of prime 

importance to have better output responses. Experimental investigation demonstrates that 

DIC interfaced MOS gas sensor based E-Nose incorporates various sources of 

uncertainty. 
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4.1. Error Compensation 

The minimization of nonlinearity (i.e., errors) in the DIC-based method not only 

relies on design parameter but also on the calibration techniques [20]. The extent of the 

nonlinearity indicates the reliability of design model for real-time implementation [19, 

20]. Thus an appropriate model is direly needed to achieve the lowest possible value of 

this parameter. Reverter et. al in [20] adopted three such techniques in the context of 

accuracy and resolution of direct resistive sensor-to-µC interfaces that yielded an error of 

0.01%. In the context of achieving suitable measurement setup, various approaches 

estimated the possible nonlinearity in the interfacing circuits. In [19] the authors 

estimated the DIC-interfacing error in capacitance measurement. Recently, Kokolanski 

et. al in [16] proposed a  µC-based interface circuit for inductive sensors. The method 

resulted in nonlinearity up to 0.3% of the full-scale span with 10-bit resolution. A simple 

direct analog-to-µC interfacing method for measuring analog signal is demonstrated in 

[3]. The sensor analog voltage is effectively measured using two external resistances and 

a capacitor. Although it works similar to the measurement obtained using 12-bit ADC, 

the measured outputs deviate from that of an ideal one which introduces a significant 

level of nonlinearity. Despite potential benefit due to design simplicity, the research did 

not explore the use of efficient nonlinearity reduction strategy to enhance the viability of 

measurement. 

Most of the aforementioned applications mainly focus on single sensor based DIC 

analysis with special emphasis on measurement procedure. However, DIC 

implementation for multi-sensor applications with an efficient calibration technique has 

not yet been explored. Recently, a method was developed for multi-sensor-DIC using 

MOS gas sensors in [9] and was shown to be useful in the multisensory environment. To 

further improve the nonlinearity and wider viability of the approach for measurement 

processes, it is essential to adopt more robust and reliable calibration strategy which 

motivated our study.  

As mentioned in chapter 1, a linearized DIC-multi-sensor (LDIC-MS) is presented 

which integrates the interfacing of analog signals to µC design model [3] to measure the 

individual sensor responses and collected outputs are analyzed using data-driven model. 

In linearizing the measurement, calibration was performed using compensating model so 

that it behaves similarly to that of the successive approximation based inbuilt- µC ADC. 

The proposed LDIC-MS not only focus on the possible aspect of DIC in multi-
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dimensional implementation but also evaluate the best compensating model using inter-

cross validation technique over real-time data. The merit of the proposed approach is that 

it linearizes the output measures towards ideal and is more suitable for sensor 

applications with higher reliability. 

The main contribution of the proposed error compensation technique is summarized 

as:  

1) It provides a potential solution to compensate nonlinearity in the measured 

output in an efficient way so as to accurately map the non-linear direct 

interfacing based ADC (nADC) to that of an ideal ADC. 

2) Application of the best fit model for online error compensation using µC. 

3) Implementation of the proposed framework in a multisensory environment and 

improved level of analysis ensuring higher reliability. 

The effectiveness of the LDIC-MS is examined considering an intelligent multi-

sensor electronic nose which is used as an identification marker for gas classification, 

food quality assessment etc. [32, 33]. Although various data-driven models such as 

SVM, LDA etc. [33, 34] are popular for classification task, the presented work adopted a 

three-layer feed forward back propagation neural network model  due to its popularity in 

digital systems and it poses high flexibility, accuracy, better repeatability and testability, 

lower adaption to noise, and higher compatibility [10]. Study and compensation of drift, 

discreteness, and disturbances have been conducted in [32, 33] however the proposed 

work focuses on error and nonlinearity compensation of the DIC considering that the 

short time drift of the sensors is very low. Moreover, in this work the experiments were 

conducted under constant ambient conditions without any environmental disturbances. 

An attempt is made in this work to show that the developed LDIC-MS is efficacious and 

more reliable. It is pertinent to mention herein that the MOS gas sensors require two 

separate power sources one for the sensor heater and the other for the sensor itself. The 

sensor heater voltages for each of the sensors are supplied from a separate power supply, 

so the rest of the MOS sensor works similar to any resistive sensor. Therefore the 

proposed work can be an opportunity for low power embedded systems where multiple 

sensor outputs are to be measured accurately. Moreover, based on the requirement the 

measured responses can be used to perform certain tasks. 
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4.1.1.Non-linear direct interfacing based ADC (nADC) 

As mentioned in chapter 3, Fig. 4.1 shows the DIC implemented in the µC for 

measurement [3]. The sensor output voltage inV  is measured in terms of counter value 

implementing the following steps in the µC. The charging and discharging path of the 

DIC is- first the capacitor C  is charged to inV through 2R  by configuring port 0D and 1D as 

high impedance inputs and a counter value 0N is initialized. We compare whether C is 

charged to a value higher than or equal to the input logic high IHV of the µC or not. If the 

voltage across the capacitor is IHV then the capacitor is discharged through the 

resistance 1R by configuring 0D as logic low ILV digital output and the counter value is 

incremented. Otherwise, the capacitor is charged through 1R  by configuring 0D as logic 

high digital output and counter value is decremented. 
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Fig. 4.1. Direct interfacing circuit. 
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Fig. 4.2. Circuit diagram for measurement of OLR . 
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The discharging time dt and charging time ct  is proportional to inV and ( )IH inV V  

respectively. Thus a counter value proportional to the analog voltage is considered as the 

measure of the analog voltage. During charging/discharging the input impedances of the 

I/O-pin of the µC when set high and low are ideally low and found as 112.12 Ω and 

47.06 Ω respectively [20]. 

Fig. 4.2 illustrates the circuit used to measure OLR . In doing so, I/O-pin 0D  is 

configured as output logic low and then an infinite loop is created in the code in order to 

execute it. XV is measured and set at 0 V by tuning the potentiometer. OLR is estimated by 

increasing the voltage across I/O-pin 0D  by tuning the potentiometer. Careful fine tuning 

of the potentiometer is required in order to ensure the exact position at which the voltage 

across XV is equal to 2DDV . The resistance of the potentiometer at that position is the 

value of OLR , which is measured by a precision multimeter (Keithley 2110). 

VOH=VDD

PIC

Microcontroller

VX
RP ROHD0

 

Fig. 4.3. Circuit diagram for measurement of OHR . 

Fig. 4.3 shows the circuit used to measure OHR . The I/O-pin 0D  is configured as output 

logic high and the open circuit voltage is measured across it to ensure that DDOH VV  . In 

contrast to the measurement of OLR , I/O-pin 0D  is reconfigured as output logic high and 

then an infinite loop is created in the code in order to execute it. XV is measured and set 

at DDV by tuning the potentiometer. OLR is estimated by decreasing the voltage across I/O-

pin 0D  by tuning the potentiometer. Careful fine tuning of the potentiometer is required 

in order to ensure the exact position at which the voltage across XV is equal to 2DDV . The 

resistance of the potentiometer at that position is the value of OHR , which is measured by 

a precision multimeter. 
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To effectively measure the corresponding count value of inV , we need to find out the 

starting counter value 0N and the delay to be provided while up-counting )( cD and down-

counting )( dD . The value of 0N , CD and DD are computed using equation (4.1-4.5) [3] 

given by: 
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where, the maximum value of the charging and discharging time is found to be 

ms5.8
max,


d

t  by setting DDin
VV  in (4.1) and ms5.4max, ct by setting 0

in
V  in (4.2) 

respectively. These values are determined by using known values of resistances, 

KΩ1979.3
1
R and KΩ861.92 R having 0.1% tolerance, capacitance μF255.2C having 

5% tolerance, V962.1
IH

V with a tolerance of 5%, V880.1
IL

V and supply voltage 

V65.4
DD

V . The values of 0N , CD and DD are calculated using (4.3-4.5) and are found 

to be 1412 and 7 instruction cycles for both the cases. The frequency 0( )F  of the crystal 

oscillator used is 20 MHz. 

We divide the full span counter value in the range of 0 to 4095 to represent a 12-bit 

ADC using equation (4.3), while the inbuilt ADC of the PIC 18F45K22 is of 10-bit. 

Moreover, in order to maintain the speed resolution trade-off [20], we have chosen a 

capacitor μF255.2C , which fulfills the systems resolution. For the DIC the sampling 

time depends on in
V  and the sampling rate is determined considering DDin

VV  where 

maximum discharging time
max,d

t is
 
required. Therefore, the sampling rate of the DIC used 

is found to be 117 Hz )/1(
max,d

t . Whereas, in case of internal ADC of the PIC higher 

sampling rate up to 31 KHz can be achieved. Although, the nADC system is slow 
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compared to the ADC it does not limit our analysis in case of sensors response 

acquisition. Precise measurement and calculation of different parameters were done in 

order to minimize the uncertainty caused by the E-Nose system on the sensor responses. 

The features for ANN classification has been extracted using (4.6): 

ibipiin VVV ,,,        (4.6) 

where, ipV , and ibV , are the peak and baseline responses of the i
th

 sensor. Measurement 

of ipV , and ibV , are a slow process, compared to the fast varying signals, therefore the 

lower sampling rate of 117 Hz does not affect the accuracy of the system. This 

differential mode of feature extraction in the µC inherently cancels out the common 

noise present in the signals. Moreover in direct-interfacing mode it eliminates the effect 

of any offset voltage present in the signals. The DIC based analysis presented here can 

be achieved by using any microcontroller following the design guidelines presented in 

Chapter 3 and Chapter 4. 

4.2. Error Compensation 

The calibration characteristic of direct interface model shown in Fig. 4.1 is analyzed 

by applying analog voltage from 0- DDV using a precision power supply (Agilent E361A). 

The characteristics of measured counter values with input analog voltage and the ideal 

characteristic are shown in Fig. 4.4.  

0NN 

IHin VV 

 

Fig. 4.4. Characteristics of Ideal ADC and nADC. 
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The plot shows that the maximum deviation of the measured value when IHin VV  is 

found as 301 counter values while it is 833 counter values when IHin VV  . There are 

distinctly two different slopes of the measured values for the two cases- IHin VV  and

IHin VV  , with a transition voltage of 
in IHV V . 

We have made an attempt to linearize the characteristic using several error 

compensation techniques as shown in Table 4.1. It is observed that Power model of order 

2 best fits the model in terms of root mean square error (RMSE) and the number of 

coefficients. Therefore we have used the Power-2 model which linearizes the output 

using a least square based approximation algorithm to fit the characteristic to a model 

equation. The model is then simulated in the PIC µC to calibrate the nonlinear 

measurements to linearize counter values. 

We approximate the nADC counter data ],........,,[ˆ
21 nxxxX  for the range IHin VV  (0-1.8 

V) to a linear ideal data ],........,,[ˆ 21 nyyyY  and similar approximation is made for the range 

IHin VV  (1.9- DDV ). In this process, a best fit two-term model is obtained given by: 

cXaY b ˆ
        (4.7) 

where, the coefficients ba, and c are estimated by using least square model based on 

Levenberg-Marquardt (LM) iterative algorithm.  

 

Table 4.1 Error Compensating Models. 

Fit Function-Degree Generalized Equation 
SSE RMSE No of 

coefficients 

Memory 

Consumption 
IHin VV   

IHin VV   
IHin VV   

IHin VV   

Exponential-1 bXae  
51065.2   51044.1   128.2 74.57 2 low 

Exponential-2 bX dXae ce  
365.6 41049.1   5.11 24.92 4 high 

Fourier-1 
0 1 1cos( ) sin( )a a Xw b Xw   571.8 41037.1   6.391 23.93 4 high 

Fourier-2 
0 1 1

2 2

cos( ) sin( )

cos(2 ) sin(2 )

a a XW b XW

a XW b XW

 

 
 

255.5 41009.1   4.615 22.3 6 Very high 

Gaussian-1 2
1 1( (( )/ ) )

1

X b ca e  
 

41019.4   41041.1   57.25 23.77 3 high 

Gaussian-2 2 2
1 1 2 2( (( )/ ) ) ( (( )/ ) )

1 2

X b c X b ca e a e     
9140 41025.1   27.6 23.86 6 Very high 

Power-1 baX  
6321 41007.4   19.88 39.6 2 low 

Power-2 baX c  
411.5 41043.1   5.238 23.97 3 low 

Polinomial-1 
1 2p X p  2761 41040.2   13.14 30.38 2 low 

Polinomial-2 
1 2 3p X p X p   571.8 41048.1   6.174 24.35 3 high 
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The least square approximation fits a function ),(ˆ PtY  of an independent variable t

with a vector of n parameters X  to a set of n data points ),( ii Xt  by minimizing the sum of 

the weighted squares of the errors (or residuals) between the measured )( itX  and the 

curve fit function ),(ˆ PtY i [12]. This scalar valued goodness of fit measure is called chi-

square )( 2  error criterion which is mathematically represented as: 

2

1

2 ),(ˆ)(
)( 











 




n

i i

ii

Y

PtYtX
P


      (4.8) 

where, Yi is the measurement error for measurement )( itY  . 

We calculate RMSE of counter value as 5.238 (1.27mV) for IHin VV  , and 238.2a ,

9233.0b and 69.79c with 95 % confidence bounds. 

Similarly for IHin VV   RMSE and estimates of a, b, and c are 23.97 (5.85 mV) and 

0.1526, 1.178 and 660.4 respectively. The linearized and the calibrated equations of the 

characteristics shown in Fig. 4.5 are: 

69.79238.2
9233.0

 ii xy , for IHin VV      (4.9) 

4.6601526.0
178.1

 ii xy , for IHin VV      (4.10) 

The linearization error compensating scheme of equation (4.9-4.10) are implemented 

in a PIC µC by applying analog voltage from 0- DDV . The compensation capability of the 

technique is depicted in Fig. 4.5.  

  

(a) (b) 

Fig. 4.5. Error plot before and after error compensation (a)
 0NN   and (b) 0NN  . 
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It shows that for both the ranges of inV ( IHin VV  and IHin VV  ), the error of the measured 

values has been substantially reduced as evident from the error characteristics. Therefore 

we are able to faithfully represent the measured counter values in a linear mode 

corresponding to the input analog voltages by nADC approach. In succeeding section it 

will be justified that this computational technique will result a promising classification of 

gases in nADC approach. 

4.3. Experimental Setup 

As mentioned in chapter 3, a multisensory measurement system (shown in Fig. 4.6) 

was developed which consists of (a) sample and sensor chamber (b) gas sensor array, 

placed inside the sensor chamber (c) power supplies (d) pumps, valves and a mass flow 

controller (MFC) to control the gas and air circulation (e) µC, for data acquisition, 

control of gas flow system and linearization for error compensation, and (f) LCD 

displays to display the results. In contrast to the E-Nose system discussed in chapter 3, 

here online error compensation of DIC-based measurement is performed. Therefore, the 

µC based DIC is able to accurately measure the sensor responses in terms of counter 

value.  

Air

Pump 1

Pump 2

Pump 3Mass Flow 

Controller

Gas Outlet

Sensor Chamber
Gas sample 

Chamber

PC

Microcontrollers

nADC ADC

 

Fig. 4.6. Experimental setup of E-Nose. 

Three commercial MOS gas sensors TGS 2620, TGS 832 and TGS 2201 from Figaro 

Engineering, Inc. (Osaka, Japan) are used as the array in the sensor chamber. The reason 

for selecting MOS gas sensors is their good cross-sensitivity, which facilitates detection 

of a wide variety of gases [31, 32]. A prior experimentation was conducted to select 

these three sensors from 6 sensors (TGS 822, TGS 825, TGS 832, TGS 2600, TGS 2620 

and TGS 2201) due to their high sensitivity and selectivity to a wide variety of gases. 
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Moreover in [31] it has been demonstrated that with only four MOS gas sensors (TGS 

2602, TGS 2620, TGS 2201A and TGS 2201B) classification accuracy as high as 89.9 in 

MLP and 100 % in HSVM has been obtained. 

Similar to our earlier experiments discussed in chapter 3, in this work the sensor 

responses were collected at a constant room temperature (25 °C) and constant relative 

humidity (60±5%). Through experimentation the optimum response and purging time 

were determined and are found to be 80 s and 100 s respectively. The gas samples are 

prepared by injecting 300μL of the liquid samples in the sample chamber and allowed to 

volatilize for about 10 min. The gas was transported from the sample chamber to the 

sensor chamber at a constant flow rate of 1.2 SLPM controlled by a MFC. On exposing 

the sensors to the gas sample the output responses of the sensors gradually increases and 

reaches a peak stable state, whereas on removal of gas and application of fresh air the 

sensor responses gradually decreases and reaches its baseline value. The sensor 

responses are acquired by the two identical µCs using ADC and nADC approaches. The 

response voltage data is transferred and stored via USB USART in a computer in ADC 

approach while counter values are stored in case of nADC, for further analysis. 

Fig. 4.7 shows the sensor array interface to the two PIC µCs for nADC and ADC 

based measurements. 
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R2 R1
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D1

+5 V

C1

D2
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D5

VRL1

RS2

RL2

R4 R3

+5 V
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VRL2

RL3

R6 R5
+5 V

C3

VRL3

PIC 

Microcontroller 2
(nADC)

A0

A1

A2

PIC 

Microcontroller 1
(ADC)

RS3

Sensor 1

Sensor 2

Sensor 3

PC
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Fig. 4.7. nADC and ADC based measurement Circuit. 
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The study is conducted in two steps- in step 1 the stored data is processed in 

MATLAB for cluster analysis using PCA and offline classification of gases. In step-2 the 

classification models developed for ADC and nADC are coded in two µCs for online gas 

classification simultaneously. 

4.4. Clustering and Classification 

The nADC and ADC based features are compared using PCA and FFBP ANN in 

MATLAB. PCA is performed to check the cluster existence of the different gases used, 

whereas, FFBP ANN acts as the gas identification tool. We investigate the gas 

discrimination capability of both the systems for comparative analysis. The FFBP model 

used in both the cases is shown in Fig. 4.8, which consists of three layers- input layer, 

one hidden layer and output layer, where the subsequent layer has a connection from the 

preceding layer. The activation functions used in the input, hidden and output layer are 

tan-sigmoid log-sigmoid and purelin respectively. The input layer comprises of three 

neurons representing the three gas sensors, whereas the number of neurons at the output 

layer is set to one which represents the gas. The number of neurons at the hidden layer 

affects the discriminative capability of the ANN. For smaller number of hidden neurons 

the accuracy may not be adequate and too many hidden neurons may result in over 

fitting. Moreover, prior to training there are no formal methods to determine the number 

of hidden neurons. Therefore the ANN was trained with four numbers of hidden 

neurons- 1, 2, 3 and 4, using the Levenberg-Marquardt optimization technique. 

For analysis and validation of the nADC driven E-Nose array we have acquired 

responses of three MOS gas sensors for four target gases. Each gas was sniffed by the 

sensors to generate 50 feature voltages which accounts to a total data size of 50430  . 

TGS 2620

TGS 832

TGS 2201

Output

Input Layer







f

f

f

Hidden Layer

Output Layer

 f

 f

 f

 

Fig. 4.8. ANN model. 
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4.5. Results and Discussion 

4.5.1.Measurement system 

The gas sensors’ responses were measured by the internal ADC of the µC and by 

nADC technique and then linearized.  

  

(a) (b) 

Fig. 4.9. Baseline of TGS 2620 (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.10 Baseline of TGS 832 (a) count values and (b) voltage. 
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(a) (b) 

Fig. 4.11 Baseline of TGS 2201 (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.12 Peak of TGS 2620 to methanol (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.13 Peak of TGS 832 to methanol (a) count values and (b) voltage. 
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(a) (b) 

Fig. 4.14 Peak of TGS 2201 to methanol (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.15 Peak of TGS 2620 to acetic acid (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.16. Peak of TGS 832 to acetic acid (a) count values and (b) voltage. 
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(a) (b) 

Fig. 4.17. Peak of TGS 2201 to acetic acid (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.18. Peak of TGS 2620 to acetone (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.19. Peak of TGS 832 to acetone (a) count values and (b) voltage. 
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(a) (b) 

Fig. 4.20. Peak of TGS 2201 to acetone (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.21. Peak of TGS 2620 to 2-propanol (a) count values and (b) voltage. 

  

(a) (b) 

Fig. 4.22 Peak of TGS 832 to 2-propanol (a) count values and (b) voltage. 
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(a) (b) 

Fig. 4.23. Peak of TGS 2201 to 2-propanol (a) count values and (b) voltage. 

The count values and their corresponding voltages of the peak and baseline of the 

sensors responses on application and removal of various gases are collected by the µC. 

The collected values transferred to the computer via USB UART are illustrated in Fig 

4.9-4.23. Since for all the target gases, the peak value of the sensors for inbuilt ADC and 

C-nADC are almost the same therefore in the figures they merge with one another. It is 

notable from the repeatability plots that there are small jumps in the peak and the 

baseline values of the different sensors, however, the error is sufficiently small and does 

not affect the predictive accuracy of the system. 

The outputs from the µC were transferred to a PC via USB UART at a baud rate of 

9600 bps. The USB-UART connection is accomplished using a FT232RL IC, which 

provides USB to serial UART interface. Table 4.2 shows the mean values of the data set 

for the three sensors with their standard error of mean (SEM). We present in this work 

the comparison of measured responses among three approaches- with inbuilt µC ADC, 

error compensated nADC (C-nADC) and uncompensated nADC (U-nADC). It is 

observed in C-nADC and ADC that the maximum deviation is in case of TGS 2620 (0.02 

V) for G3 and the minimum deviation is of TGS 2201 (0.0001 V) for G4. Whereas the 

measurements performed considering U-nADC results in high amount of error compared 

to that of the inbuilt ADC of the µC. It can be inferred from Table 4.2 that due to close 

approximation of the inbuilt ADC and C-nADC to that of an ideal ADC their responses 

are within a close range. However, in case of the U-nADC a wide variation in responses 

compared to C-nADC and ADC is observed. Therefore as aforementioned, the response 

patterns from the sensors are appropriately captured using C-nADC and ADC based 

methods.
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To justify the novelty of our proposed method we present here the comparison with the 

state of the art techniques in Table 4.3. Various topologies of DIC have been proposed for 

accurate measurement of sensor response measurement since 2005. For the measurement of 

change in resistance or capacitance of a sensor three different topologies are reported in 

literature namely single, differential and full bridge topology. In all the topologies a three-

signal-auto-calibration technique is applied to measure the sensor output. However, in this 

technique, it is necessary to measure three discharge time, which is time-consuming. 

Moreover, to measure a single sensor response at least 4 separate µC pins are required. In 

contrast, the technique presented here requires only two pins to measure the sensor response. 

Moreover, error compensation after measurement of sensor response is only available in our 

proposed technique. 

Table 4.3 Comparison with state of the art techniques. 

Methods Microcontroller 

Used 

Topology Measured 

Quantity 

Complexity 

Level 

Multisensory 

Environment 

Nonlinearity 

Error % 

Error 

Compensation 
after 

measurement 

[20] PIC16F873 Single 
topology 

Resistance Medium No 0.01% FSS No 

[23] AVR ATtiny2313 Differential 

topology 

Resistance High No 0.01% FSS No 

[27] MSP430F123 Full-bridge 

topology 

Resistance High No 1.8% FSS No 

[24] AVR ATtiny2313 
 

Single 
topology 

Capacitance Medium No 2% FSS No 

[25] AVR ATtiny2313 Differential 

topology 

Capacitance High No 1.1% FSS No 

[3] PIC 18F458 Single 

topology 
Analog 

Voltage 

Low No - No 

[9] PIC 18F45K22 Single 
topology 

Analog 
Voltage 

Low Yes < 0.2% No 

Proposed 

Work 

PIC 18F45K22 Single 

topology 
Analog 

Voltage 

Low Yes < 0.01% Yes 

From the error compensation analysis it is evident that the proposed technique is able to 

compensate the nonlinearity with less than 0.01% error which is distinctly found to be a 

better method. Therefore we propose to preprocess the data with the technique for 

classification of the gases as discussed below. 

4.5.2.Clustering and classification 

To analyze the correlation of the sensor responses for different gases PCA is used. 

Principal component analysis (PCA), which is an unsupervised multivariate pattern 

clustering method, represents the original dataset with a new set of linear orthogonal 

variables called principal components (PCs). We have normalized the data set (each sensor 
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for each gas) by dividing the data by its corresponding maximum value. We project the 

four gases on the first three PCs (Fig. 4.24), since they accounted for more than 99% of the 

cumulative contribution of variance. The PCA shows good cluster separation among the two 

gases. It is observed that there is a partial overlapping between clusters of methanol and 

acetone (Fig. 4.24 (c)). 

  

(a) (b) 

 
(c) 

Fig. 4.24. PCA of (a) U-nADC, (b) C-nADC and (c) ADC based approaches. 

As mentioned in chapter 3, PCA plot can only provide us a visual aid for observing the 

cluster separation a quantitative metric- inter-intra class distance ratio is measured to 

quantify the separation of clusters in a 3-D space. In pattern classification, the data objects 
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are better clustered if the cluster members have lower intra-class distance and higher inter-

class distance [14]. The Euclidean intra-class distance )( intrad , inter class )( nterid  distance and 

inter-intra class distance ratio for a particular gas cluster is determined using equations 

(3.16), (3.17) and (3.18), presented in chapter 3. 

Table 4.4 shows the Euclidean intra-class distance calculated for the four gas clusters. 

The highest intra-class distance is observed in case of acetic acid, which yields 0.1827, 

0.1812 and 0.1789 using U-nADC, C-nADC and ADC respectively.  

Table 4.5 shows the Euclidean inter class distance between all the four gas clusters. We 

have further, determined the Euclidean inter-intra class distance ratio to obtain a single 

measure of class separation (Table 4.6) for all the classes. 

The average intra-class distance, inter-class distance and the class distance ratio of the 

entire dataset were calculated and found to be almost equal for C-nADC and ADC. The 

inter-intra class distance ratio of the entire cluster dataset is shown in Table. 4.7, it is 

confirmed from Table 4.4-4.7 that the proposed method of direct interfacing conforms to 

that of ADC based approach in case of cluster classification. 

Table 4.4 Euclidean intra class distance. 

Gas U-nADC C-nADC ADC 

Methanol (G1) 0.0743 0.0718 0.0719 

Acetic Acid (G2) 0.1827 0.1812 0.1789 

Acetone (G3) 0.1058 0.1026 0.0965 

Propanol (G4) 0.1128 0.1100 0.1101 

 

Table 4.5 Euclidean inter class distance for nADC and ADC. 

Method G1G2 G1G3 G1G4 G2G3 G2G4 G3G4 

U-nADC 0.7637 0.4334 1.1013 0.9174 1.919 0.7079 

C-nADC 0.7876 0.3640 1.0433 0.9231 1.1933 0.7181 

ADC 0.8281 0.2607 1.0215 0.8990 1.2414 0.7706 
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Table 4.6 Euclidean inter-intra class distance ratio for nADC and ADC. 

(a) U-nADC (b) C-nADC 

 

 G1 G2 G3 G4 

G1 0 10.278 5.833 14.822 

G2 4.180 0 5.021 6.523 

G3 4.096 8.671 0 6.690 

G4 9.763 10.566 6.275 0 
 

 G1 G2 G3 G4 

G1 0 10.969 5.069 14.530 

G2 4.346 0 5.099 6.585 

G3 3.547 8.997 0 6.990 

G4 9.493 10.848 6.528 0 

(c) ADC 
 

 G1 G2 G3 G4 

G1 0 10.9541 5.0626 14.5104 

G2 4.4025 0 5.1599 6.6702 

G3 3.7720 9.5658 0 7.4415 

G4 9.4850 10.8383 6.5233 0 
 

Although PCA and Euclidean inter-intra class distance ratio provides a better 

understanding about the clusters formation of the four gases, the clustering is unsupervised 

and classification cannot be performed using this technique. It is observed that between n-

ADC techniques, C-nADC provides more accurate measurement compared to U-nADC, so 

we have evaluated the effect of error compensation on the classification accuracy. Further, 

performance of ANN for ADC, U-nADC and C-nADC is compared and shown in Table 4.8. 

In order to classify gas samples we have used FFBP ANN. The feature datasets of the three 

approaches are partitioned as- 60% for training and 40% for testing. The number of hidden 

neurons )(n for the best classification performance is found to be 4 for implementation in 

ADC as well as for U-nADC and C-nADC (Table 4.8). It is observed that C-nADC results 

in higher classification accuracy (98.75%) than that of U-nADC (97.91%) and ADC 

(97.08%) in our multisensory environment. The weights and biases of the neural networks 

with optimal hidden neurons simulated in MATLAB are used to code the ANN algorithm in 

two separate µCs for online comparison of the proposed method. In one µC both the U-

nADC and C-nADC based prediction results are calculated sequentially and displayed in a 

LCD, and in the other µC ADC based prediction is performed. The µC based observation is 

depicted in a confusion matrix as shown in Table 4.9. 
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The nADC and ADC based online gas discrimination of 200 gas samples (50 samples 

for each gas) analyzed accounted for 95%, 96.5% and 98% accuracy for ADC, U-nADC and 

C-nADC respectively. 

Table 4.9 Confusion matrix showing online performance of (a) ADC, (b) U-nADC and (c) C-nADC. 

(a) (b) 
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G4 0 0  50 100% 
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(c) 
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It is experimentally found that although overleaping clusters are formed in PCA of ADC 

framework, the testing accuracy of the ADC framework is only 3% less than as that of C-

nADC. This is due to the fact that unsupervised linear model such as PCA may sometime 

fail to provide a complete solution to the classification problem. However, the use of 

supervised non-linear model such as FFBP ANN could provide good predictive accuracy, 

even if overlapping cluster exists in PCA [5]. It is worth mentioning that the performance of 

ANN-based learning depends on appropriate setting of model parameters which are obtained 

by iterative training of the input features. However, the learning efficiency in terms of low 

processing time, minimum number of epoch, error function (i.e., MSE) relies on 

discriminant features of multiple input sources that to be identified. In case of low 
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discrimination among multiple groups’ features which are embedded into single form of 

input vectors, the learning process becomes time consuming and requires more number of 

iterations to achieve an optimum level of MSE. Despite low Euclidean inter-class distance 

specifically for G1G3 in ADC method, the performance was not bad due to distinct 

parameter value that helps quick learning of the discriminant process. The low parameter 

value is presumably due to the fact that built-in ADC resolution is 10-bit while nADC 

measurements have a resolution of 12-bit. As is evident, the learning with C-ADC was 

achieved at less number of epochs for smaller time interval as compared to that of the ADC. 

A small difference in error is observed, however, it is reasonable to achieve small difference 

of performance.  

The scalability of the proposed approach is also examined in the context of results 

obtained using the optimized model on new set of data that has not been previously used for 

this measurement [13]. In order to investigate the systems scalability the system is trained 

with the new dataset of the gas sensor responses and testing was performed. The 

experimentation is repeated for three cycles and accordingly performances have been 

investigated which is found to be satisfactory. The quantitative measure achieved in terms of 

average accuracy for ADC, U-nADC and C-nADC are found to be 94.66%, 96.833 and 

98.16% respectively. Thus it ensures the robustness and viability of the proposed system for 

real time measurement. 

We admit that number of pins in a µC rules the number of signals which in turn rules the 

cost of the package. As in our proposed approach two spare input lines are required for each 

analog signal, the system may not be feasible when the number of sensors in an array is very 

large. However, a noteworthy merit of this approach is multisensory response measurement 

and application of online discrimination algorithms in µC is achieved by using simple off-

the-shelf components. 

4.6. Measurement Uncertainty  

In spite of accurate and precise measurement of sensor signals using most sophisticated 

instruments, the interpretation is not always ideal. Different measurement characteristics 

includes- accuracy, precision, repeatability, resolution etc. Uncertainty is another metric of 

measurement systems. The imperfection inherent in measuring real world measurements is 
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called uncertainty. This flaw may be due to limitations of the measuring instrument, 

measurement process, imported uncertainty, operator skill, sampling issue and the 

environment [1, 2]. Measurement uncertainty is a non negative parameter that investigates 

the individual uncertainty in measurement of various parameters that contributes to the final 

uncertainty of the measurand. Here we will analyze the various parameters contributing to 

the uncertainty in measurement of the DIC based E-Nose sensor response voltages ( 1RLV , 

2RLV  and 3RLV ) for the three sensors used; the estimated concentration levels of the gases and 

the local circuit parameters. Typically the measurand and the parameters contributing to its 

uncertainty can be expressed in a mathematical model that provides us the necessary tool to 

measure the final uncertainty. 

Let us define the measurand as, .......),,( 321 XXXfY  where, iX is the number of 

parameters contributing to uncertainty in Y . To determine the standard uncertainty of 

different parameters two types of estimations are adopted. Standard uncertainty )(U

estimation of the mean, for a repeated number of readings of the parameter with standard 

deviation )(S is determined using [1, 2] – 

 
n

S
XU i         (4.11) 

where,

 

1

1

2










n

XX

s

n

i

i

, X is the mean, n is the number of measurements of the 

parameter and iX is the measurand. 

In cases where we are only able to establish the upper and lower bounds of uncertainty, 

we consider the parameters to be in rectangular distribution with uncertainty [1, 2] given by- 

 
3

a
XU i         (4.12) 

where, a is the half-width between upper and lower limits of uncertainty. The overall 

uncertainty of the measurand is given by [1, 2]- 

     
iall

ii XUSYU
2

     (4.13) 
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where, the sensitivity is given by- 

i

i
X

f
S




        (4.14) 

In this work we propose to estimate the uncertainty caused by the sensor circuit and DIC 

parameters in measurement of output responses from a MOS gas sensor array. 

4.6.1.Uncertainty estimation 

There is a certain amount of uncertainty in the measurement of sensor response voltage 

( RLV ) due to uncertainty of the sensor circuit parameters and that of the DIC parameters. The 

parameters measured using the digital multimeter (keithley 2110), consists maximum 

deviation within the range (distribution limit) of 5.0 , therefore equation (4.12) is used to 

find their uncertainty contribution. 

We are analyzing this in two steps. First the gas concentration dependent sensor 

response in resistance ( SR ) is given by (4.15) 

  
 nS CAR       (4.15) 

where, A is a concentration independent constant, nC is the concentration of the gas and

is the exponent of the power law dependent on the gas. The response voltage of the sensor 

across the load resistance is given in (3.11), in chapter 3. Now combining (4.15) and (3.11), 

it is proposed that- 

Ln

LC
RL

RCA

RV
V







      (4.16) 

This equation accounts for the dependency of both the sensor and gas parameters on the 

response voltage. However the exponent  can be related to depletion theory of the 

semiconductor surface and the chemistry of the gas adsorption reaction [30]. Further,  is 

found to dependent on the LW ratio of the semiconductor [30]. Therefore the values of  

will be different for different sensors for a particular gas. 

In order to determine the uncertainty of the local sensor parameters of (4.16), the value 

of should be known. The values of   is typically calculated by measuring the sensitivity 

of the sensor at two different concentrations using – 
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      (4.17) 

Web-based computational engine WolframAlpha [29] was used to obtain the solution of 

the differential equation to estimate the sensitivity coefficients of individual sensor 

parameters in equation (4.16). The sensitivity coefficients of individual parameters are 

calculated using (4.18-4.21) as: 

Sensitivity of CV : 
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Sensitivity of LR : 
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Sensitivity of nC : 
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Sensitivity of  : 
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The overall uncertainty is estimated using (4.13) as: 
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           2222
)(  XUSXUSXUSXUSYU

nnLLCC CCRRVV   

         (4.22) 

In the second step the dependency of the sensor response voltage on the direct-interface 

local parameters is derived as- 

1
21221 )())1()((  zz bb

DDIHRL eRReVRRRVV   (4.23) 

where,          loopz tNNRRCb .111 021   

This equation is based on the condition that IHRL VV  in our work, since the values of 

sensor responses ),,( 321 RLRLRL VVV in all three gas sensors were found to be less than IHV for the 

four tested gases. Similar to the estimation of uncertainty contributed by the local sensor 

parameter, the overall uncertainty in the measurement of 
RLV is also estimated using (4.13). 

4.6.2.Results and discussion 

Under standard conditions the standard uncertainty of the gas flow chamber is 

determined as illustrated in Table 4.10. The standard uncertainty of the pipette used is 

provided by the manufacturer as 0.0173 ml. Therefore, for each gas, the standard uncertainty 

is 0.0173 ml, which is converted to their respective ppm level using equation (3.14), 

presented in chapter 3. 

Table 4.10 Standard uncertainty of gas concentration (
nC ). 

Gas Molecular 

weight (g/mol) 

Density of 

liquid (g/ml) 

Volume 

of liquid 

Uncertainty of 

the pipette 

Volume of gas 

flow Chamber 

Standard 

uncertainty 

Methanol 32.04 0.792
 

 

 

0.2 ml 

 

 

0.0173 ml 

 

 

557 ml 

18.2700 

Acetic Acid 60.05 1.049 12.9113 

Acetone 58.05 0.791 10.0660 

2-Propanol 60.01 0.786 9.6662 

 

To estimate the uncertainty associated with , for each tested gas, the values of  were 

determined by taking two data points in the power law characteristics- ( 11, nS CR ) and (

22 , nS CR ) where 1SR and 2SR are the sensor resistances when the gas with concentration level 

of 1nC and 2nC were applied. For each gas, 0.2 ml and 0.3 ml of the liquid were taken in a 
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fixed volume sample chamber of 280 ml, the concentration 1nC and 2nC were obtained as 

shown in (Table 4.11). The uncertainty in was calculated by using (4.11) for 5n trials for 

all the gases as shown in Table 4.11-4.14.  

It is observed that TGS 2201 yields the higher value of 
SR for methanol, acetone, and 2-

propanol and TGS 2620 for acetic acid. Further, the lower value of 
SR is observed in case of 

TGS 832 for methanol, TGS 2201 for acetic acid and TGS 2620 for acetone and 2-propanol. 

As mentioned in chapter 1, higher the value of 
SR lower is the sensitivity of the sensor 

towards the target gas and vice versa. It can be inferred from Table 4.11-4.14 that TGS 2620 

is highest sensitive towards acetone then 2-propanol, methanol, and acetic acid respectively. 

Further, the decreasing order of sensitivity of TGS 832 is towards methanol, acetone, acetic 

acid and 2-propanol and TGS 2201 is towards 2-propanol, acetone, acetic acid, and 

methanol respectively. 

It is worth mentioning the fact that uncertainty in E-Nose presents the errors propagating 

from the input gas parameters through the DIC to the output responses. Therefore, the 

efficiency of the E-Nose relies not only on the DIC parameters but also on the sensor local 

parameters such as gas concentration, exponent of power law of  gas, and therefore the 

uncertainties associated with these parameters and their estimations and control are of 

paramount importance.  
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Table 4.11 Standard uncertainty of  in case of methanol. 

Sensor 1nC  

(ppm) 

1nC  

(ppm) KΩ

1SR
 

KΩ

2SR
 

  Standard 

Uncertainty 

 

 

2620 

 

 

 

 

 

 

 

 

 

 

 

211.2141 

 

 

 

 

 

 

 

 

 

 

 

 

316.8212 

 

2.1000 1.6418 -0.6071  

 

0.0308 

2.1166 1.6742 -0.5784 

2.1570 1.6465 -0.6661 

2.2526 1.8613 -0.4706 

2.1913 1.8034 -0.4804 

 

 

832 

1.8560 1.2611 -0.9531  

 

0.0717 

1.8728 1.3002 -0.9000 

1.9642 1.2662 -1.0828 

1.9642 1.4866 -0.6871 

1.9174 1.4190 -0.7423 

 

 

2201 

2.9030 2.4417 -0.4269  

 

0.0170 

2.9896 2.4603 -0.4805 

2.9222 2.4766 -0.4080 

3.2287 2.7539 -0.3923 

3.1436 2.6890 -0.3852 

 

Table 4.12 Standard uncertainty of  in case of acetic acid. 

Sensor 1nC  

(ppm) 

1nC  

(ppm) KΩ

1SR
 

KΩ

2SR
 

  Standard 

Uncertainty 

 

 

2620 

 

 

 

 

 

 

 

149.2632 

 

 

 

 

 

 

 

223.8948 

4.9051 4.3964 -0.2700  

 

0.0549 

4.9377 4.4213 -0.2725 

4.9316 4.4029 -0.2797 

5.5506 4.4431 -0.5489 

4.9255 4.4029 -0.2766 

 

 

832 

2.3608 1.8729 -0.5709  

 

0.0989 

2.4712 2.0407 -0.4720 

2.5118 1.9930 -0.5705 

3.0099 1.9815 -1.0311 

2.5118 1.9930 -0.5705 

 

 

2201 

2.0054 1.9806 -0.0307  

 

0.0060 

2.0780 2.0530 -0.0298 

2.0561 2.0530 -0.0037 

2.0939 2.0811 -0.0151 

2.0623 2.0530 -0.0112 
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Table 4.13 Standard uncertainty of in case of acetone. 

Sensor 1nC  

(ppm) 

1nC  

(ppm) KΩ

1SR
 

KΩ

2SR
 

  Standard 

Uncertainty 

 

 

2620 

 

 

 

 

 

 

 

116.3698 

 

 

 

 

 

 

 

174.5546 

1.3217 0.9872 -0.7197  

 

0.0183 

1.3560 1.0040 -0.7413 

1.3307 0.9963 -0.7139 

1.3258 1.0147 -0.6594 

1.3405 1.0313 -0.6469 

 

 

832 

3.1672 1.5597 -1.7470  

 

0.0182 

3.5960 1.5631 -2.0548 

3.5311 1.6858 -1.8235 

3.3350 1.7759 -1.5542 

3.2220 1.5978 -1.7297 

 

 

2201 

4.6276 3.8650 -0.4441  

 

0.0121 

4.7424 3.8860 -0.4912 

4.7084 3.8913 -0.4701 

4.6804 3.9208 -0.4368 

4.6786 3.9398 -0.4239 

 

Table 4.14 Standard uncertainty of in case of 2-Propanol. 

Sensor 1nC  

(ppm) 

1nC  

(ppm) KΩ

1SR
 

KΩ

2SR
 

  Standard 

Uncertainty 

 

 

2620 

 

 

 

 

 

 

 

111.7476 

 

 

 

 

 

 

 

167.6215 

1.7169 1.4207 -0.4669  

 

0.0081 

1.7595 1.4304 -0.5107 

1.7361 1.4233 -0.4899 

1.7436 1.4258 -0.4962 

1.7609 1.4567 -0.4676 

 

 

832 

2.8422 2.1090 -0.7358  

 

0.0425 

3.1408 2.1293 -0.9586 

2.9980 2.1138 -0.8618 

2.9425 2.1218 -0.8065 

2.9638 2.2032 -0.7314 

 

 

2201 

4.3784 3.9184 -0.2737  

 

0.0138 

4.4823 3.9507 -0.3114 

4.4347 3.9616 -0.2782 

4.4163 3.9782 -0.2576 

4.4482 4.0571 -0.2270 

Apart from these parameters, output response may deviate due to some external sources, 

such as ageing of the sensors, sensor poisoning, and environmental variation etc. known as 
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sensor drift. It can be compensated by using other algorithms. Although, EUC cannot be 

eliminated completely, its minimum level reflects the goodness of the system. 

The uncertainties in measurement of RLV due to direct-interface parameters of (4.23) 

were calculated by using (4.13) as shown in Table 4.15. Table 4.15 shows that the sensor 

responses ( ) measured for four gases are 0.9114 V, 0.4372 V, 1.3116 V and 1.0746 V for 

G1, G2, G3 and G4 respectively. The best uncertainty for TGS 2620 demonstrated in case of 

methanol is 78.8955 µV while poorest uncertainty is shown for acetic acid as 0.78 mV. The 

uncertainty in measurement of RLV  is contributed by all parameters, however LR contributes 

least uncertainty while contributes highest uncertainty. Similarly for other two sensor the 

highest and the least uncertainty contribution is from and LR . 

On the other hand the uncertainty of measurement of sensor response ( RLV ) is shown in 

Table 4.16 which shows that poorest uncertainty is in case of TGS 2620 and TGS 2201 is 

1.2 mV while the best uncertainty in case of TGS 832 is 1.0 mV. The poorest uncertainty of 

1.2 mV in case of TGS 2620 and TGS 2201 is highly contributed by C (0.92 and 1.1 mV) 

and least contributed by 2R (0.88 µV and 1.17 µV). 

Again the best uncertainty in RLV is shown in case of TGS 832 (1.0 mV) which is again 

due to (0.88 µV). Based on the uncertainty budget shown in Table 4.15 and 4.16 an 

uncertainty rank for measurement of RLV  can be assigned to each parameter as shown in 

Table 4.17. 

Table 4.17 illustrates the rank wise uncertainty contribution of the sensor circuit 

parameter and direct-interface parameter while measuring RLV . It is observed that the 

maximum uncertainty of the sensor circuit is contributed by , while in case of direct-

interface circuit the maximum contributor of uncertainty is from capacitors )(C . Thus we can 

conclude that to improve the precision of measurement of RLV  a more precise value of C  is 

necessary since it contributes the highest uncertainty among all the parameters in Table 4.17. 

For sensor circuit, the highest uncertainty is contributed by  (Rank-1) which interprets that 

the gas samples used in the experiments may have variation in concentration and purity. 

Moreover factors like reactive impurity [8] and variation in measurement of volume of 

RLV

C
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liquid etc. affects the gas concentration as well as the conductivity of the gas sensors, 

thereby resulting in uncertainty contributed by .  

Table 4.15 Uncertainty estimation for sensor parameters with four tested gases. 

Parameter Gas 

Measured Value Sensitivity 
Uncertainty (V) 510  
( Standard Uncertainty) 

2620 832 22

01 

2620 832 2201 2620 832 2201 

 

 

 

 

 

)V(cV  

G1  

 

 

 

 

5.0573 

0.9999 1 0.9998 0.0265 2.8900 2.8894 

(0.0289 310 ) 

G2 0.9994 0.9999 0.9982 2.8884 2.8896 2.8847 

(0.0289 310 ) 

G3 0.9999 1 0.9997 2.8898 2.8900 2.8892 

(0.0289 310 ) 

G4 0.9999 0.9999 0.9994 2.8898 2.8898 2.8883 

(0.0289
310 ) 

 

 

 

)(LR
 

G1  

 

 

461.83 

 

 

 

462.9 

 

 

 

465.7 

9.19 710  1.43 710  2.37 610  0.0265 0.0041 0.0685 

(0.0289) 

G2 6.13 610  1.36 610  1.99 510  0.1771 0.0393 0.5756 

(0.0289) 

G3 7.72
710  5.80

910  2.81
610  0.0223 0.0001 0.0814 

(0.0289) 

G4 6.36 710  7.34 710  6.29 610  0.0184 0.0212 0.1819 

(0.0289) 

 

 

 

 

)ppm(nC
 

G1 211.214 1.22 610  3.00 710  2.23 610  2.230 0.5481 4.078 

(18.270) 

G2 149.263 5.12
610  2.40

610  1.90
610  6.612 3.104 2.463 

(12.911) 

G3 116.369 2.20
610  4.03

810  5.00
610  2.222 0.0406 5.041 

(10.066) 

G4 111.747 2.01
610  2.23

610  7.27
610  1.951 2.163 7.035 

(9.666) 

 

 

 


 

G1 0.6071 0.9531 0.4269 0.0023 3.55
410  0.0059 7.001 

(0.0308) 

2.551 

(0.0717) 

10.05 

(0.0170) 

G2 0.27 0.57 0.0307 0.0142 0.0032 0.0464 77.80 

(0.0549) 

31.17 

(0.0989) 

27.86 

(0.0060) 

G3 0.7197 1.7470 0.4441 0.0017 1.27
510  0.0062 3.107 

(0.0183) 

0.0232 

(0.0182) 

7.554 

(0.0121) 

G4 0.7669 0.7358 0.2773 0.0014 0.0016 0.0138 1.123 

(0.0081) 

6.811 

(0.0425) 

19.08 

(0.0138) 

 

 

 

 

)V(RLV
 

G1 0.9114 1.0103 0.6967  

 

 

 

- 

 

 

 

 

- 

 

 

 

 

- 

7.895 3.894 11.22 

( - ) 

G2 0.4372 0.0918 0.1145 78.14 31.46 28.13 

( - ) 

G3 1.3116 0.6461 0.4610 4.789 2.890 9.532 

( - ) 

G4 1.0746 0.7095 0.4847 3.663 7.709 20.54 

( - ) 
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Table 4.16 Uncertainty estimation for DIC local parameters for three gas sensors (TGS 2620, TGS 

832, TGS 2201). 

 

Parameter 

Estimated/ 

Measured value 

Sensitivity Uncertainty (V) 510  

( Standard uncertainty ) 

2620 832 2201 2620 832 2201 2620 832 2201 

)V(IHV  1.962 1.2505 1.2407 1.2897 3.6139 3.5856 3.7272 

( 0.0289 310 ) 

)(1 R  3197 3205 3211 2.3429 410  2.2378 410  2.7350 410  6.7709 6.4671 7.9043 

( 0.289 ) 

)(2 R  9861 9951 9961 
3.0566 610  2.7685 610  4.0766 610  0.0883 0.080 0.1178 

( 0.289 ) 

)V(DDV  4.65 0.2505 0.2407 0.2897 0.7239 0.695 0.8371 

( 0.0289 310 ) 

)μF(C  2.255 2.256 2.116 3.1897 510  3.0570 510  3.9585 510  92.13 88.34 110 

( 2.89 ) 

N  768 790 717 0.0011 0.0011 0.0012 73.66 48.15 38.896 

( 0.6609) ( 0.435) ( 0.3232 ) 

)μs(loopt  2.601 

 
2.7631

510  2.6508
510  3.2195

510  26.24 25.18 30.585 

(  0.95 310  ) 

)V(RLV  1.10 1.16 1.05 - 120 100 120 

(-) 

 

Table 4.17 Rank of parameters in EUC in
RLV measurement. 

Rank Sensor  Direct Interface circuit 

 For all gases For all sensors 

1   C  

2 nC  N  

3 CV  
loopt  

4 LR  1R  

5 - IHV  

6 - DDV  

7 - 2R  

4.7. Conclusion 

This study has addressed the nonlinearity problem prevalent in analog voltage 

measurement of a single sensor based DIC by proposing an optimized error compensation 

technique. The proposed technique has been compared with the ideal ADC and promising 

results were achieved. An online comparison of the proposed system with the 
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uncompensated DIC and ADC based system established the viability of the system. 

Moreover a multisensory measurement system is designed and developed using the 

proposed technique which is incorporated in an E-Nose setup. Experimental findings 

indicate that the proposed multisensory measurement system approximates the ADC based 

system. Further a comparative study on offline and online gas discrimination using the 

measured responses from the proposed system and an ADC based system reveals similar 

results. The technique reported here is not restricted to this particular application only, but it 

can be tested also for various practical multisensory systems. Further, this chapter addressed 

a protocol to measure uncertainties in DIC based multi-sensor framework. We have 

estimated the extent up to which the individual input parameter will cause variation in the 

output responses of the sensors under controlled condition. This gives us an insight about the 

overall deviation that may occur in the responses from which we can interpret the interval in 

which the output remains. Further it indicates that the measured sensors responses reliably 

represent its true value. Since in our estimation the uncertainties are very low compared to 

the output we believe that the quality of our E-Nose system is accurate and reliable. 

Moreover it should be kept in mind that while designing an E-Nose system utmost care 

should be taken to minimize and if possible eliminate the uncertainty sources. Although, in 

practical situations some of the uncertainty sources cannot be eliminated, the deviation 

caused by those uncertainty sources must be considered during any interpretation from the 

measured values for effective output representation. 
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