Chapter 5

Proofs of some conjectures of S.
H. Chan on Appell-Lerch sums

5.1 Introduction

In this chapter we prove some conjectural congruences of S. H. Chan [26] as well
as find some new congruences for the Appell-Lerch sums. Recall from Section 1.8

that a(n) is defined by
> aln)g" == (q),
n=1

where
n+1

i qq2nq

n=0 q;4 n+1

We find the following representation of the generating function of a(10n 4 9).

Theorem 5.1.1. For any nonnegative integer n,

- E5E10 E?O 2 E8
(10n + 9)g" = 5(46 460q 1125¢
;%a n+9)q" gz Vg T ESE;
ESEQ ) E8E15
+ISTS L +156250° 3 ). (5.1.1)

S. H. Chan’s congruence (1.8.1) follows immediately from the above. In this
chapter, we also prove (1.8.2) from the above representation of the generating func-

tion of a(10n + 9). Furthermore, we find the following new congruences:

64



65

For any nonnegative integer n, we have
a(1250n + 2507 + 219) = 0 (mod 125), for r =1,3,4. (5.1.2)

We also prove the conjectural congruences (1.8.7) and (1.8.8) of S. H. Chan [26].
In the next section, we state some preliminary results. In Section 5.3, we prove
Theorem 5.1.1, (1.8.2) and (5.1.2). In the final section, we prove (1.8.7) and (1.8.8).
The contents of this chapter have been accepted for publication in The Ramanu-

jan Journal [17].

5.2 Preliminary results

Let f(a,b) denotes Ramanujan’s general theta function as defined in Section 1.2.

We recall the following identities from [19].

Lemma 5.2.1. (Berndt [19, p. 45, Entry 29])If ab = cd, then
fla,b)f(c,d) + f(—a,=b)f(—c,—d) = 2f(ac,bd) f (ad, bc) (5.2.1)

and

b

Fa,b)f(c.d) — f(—a, —b) f(—c, —d) = 2af (g,aCQd) f (a,acd2> L (5.2.2)

In the next lemma, we state an identity analogous to Jacobi’s identity (2.2.10).

Lemma 5.2.2. (Berndt [20, Corollary 1.3.22]) We have

o0

> B4 1)g (5.2.3)

n=—0oo

EYE;
Ey

5.3 Proofs of Theorem 5.1.1 and (5.1.2)

Proof of Theorem 5.1.1. From [26, Eq. (5.1)], we have

> _aln+1)g" =22,

n=0 1
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which, with the aid of (2.2.6) and (2.2.7), may be simplified as

> _ E3Ey EiE]
2 1 2 5 10
nZ:Oa n + E2E5 + E5E2
EZ  EY E%, E%,
o) 45 5
(E1 +qE2E§> + o4 <E2E53 T
E? E5 B8
= 55 gt | 952 0
B e T BE

Employing (1.4.2) in the above, extracting the terms involving ¢°"**, dividing both
sides of the resulting identity by ¢*, and then replacing ¢° by ¢, we find that

ia 10n + 9)q
n=0

E5 E E8E15 E8E15 q2
=5 30¢—2- + 1775¢> 4495—25_( R(q)® —
5 g, pr Ty ( " Rl
ESEY 7
225225 [ R()0+ ——— |. 5.3.1
T ( 0 +R<q>w> o3

By (3.2.2), the above can be simplified to

oo E5 E5 ESE3 8E9 8
S a(10n +9)q" = 5(E4 + O+ 45— Lrg” + 18TS g + 15625¢° 2225 )
n=0

Employing (2.2.6) in the above, we arrive at
Jo

fj 10n +9) 5(E§E§E1° +5 By +45ESE3 + 1875¢
a(10n =
vt )a" Jo5; qu’:EQ B0 E16

E8E15
+15625¢° 3 ).

With the aid of (2.2.7), the above can be rewritten in the form

> E3E2E, FEiEF4 E3E2E, E?
10 9) " — 5(45 o L5 5g2 10 o vy 5 10
Za( n+9)q ( E + 5¢ ES + £ + quEg

n=

E8E9 E8E15
1875 156254 )
+ q El + E122
FL 2 £, B3, Jo%)
:5(46( 10 4 5, ) 5 995 ( 10
B2 e T qE3E2+ NE3E,
8 ESEQ E8E15
1875 15625225 )
+ q B0 + q B2 )’

L5 )
qE6E5
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which is equivalent to (5.1.1).
As corollaries to the above theorem, we now deduce the congruences in (1.8.2)

originally conjectured by S. H. Chan in [26] and the new congruences in (5.1.2).
Corollary 5.3.1. The congruences in (1.8.2) hold true.

Proof. Taking congruences modulo 5 in (5.1.1) and using (2.4.2), we see that

> a(10n +9)¢" =5 x 46 EsEyoE3 (mod 25),

n=0

which can be rewritten with the aid of (2.2.10) as

> a(10n +9)¢" =5 x 46 EsEyg Yy _(—1)"(2k + 1)¢***V (mod 25).
n=0 k=0

As k(k+1)=0, 1, or 2 (mod 5), equating the coefficients of ¢°**", r = 3,4 from
both sides of the above, we easily arrive at the last two congruences of (1.8.2).
Furthermore, we note that k(k+ 1) =1 (mod 5) only when k& = 2 (mod 5), that is,
only when 2k + 1 = 0 (mod 5). Therefore, equating the coefficients of ¢°"*! from
both sides of the above we arrive at the other congruence of (1.8.2), to complete the

proof. O
Corollary 5.3.2. The congruences in (5.1.2) hold true.

Proof. From (5.1.1), we have

5

= E5E?
> a(10n+9)g" =5 x 46 ( 210 4 10q

> I EQ) (mod 125). (5.3.2)

n=0

Now, let [¢*"T"]{F(q)}, r = 0,1,...,4 denotes the terms after extracting the

Sn+r

terms involving ¢ , dividing by ¢" and then replacing ¢° by g.

With the aid of (1.4.2), we have

E-E? E,EY 4
5n+1 54710 15710 3 2\5 q
= 15 10g ( R —
[q } { E% } Ezlo ( T q( (@) R(‘12)5)> ’
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which, by (3.2.2), implies

E5E} E\E} E\Ef
] § 2108 = 10g—— 20 + 125¢3 2. 5.3.3
e Tt g e 039

Again, by (2.2.5) and (1.4.2), we obtain

E5
Sn+1
[q } {10 E3E2}
_ [ 5n+1] § E_55 . E5E120
1 o\ Er T E2

20 6

() (055

E1E118 2\5 q o B3 5 ¢
-t ) —
+ 5¢ D0 R(q%) Rq3) +920¢° EP R(q) RqF

3 20 10
+% (1015ﬁ—15 o ).

Employing (3.2.2), and then simplifying by using the identities in Lemma 2.2.2, we
find that

E5
Sn+1
[q } {10(] E3E2 }

L' EY, L' EY, » ETEq s EYEL
= 10( rge + 10 s + 50500 g + 1018250 py
E E15 EIS
1068125¢* =22 4+ 7042500¢° ——2
* TErEs T ! B EVES
21 24
+ 79000000¢" _Ew
ﬂﬁﬂ ﬂ@@
i i

+ 298000004°

+ 120000000¢"

Invoking (5.3.3) and (5.3.4) in (5.3.2), we obtain

> E14E3 E1E4
50n + 19)¢" = 5% x 92 1 10 10 d 125
Za n+ X < E215E5 + q Eé (mo ))

n=0

which, by (2.4.2) reduces to

NE

E2
a(50n + 19)¢" = 5% x 92 (55 + quEQEfo) (mod 125).
1

i
o
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Employing once again (1.4.2) in the above, extracting the terms involving ¢*"™,

dividing both sides by ¢*, and then replacing ¢° by ¢, we arrive at

WE

a(250n + 219)¢" = 5% x 92 EsEoE3 (mod 125).

3
Il
o

Employing (2.2.10) in the above and then proceeding as in the proof of the previous

corollary, we conclude that
a(250(5n +r) + 219) = 0 (mod 125), for r =1,3,4.
Thus, we complete the proof of (5.1.2). O

Remark 5.3.3. Proceeding as in the proof of Theorem 5.1.1, we may obtain the
exact generating function of a(50n + 19), but the calculations and expressions are
too lengthy and tedious even if we use Mathematica. Therefore, we decided not to

include that lengthy generating function of a(50n + 19).

5.4 Proofs of (1.8.7) and (1.8.8)

In this section, we prove the congruences (1.8.7) and (1.8.8) originally conjectured
by S. H. Chan [26].
At first, setting k =5 and j = 1 and 3 in [60, Eq. (2.7)], we have

4i a1 10(n)g" = (—4:9")% (=" )% Bl ,Eno D)
= (4;4'°)%,(¢%; ¢'°) % E3, B3y &= 1+¢'"
and
4ia3 w(n)g" = (=% ¢")2 (=4 4% By B 2E10 o0 M
= (€% ¢')2%.(¢7; ¢*°) 2 E5y g, 2 1+q0v
respectively.

In view of (1.2.3), we can rewrite the above identities as

- f2<Q7 QQ)E?O 2
4 E "= —2A 5.4.1
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and

_ A d)E,
f2(=¢* —q") Ex

4 "az10(n)q" —2A(4%), (5.4.2)

where
> 5n(n+1)/2

L Es q

10 p=—oo

Proof of (1.8.7). To prove (1.8.7), first we aim to find a generating function of
ai10(2n + 1). For that purpose, we need to find a 2-dissection of the first term of
the right side of (5.4.1). To that end, we recast (5.4.1) as

A=, ) (=, —qT) B

By Jacobi triple product identity, (1.2.3), we have

13wl = S GDPCCOED oy (54
n=0

(¢:*)=ELy  EVEY

f=a,~")f(=¢’,—4¢") = T~ Bl (5.4.4)
and hence, (5.4.3) reduces to
o0 E2E2
4 no_ 25 2 9 2¢ 3 7 _2A 2
n§:0 a1,10(n)q —EwaEgof (¢,4")f*(=¢",—q") (¢%)
E, 80(_95) 2 9\ £2 3 7 2
=—=r" I, )" (=q°,—q")) — 2A(q"), 5.4.5
i A (P P D) 2@, (545)

where (1.2.1) is used to arrive at the last equality.
Now, setting a = ¢, b = ¢°, ¢ = —¢3, and d = —¢" in (5.2.1) and (5.2.2), and
then adding, we find that
@, (=%, —d") = f(=a", ="V F(—=¢", —a**) + af (—°, —¢") F (=%, —4'®).
(5.4.6)

But, by Jacobi triple product identity, (1.2.3), we have
f(=a,—a")f(—=¢*,~¢*) = E1Es.

Using the above identity and (5.4.4) in (5.4.6), we see that

E,Eyy

4, ) f(—=¢*,—q") = EsEs + ¢
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Therefore, (5.4.5) can be rewritten as

d n E2 @(—qs) E2E6 E2E4
4) arn(n)g" = B o(—g) EiE3 +q EQE%S + 2@17020 —2A(¢%).

(5.4.7)
Replacing ¢ by —¢ in the above, and then subtracting the resulting identity from
(5.4.7), we find that

1 i ay10(n)q" — 4i ar10(n)(—
E2 (E2E§O nEO%ESo) (@(—q5) B @(q5)) ey 125 <s0(—q5) +s0(q5))‘
v

T Eh EiER ) \w(=a)  ¢(q) Ew \ ¢(—=q)  ¢lq)
With the aid of the trivial identity p(q)¢(—q) = ¢*(—q¢*) = E3/E?, we can rewrite

the above as

4 Z a1,10(n)q" — 4 Z a1,10(n)(—
n=0 n=0

Engo (E2E§o %%22) ((@)e(=a") = o(=a)¢(a”))
+ 2 (ola)ol ") + A-0)ole”). (5.48)

Now, recall from [19, p. 278] that
P(@)p(=a°) — o(—a)2(q”) = 4gE1Exo.
Furthermore, from Entries 25(i) and 25(ii) of [19, p. 40], it is easy to show that
p(0)o(=¢") + o(=a)(a”) = 20(q")p(q™) — 84"V (@) (™).

Therefore, (5.4.8) becomes

43 "ario(n)g" —4) " ario(n)(—
n=0 n=0

ES

_ 4
qu”Eg0

, F2ES, E?
(B2 + P ) + 20 (260a)ola™) — S 600 la")

Extracting the terms involving ¢?"*! from both sides of the above, dividing by ¢,
and then replacing ¢* by ¢, we find that

2 Z 0,1710(271 + ].)qn
n=0
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_ B (g BB B 00 (g ee®)
E3E3 \ T2 22 E2FE;

E12 EZE?O E22 2 10 3 4 20
— 1y |
7t N + BE, (e(@®)e(q") — 4¢*v(q* )Y (¢™))

where we have used (2.2.7) to arrive at the last equality.

Now, to prove (1.8.7), we see from the above that it is enough to show that the
coefficients of ¢°**2

of the terms on the right side of the above are multiples of 5.
We accomplish this in the remaining part of the proof.

With the aid of (1.4.1) and (1.4.2), we find that
E? E,E3
sn+2] J 21 2L
™) {55 T B }
ES | (E2ESEw

2 2 2
q R(g)*  R(¢)

o () i) -2 (s
Employing (2.2.2) and (2.2.4) in the above, and then simplifying by using (2.2.5),
we obtain

E? E,E3 E? Ey,Es5E3
5n+4-2 1 210 5 255570
— =5— —_ 4.1
lq }{E5+6qE1E§} R (5.4.10)
Next, by (2.4.2), we have
125 oy 10y _ 10y Pd
B, AP) = e g
_ Baop(q")

3 13
2o EVES (mod 5),
which, with the aid of Jacobi’s identity, (2.2.10), can be written as
125 2\ (10
BF, p(a)elg”)

(5.4.11)
We now observe that j(j + 1)/2 + 4k(k + 1) = 2 (mod 5) only when j = 2 (mod 5)

and k& = 2 (mod 5); i.e., only when both 2j + 1 and 2k + 1 are multiples of 5.
Therefore, from (5.4.11), we find that

[q5”+2] {% gp(q2)4p(q10)} =0 (mod 5). (5.4.12)
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Finally, by (1.2.2) and (2.4.2), we have

2
3E2

. 5 E3ES
E?E;

V(g(®) = 7B E; ¥(g™)

_ ¢(q20) 3 E%Eg
E52 El . T4 (mod 5)7

which can be rewritten, with the help of (2.2.10) and (5.2.3), as

3 E% 4 20

q E2E5 (g )Y(q™)

= Z Z (27 + 1)(3k + 1)U tD/2HREADES (104 5). (5.4.13)
7=0 k=—00

We observe that j(j +1)/2 + 2k(3k + 1) +3 = 2 (mod 5) only when j = 2 (mod 5)
and k& = 3 (mod 5); i.e., only when both 2j + 1 and 3k + 1 are multiples of 5.

Therefore, from (5.4.13), we arrive at
2 125 A\ (2
%) { ot 0a0006™) | =0 (mod 5) (5.4.14)
1+5
With the aid of (5.4.10), (5.4.12) and (5.4.14), we conclude from (5.4.9) that
a1,10(10n 4+ 5) = 0 (mod 5).
Thus, we complete the proof of (1.8.7).

Proof of (1.8.8). We can recast (5.4.2) as

- n f2( 37 7)f2(_ ) Q)Eir’ 2
4Za3,10<n)q = f2(—23,q—q7)f2(q—q,q—q9)EOéO - 2A(q )7

Proceeding exactly in the same way as in the proof of (1.8.7), we find that

23 asnol2n + V" = 2 g2 B B oo0) aguigele®).
215 B, UEE? T BE;

We notice that the right side of the above is almost the same as that of (5.4.9)

except a negative sign. Hence, (1.8.8) can be deduced as in the previous case.
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