List of Tables

Table no.	Table Caption	Page no
Chapter I		
1.1	Transfer functions	20
1.2	Commercially available E-Nose [104]	33
Chapter II		
2.1	Ratio of major volatile compounds to total volatile compound of Assam black tea	49
2.2	Tea tasters grading (Assamica)	50
2.3	Gas sensors with their properties [12]	52
2.4	Power Sources and their uses	55
2.5	Parameters of the CAT based sensing system to tea aroma	63
2.6	Parameters of PCA	66
2.7	Performance parameters of CAT-based ANN	67
2.8	Confusion matrix of CAT-based classifier.	67
2.9	Sample chamber temperature	70
2.10	Parameters of the HTAAS based sensing system to tea aroma	70
2.11	LCD Pin functions	73
2.12	PCA results of hand-held tea classifier	82
2.13	Performance parameters of handheld tea classifier	83
2.14	Weights and biases for the well trained ANN	84
2.15	Confusion matrix of handheld tea classifier	84
2.16	Repeatability Analysis	86
Chapter I	II	
3.1	Baseline Voltages of the three sensors along with their	108
	corresponding count values	
3.2	Estimate of counter values corresponding to baseline and peak	109
	responses of three gas sensors for four gases	
3.3	Results of PCA	110
3.4	ANN training parameters	111

List of Tables (contd.)

Table no.	Table Caption	Page no.
3.5	ANN performance parameters	112
3.6	Weights and biases of the ANN	112
3.7	Performance of Gas Classification for direct-interface E-Nose	113
3.8	Euclidean intra class distance	116
3.9	Euclidean inter class distance for nADC and ADC	116
3.10	Euclidean inter-intra class distance ratio for nADC and ADC	116
3.11	Class distances of the entire dataset	117
3.12	ANN performance parameters with $n=1, 2$ and 3	117
3.13	Confusion matrix	118
Chapter I	\mathbf{v}	
4.1	Error Compensating Models	129
4.2	Comparison of linearized counter values and voltages	140
4.3	Comparison with state of the art techniques	141
4.4	Euclidean intra class distance	143
4.5	Euclidean inter class distance for nADC and ADC	143
4.6	Euclidean inter-intra class distance ratio for nADC and ADC	144
4.7	Class distances of the entire dataset	145
4.8	ANN Count performance parameters with varying hidden neurons	145
4.9	Confusion matrix showing online performance of (a) ADC, (b) U-	146
	nADC and (c) C-nADC	
4.10	Standard uncertainty of gas concentration (C_n)	151
4.11	Standard uncertainty of α in case of methanol	153
4.12	Standard uncertainty of α in case of acetic acid	153
4.13	Standard uncertainty of α in case of acetone	154
4.14	Standard uncertainty of α in case of 2-Propanol	154
4.15	Uncertainty estimation for sensor parameters with four tested gases	156
4.16	Uncertainty estimation for DIC local parameters for three gas	157
	sensors (TGS 2620, TGS 832, TGS 2201)	
4. 17	Rank of parameters in EUC in V_{RL} measurement	157

List of Figures

Figure no.	Figure Caption	Page no
Chapter I		
1.1	Comparison between human olfaction and E-Nose	4
1.2	Height of the potential barrier on exposure to (a) ambient air, (b)	6
	reducing gas and (c) oxidizing gas	
1.3	Commercial MOS gas sensors with inbuilt heater	6
1.4	Basic MOS gas sensor circuit for TGS 26XX series	7
1.5	Response of MOS gas sensor	7
1.6	Schematic diagram of E-Nose System	9
1.7	Sensor array interfaced to DALs	10
1.8	Direct interface circuits for measurement of (a) resistance, (b)	11
	capacitance and (c) analog voltage	
1.9	Block diagram of various stages of E-Nose system	12
1.10	Tree diagram showing various pattern recognition paradigms	17
1.11	Schematic diagram of (a) biological neuron and (b) analogy of	18
	artificial neuron with a human neuron	
1.12	Example of a Feed forward NN	19
Chapter II		
2.1	CAT based tea classifier (a) block diagram and (b) top	51
	photographic view	
2.2	Sensor Chamber	52
2.3	Designed sample chamber (a) bottle uncapped and (b) bottle	53
	with tea samples capped	
2.4	Halogen lamp assembly (a) halogen bulb holder and (b) halogen	53
	bulb (230 V, 50 W)	
2.5	(a) Diaphragm air pumps and (b) solenoid valve used in the E-	54
	Nose setup	
2.6	Mass flow controller	54
2.7	Relay assembly	55
2.8	Power supply used in the E-Nose	55

2.9	Sensor circuit diagram (left), PCB layout-copper side (middle)	57
	and sensor placed in PBC (right) (a) 2620 (02), (b) 832 and (c)	
	2201	
2.10	Sensor array PCB (copper side)	58
2.11	Relay unit (a) circuit diagram and (b) PCB layout (copper side)	58
2.12	Power supply unit (a) circuit diagram and (b) PCB layout (copper	59
	side)	
2.13	Configuring analog channels in LabVIEW DAQ	60
2.14	LabVIEW control and acquisition setup	61
2.15	An example of responses displayed in LabVIEW front panel (15	61
	MOS gas sensors)	
2.16	Sensors response on exposure to tea samples	63
2.17	Error bar showing the variance in feature set determined from the	64
	response pattern of gas sensors for different grades of tea (a) 0.1,	
	(b) 0.2, (c) 0.8, (d) 2.3 and (e) 2.5	
2.22	ANN model used for tea aroma classification	65
2.23	PCA of the feature dataset	66
2.24	Training performance function with $n = 4$	67
2.25	Schematic diagram showing the µC based E-Nose	68
2.26	Sensor head (sample chamber cap)	69
2.27	Sample cum sensor chamber	69
2.28	Li-Po Battery used in the hand-held system	71
2.29	Keypad used in the hand-held system	72
2.30	LCD used in the hand-held system	74
2.31	PCB to mount sensor array	74
2.32	Power supply PCB of the hand-held system	75
2.33	Microcontroller PCB	75
2.34	Plastic cabinet (a) bare and (b) with components	76
2.35	Photograph of the handheld E-Nose system	76
2.36	Flow diagram of embedded tea classifier	79
2.37	Response pattern to various grades of tea samples (a) TGS 2201,	80-81
	(b) TGS 2620, (c) TGS 832 and (d) TGS 2602	
2.38	a) PCA and (b) SOFM of hand-held feature dataset	81-82

2.39	Training performance of the neural network for (a) $n=2$, (b)	83
	n = 4, (c) $n = 6$ and (d) $n = 8$	
2.40	Repeatability of the tested samples	85
Chapter I	П	
3.1	Direct interfacing of sensor to MCU	92
3.2	Circuit for measurement of V_{IH} and V_{IL}	93
3.3	Discharging circuit model	94
3.4	Charging circuit model	95
3.5	MOS gas sensor array interfaced to the MCU (without amplifier)	99
3.6	MOS gas sensor array interfaced to the MCU (amplifier	100
	included)	
3.7	Algorithm for analog voltage measurement of three gas sensors	101
3.8	Counter value measurement for peak and base when $V_P < V_{IH}$	102
3.9	Counter value measurement for peak and base when $V_P \ge V_{IH}$	102
3.10	Experimental E-Nose setup	104
3.11	Calibration Characteristics of the DIC	105
3.12	Raw sensor responses to (a) Methanol (211.21 ppm), (b) Acetic	106
	Acid (149.26 ppm), (c) Acetone (116.37 ppm) and (d) 2-	
	Propanol (111.75 ppm)	
3.13	Raw and amplified response of to methanol (211.21 ppm)	107
3.14	PCA of the sensor responses (high ppm)	109
3.15	LDA of the sensor responses (high ppm)	110
3.16	Methodology for direct-interface of E-Nose	111
3.17	Performance function with $n = 3$	112
3.18	Raw sensor responses to (a) Methanol (316.82 ppm), (b) Acetic	113-114
	Acid (223.89 ppm), (c) Acetone (174.55 ppm) and (d) 2-	
	Propanol (167.62)	
3.19	PCA of new dataset	114
3.20	LDA of new dataset	115
Chapter I	${f v}$	
4.1	Direct interfacing circuit	125

4.2	Circuit diagram for measurement of R_{OL}	125
4.3	Circuit diagram for measurement of R_{OH}	126
4.4	Characteristics of Ideal ADC and nADC	128
4.5	Error plot before and after error compensation (a) $N < N_0$ and (b)	130
	$N > N_0$	
4.6	Experimental setup of E-Nose	131
4.7	nADC and ADC based measurement Circuit	132
4.8	ANN model	133
4.9	Baseline of TGS 2620 (a) count values and (b) voltage	134
4.10	Baseline of TGS 832 (a) count values and (b) voltage	134
4.11	Baseline of TGS 2201 (a) count values and (b) voltage	135
4.12	Peak of TGS 2620 to methanol (a) count values and (b) voltage	135
4.13	Peak of TGS 832 to methanol (a) count values and (b) voltage	135
4.14	Peak of TGS 2201 to methanol (a) count values and (b) voltage	136
4.15	Peak of TGS 2620 to acetic acid (a) count values and (b) voltage	136
4.16	Peak of TGS 832 to acetic acid (a) count values and (b) voltage	136
4.17	Peak of TGS 2201 to acetic acid (a) count values and (b) voltage	137
4.18	Peak of TGS 2620 to acetone (a) count values and (b) voltage	137
4.19	Peak of TGS 832 to acetone (a) count values and (b) voltage	137
4.20	Peak of TGS 2201 to acetone (a) count values and (b) voltage	138
4.21	Peak of TGS 2620 to 2-propanol (a) count values and (b) voltage	138
4.22	Peak of TGS 832 to 2-propanol (a) count values and (b) voltage	138
4.23	Peak of TGS 2201 to 2-propanol (a) count values and (b) voltage	139
4.24	PCA of (a) U-nADC, (b) C-nADC and (c) ADC based	142
	approaches	

List of Symbols

 α_{ik} Eigenvectors

PC_K Principal component

 W_{ii} Weights

 b_{ij} Biases

 E_{total} Total error

 $f_k'(net_k)$ Slope of the activation function

 D_d Delay to be provided in the program while discharging

 D_C Delay to be provided in the program while charging

 V_{IL} Logic low of microcontroller

 V_{H} Logic high of microcontroller

 V_{DD} Microcontroller supply voltage

 V_{RL} , V_{in} Analog voltage output of the sensor

 $t_{d.max}$ Maximum discharging time

 $t_{c.max}$ Maximum charging time

 V_{CP} Voltage across the capacitor

 N_0 Counter value

 F_0 Frequency of the crystal oscillator

 V_C Supply voltage to the sensor

 V_H Heater voltage of the sensor

 $R_{\rm s}$ Sensor resistance

 R_L Load resistance connected in series with sensor resistance

 R_a Stable sensor resistances when exposed to air

 $R_{_{g}}$ Stable sensor resistances when exposed to gas

 ΔR_{p} Difference between stable sensor resistances when exposed to

air and gas

 V_{R} Stable baseline voltage of the sensors

 V_P Stable peak sensing voltage of the sensors

 C_n Gas concentration in ppm

 V_{gc} Volume of the sensor chamber

 V_{vap} Volume of gas vapor

 D_{liq} Density of liquid

 V_{liq} Volume of liquid

IW{1,1} Weights at input layer

LW{2,1} Weights at hidden layer

LW{3,2} Weights at output layer

bl Biases at input layer

b2 Biases at hidden layer

b3 Biases at output layer

 d_{intra} Euclidean intra-class distance

 d_{inter} Euclidean inter class

 $d_{ratio}(i, j)$ Euclidean inter-intra class distance ratio

 χ^2 Chi-square error

 $U(X_i)$ Standard uncertainty

S Standard deviation

a Half-width between upper and lower limits of uncertainty

Sensitivity

 α Exponent of the power law

List of Abbreviations

MOS Metal Oxide Semiconductor

VOC Volatile Organic Compounds

E-Nose Electronic Nose

CAT Computer Assisted Technology

DI Direct interface

DIC direct interfacing circuit

DAQ data acquisition

MATLAB Matrix Laboratory

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

SOFM Self Organized Feature Map

FFBP Feed Forward Back propagation

ANN Artificial Neural Network

LabVIEW Laboratory Virtual Engineering Workbench

USB Universal Serial Bus

UART Universal asynchronous receiver-transmitter

SAW Surface Acoustic Wave

QCM Quartz Crystal Microbalance

DAL Data Acquisition and Logging

BMU Best Matching Unit

ES Expert Systems

SVM Support Vector Machine

E-Tongue Electronic Tongue

TF Theaflavin
TR Thearubin

RBF Radial Basis Function

PNN Probabilistic Neural Network

SVD Singular Value Decomposition

ADC Analog-to-digital converters

EUC Estimation of Uncertainty Contribution

nADC Non-linear Direct Interfacing based ADC

C-nADC Error Compensated nADC

U-nADC Uncompensated nADC

MFC Mass Flow Controller

PCB Printed Circuit Board

VI Virtual Instrument

LM Levenberg-Marquardt

HTAAS Hand-held Tea Aroma Assessment System

MCU Microcontroller Unit