
Chapter 1

Introduction

In this thesis, we find several new exact generating functions and congruences

for various partition functions by using dissections of q-products, Ramanujan’s theta

function identities and some identities for the Rogers-Ramanujan continued fraction.

Several of these functions are related to Ramanujan/Watson mock theta functions.

The thesis comprises of five chapters including this introductory chapter. In this

chapter, we present some background material and a brief outline of the work in the

subsequent chapters of the thesis.

1.1 The partition function and Ramanujan’s par-

tition congruences

A partition π = (π1, π2, . . . , πk) of a nonnegative integer n is a finite sequence

of non-increasing positive integers (called parts) π1, π2, . . . , πk such that π1 + π2 +

· · ·+ πk = n.

The partition function p(n) is defined as the number of partitions of n. For

example, p(5)=7, since there are seven partitions of 5, namely,

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1, 1), and (1, 1, 1, 1, 1).

By convention, p(0) = 1. The generating function for p(n), due to Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
, (1.1.1)

1
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where, for any complex number a and q, with |q| < 1, we define

(a; q)0 := 1,

(a; q)n :=
n−1∏
k=0

(1− aqk), n ≥ 1

and

(a; q)∞ := lim
n→∞

(a; q)n.

In the sequel, for any positive integer j, we use

Ej := (qj; qj)∞

and

(a1, a2, . . . , ak; q)∞ := (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

Ramanujan [61], found nice congruence properties for p(n) modulo 5, 7 and 11,

namely, for any nonnegative integer n,

p(5n+ 4) ≡ 0 (mod 5), (1.1.2)

p(7n+ 5) ≡ 0 (mod 7) (1.1.3)

and

p(11n+ 6) ≡ 0 (mod 11).

He also found the exact generating functions of p(5n+4) and p(7n+5) as given

below:

∞∑
n=0

p(5n+ 4)qn = 5
E5

5

E6
1

(1.1.4)

and

∞∑
n=0

p(7n+ 5)qn = 7
E3

7

E4
1

+ 49q
E7

7

E8
1

, (1.1.5)
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which immediately imply (1.1.2) and (1.1.3), respectively. It can also be shown from

the above generating functions that

p(25n+ 24) ≡ 0 (mod 25) (1.1.6)

and

p(49n+ 47) ≡ 0 (mod 49),

which were known to Ramanujan [62, p. 139 and p. 144] (See also [21]).

In 1939, Zuckerman [73] found the generating functions of p(25n+24), p(49n+47)

and p(13n+ 6) analogous to (1.1.4) and (1.1.5). In particular, he showed that

∞∑
n=0

p(25n+ 24)qn =63× 52
E6

5

E7
1

+ 52× 55q
E12

5

E13
1

+ 63× 57q2
E18

5

E19
1

+ 6× 510q3
E24

5

E25
1

+ 512q4
E30

5

E31
1

, (1.1.7)

which readily shows (1.1.6).

In [61], Ramanujan also offered a more general conjecture for congruences of

p(n) modulo arbitrary powers of 5, 7 and 11. In particular, if α ≥ 1 and if δα is the

reciprocal modulo 5α of 24, then

p(5αn+ δα) ≡ 0 (mod 5α).

In his unpublished manuscript [62, pp. 240 – 241] (See also [21]), Ramanujan gave a

proof of the above. Hirschhorn and Hunt [47] gave an elementary proof of the above

by finding the generating function of p(5αn+ δα).

Since our proofs of the results mainly rely on various properties of Ramanujan’s

theta functions, some identities for the Rogers-Ramanujan continued fraction and

dissections of certain q-products, we now introduce these topics.

1.2 Ramanujan’s theta functions

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=
∞∑

k=−∞

ak(k+1)/2bk(k−1)/2, |ab| < 1.



4

We have the following two useful cases:

φ(−q) := f(−q,−q) =
∞∑

j=−∞

(−1)jqj
2

= (q; q2)2∞(q2; q2)∞ =
E2

1

E2

(1.2.1)

and

ψ(q) := f(q, q3) =
∞∑
j=0

qj(j+1)/2 =
(q2; q2)∞
(q; q2)∞

=
E2

2

E1

, (1.2.2)

where the product representations arise from Jacobi’s famous triple product identity

[19, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.2.3)

We refer to Berndt’s book [19] for various properties satisfied by f(a, b).

1.3 The Rogers-Ramanujan continued fraction

For |q| < 1, the famous Rogers-Ramanujan continued fraction R(q) is defined by

R(q) :=
q1/5

1
+
q

1 +

q2

1 +

q3

1 + · · · .

In [63], Rogers proved that this continued fraction has the q-product representation

R(q) = q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

We refer to Andrews and Berndt’s book [4] for many diversified results on R(q).

1.4 t-dissection

If P (q) denotes a power series in q, then a t-dissection of P (q) is given by

[P (q)]t−dissection =
t−1∑
k=0

qkPk(q
t),

where Pk’s are power series in qt. For example, the 5-dissections of E1, 1/E1 and

φ(−q) are given by

E1 = E25

(
R(q5)− q − q2

R(q5)

)
, (1.4.1)
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1

E1

=
E5

25

E6
5

(
R(q5)4 + qR(q5)3 + 2q2R(q5)2 + 3q3R(q5) + 5q4 − 3q5

R(q5)
+

2q6

R(q5)2

− q7

R(q5)3
+

q8

R(q5)4

)
(1.4.2)

and

φ(−q) = E2
1

E2

=
E2

25

E50

− 2q(q15, q35, q50; q50)∞ + 2q4(q5, q45, q50; q50)∞, (1.4.3)

where R(q) = q1/5/R(q). For a proof of the above, we refer to Berndt’s books [19,

p. 40] and [20, p. 165].

In the remaining part of this chapter, we give a brief outline of the work done in

this thesis.

1.5 Partitions into distinct parts

Let Q(n) denote the number of partitions of n into distinct parts. For exam-

ple, Q(5) = 3 since there are three partitions of 5 into distinct parts, namely,

(5), (4, 1) and (3, 2). One of Euler’s famous results on partitions is that the number

of partitions of n into distinct parts is equinumerous to the number of partitions

of n into odd parts. Note that there are also three partitions of 5 into odd parts,

namely, (5), (3, 1, 1) and (1, 1, 1, 1, 1). The generating function for Q(n) is given by

∞∑
n=0

Q(n)qn = (−q; q)∞.

Equivalently, by Euler’s result,

∞∑
n=0

Q(n)qn =
1

(q; q2)∞
. (1.5.1)

In [64], Rödseth found the following infinite family of congruences modulo powers

of 5 for Q(n):

If γj =
25[(j+1)/2] − 1

24
, then for any nonnegative integer n,

Q
(
52j+1n+ γ2j+1

)
≡ 0 (mod 5j). (1.5.2)
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By using the theory of modular forms and Hecke operators, Lovejoy [55, 56]

found some more infinite families of congruences modulo powers of 5 for Q(n). In

particular, we recall from [56, Theorem 4] that, for r = 1, 3, 4 and for all nonnegative

integers n,

Q
(
52j+1n+ γ2j + r52j

)
≡ 0 (mod 5j). (1.5.3)

This is (1.5.2) when r = 1.

When j = 1 in (1.5.2), we have

Q (125n+ 26) ≡ 0 (mod 5). (1.5.4)

In the second chapter of our thesis, we find the exact generating functions of

Q(5n+ 1), Q(25n+ 1) and Q(125n+ 26) that are analogous to (1.1.4) and (1.1.5).

Our generating function representation for Q(125n+26) immediately implies (1.5.4).

In our proofs, we employ Ramanujan’s simple theta function identities and some

identities involving R(q) and R(q2), where R(q) is as defined in the previous section.

We also deduce the cases j = 1 and j = 2 of (1.5.2) and some other congruences.

1.6 Partition functions related to mock theta func-

tions

In his last letter to Hardy [22, pp. 220–223] Ramanujan defines 17 functions and

calls them as mock theta functions. The discovery of Ramanujan’s lost notebook in

1976 by G.E. Andrews brought to light that Ramanujan recorded many more results

on these functions. Since then, these functions have been studied quite intensively.

For details, we refer to Andrews and Berndt’s recent book [5] and the references

therein.

Recently, partition-theoretic interpretations of mock theta functions have been

the subject of prominent study. Garthwaite [38] showed the existence of infinitely

many congruences for the third order mock theta function

ω(q) :=
∞∑
n=0

q2n
2+2n

(q; q2)2n+1

=
∞∑
n=0

aω(n)q
n. (1.6.1)
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However, the first explicit congruences were given by Waldherr [66]:

aω(40n+ 27) ≡ aω(40n+ 35) ≡ 0 (mod 5). (1.6.2)

Recently, Andrews, Dixit and Yee [8] introduced partition functions associated

with ω(q) and ν(q), where the latter one is a third-order mock theta function,

ν(q) :=
∞∑
n=0

qn(n+1)

(−q; q2)n+1

.

It is worthwhile to note that ω(q) and ν(q) are related by [37, p. 62, Eq. (26.88)]:

ν(−q) = qω(q2) +
E3

4

E2
2

.

Let pω(n) denote the number of partitions of n in which each odd part is less than

twice the smallest part and let pν(n) denote the number of partitions of n in which

the parts are distinct and all odd parts are less than twice the smallest part. It was

shown by Andrews, Dixit and Yee [8] that

∞∑
n=1

pω(n)q
n = qω(q) (1.6.3)

and

∞∑
n=1

pν(n)q
n = ν(−q).

By (1.6.1) and (1.6.3), it is clear that pω(n) = aω(n − 1), and hence, Waldherr’s

congruences (1.6.2) can be recast as

pω(40n+ 28) ≡ pω(40n+ 36) ≡ 0 (mod 5). (1.6.4)

Andrews, Passary, Sellers and Yee [12] found an elementary proof of the above

congruences. They also proved several congruences modulo 2 and infinite families of

congruences modulo 4 and modulo 8 for pω(n) and pν(n). Motivated by the works in

[8, 12], Wang [67] and Cui, Gu and Hao [34] found many new congruences satisfied

by pω(n) and pν(n) modulo 11 and modulo powers of 2 and 3. In particular, Wang

[67] derived the following exact generating functions:

∞∑
n=0

pν(2n)q
n =

E3
2

E2
1
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and

∞∑
n=0

pω(8n+ 4)qn = 4
E10

2

E9
1

. (1.6.5)

In fact, the first identity was proved earlier by Hirschhorn and Sellers [48, Eq.

(9)] while proving some results for the so-called 1-shell totally symmetric plane

partitions, first introduced by Blecher [23]. It is to be noted that

pν(2n) = f(6n+ 1), (1.6.6)

where f(n) counts the number of 1-shell totally symmetric plane partitions of n.

We refer to [23] and [48] for definition and further details. Xia [70] proved that

∞∑
n=0

f(30n+ 25)qn =
∞∑
n=0

pν(10n+ 8)qn = 5
E2

2E
2
5E10

E4
1

, (1.6.7)

which is the exact generating function of pν(10n+8), and from which the congruence

(1.6.12) below, proved by Andrews, Dixit and Yee [8], follows immediately. Xia [70]

also proved that

f(750n+ 625) ≡ 0 (mod 25),

which is clearly equivalent to

pν(250n+ 208) ≡ 0 (mod 25). (1.6.8)

In the third chapter of our thesis, we find exact representations of the generating

functions of pν(50n+ 8) and pω(40n+ 12), and deduce several congruences.

The smallest parts function spt(n), counting the total number of appearances

of the smallest parts in all partitions of n, was introduced by Andrews [3], and

the function has received great attention since its introduction. For example, see

[6, 9, 25, 36, 39, 51, 52, 53].

Andrews, Dixit and Yee [8] studied the associated smallest parts functions sptω(n)

and sptν(n), which count the number of smallest parts in the partitions enumerated
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by pω(n) and pν(n), respectively. Of course, sptν(n) = pν(n). They proved the

congruences

sptω(5n+ 3) ≡ 0 (mod 5), (1.6.9)

sptω(10n+ 7) ≡ 0 (mod 5), (1.6.10)

sptω(10n+ 9) ≡ 0 (mod 5) (1.6.11)

and

sptν(10n+ 8) = pν(10n+ 8) ≡ 0 (mod 5), (1.6.12)

where the first congruence was also established by Garvan and Jennings-Shaffer

[41]. In fact, Garvan and Jennings-Shaffer [41] introduced a crank-type function that

explains the congruence (1.6.9). The asymptotic behavior of that crank function was

studied by Jang and Kim [50]. As mentioned earlier, (1.6.12) immediately follows

from (1.6.7), a fact not possibly noticed by the authors of [8]. In [7], Andrews,

Dixit, Schultz and Yee studied the overpartition analogue of pω(n), namely, pω(n),

which counts the number of overpartitions of n such that all odd parts are less than

twice the smallest part and in which the smallest part is always overlined. They also

studied sptω(n), the number of smallest parts in the overpartitions of n in which the

smallest part is always overlined and all odd parts are less than twice the smallest

part. They found several congruences modulo 2, 3, 4, 5 and 6 for pω(n) and sptω(n).

They [7, Problem 1] also raised the question of relating the generating function

of pω(n) to modular forms. Recently, the question was answered in affirmative by

Bringmann, Jennings-Shaffer and Mahlburg [24].

Recently, Wang [67] and Cui, Gu and Hao [34] also found many new congruences

satisfied by pω(n), sptω(n) and sptω(n) modulo powers of 2 and 3. In particular,

Wang [67] derived the following exact generating functions:

∞∑
n=0

sptω(2n+ 1)qn =
E8

2

E5
1

(1.6.13)
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and

∞∑
n=0

sptω(2n+ 1)qn =
E9

2

E6
1

. (1.6.14)

We note that congruences (1.6.10) and (1.6.11) and the congruence

sptω (10n+ 3) ≡ 0 (mod 5), (1.6.15)

can be easily deduced from (1.6.13).

Wang [67] offered the following interesting conjecture.

Conjecture 1.6.1. For any integers k ≥ 1 and n ≥ 0,

sptω

(
2 · 52k−1n+

7 · 52k−1 + 1

12

)
≡ 0 (mod 52k−1)

and

sptω

(
2 · 52kn+

11 · 52k + 1

12

)
≡ 0 (mod 52k).

The cases k = 1 and 2 of the above congruences are (1.6.15),

sptω (50n+ 23) ≡ 0 (mod 52), (1.6.16)

sptω (250n+ 73) ≡ 0 (mod 53) (1.6.17)

and

sptω (1250n+ 573) ≡ 0 (mod 54). (1.6.18)

In the third chapter of our thesis, we find the exact generating functions of

sptω (10n+ 3) and sptω (50n+ 23) and deduce some new congruences.

There are several congruences for sptω(n) modulo 11 and powers of 2 and 3

(For example, see [7, 34, 67]). But for modulo 5, to our knowledge, the following

congruence, found by Andrews, Dixit, Schultz and Yee [7], is the only available one:

sptω (10n+ 6) ≡ 0 (mod 5).
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In the third chapter, we present the exact generating function of sptω (10n+ 5)

and easily deduce congruences (1.6.15), (1.6.16), and infinite families of congruences.

In the same chapter, we also find exact generating function and new congruences

for the coefficients of the following second order mock theta function of Andrews [2]:

η(q) :=
∑
n≥0

qn(n−1(−q2; q2)n
(q; q2)2n+1

=
∞∑
n=0

qn(−q; q2)n
(q; q2)n+1

.

In this chapter also we employ identities involving R(q) and R(q2).

1.7 Partition identities and congruences by using

relations involving R(q), R(q3) and R(q4)

In Chapter 4, we use identities involving R(q), R(q3) and R(q4) to find generating

functions and congruences modulo 5 for some partition functions.

Let p3(n) denote the number of 2-color partitions of n where one of the colors

appears only in parts that are multiples of 3. For example, p3(6) = 16, where the

relevant partitions are (6), (6′), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 3′), (3′, 3′), (3, 2, 1),

(3′, 2, 1), (3, 1, 1, 1), (3′, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1).

Clearly, the generating function for p3(n) is given by

∞∑
n=0

p3(n)q
n =

1

E1E3

.

In [1], Ahmed, Baruah and Dastidar proved that

p3(25n+ 21) ≡ 0 (mod 5). (1.7.1)

In Chapter 4 of our thesis, we find the exact generating function for p3(5n + 1)

and deduce (1.7.1) as well as the congruence

∞∑
n=0

p3(25n+ 21)qn ≡ 10

(
E25

E2
1E3

+ q2
E75

E1E2
3

)
(mod 25).

In [72], Zhang and Shi studied the sixth order mock theta function β(q), defined

by

β(q) :=
∞∑
n=0

q3n
2+3n+1

(q; q3)n+1(q2; q3)n+1

.
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In particular, for pβ(n), defined by

β(q) =:
∞∑
n=0

pβ(n)q
n,

they proved that

∞∑
n=0

pβ(3n+ 1)qn =
E3

3

E2
1

and

∞∑
n=0

pβ(9n+ 5)qn = 3
E6

3

E5
1

.

They also found the following congruences modulo 5:

pβ(15n+ 7) ≡ 0 (mod 5),

pβ(45n+ 23) ≡ 0 (mod 15)

and

pβ(45n+ 41) ≡ 0 (mod 15).

In our work, we also deduce the above congruences by finding the generating function

representations involving R(q) and R(q3).

A partition of a positive integer n is said to be 4-regular if none of its parts is

divisible by 4. For example, (5, 3, 2, 2, 1) is a 4-regular partition of 13 as none of its

parts is divisible by 4.

If b4(n) denotes the number of 4-regular partitions of n, then the generating

function for b4(n) is given by

∞∑
n=0

b4(n)q
n =

E4

E1

,

where b4(0) = 1.

Since
E4

E1

=
(−q2; q2)∞
(q; q2)∞

,
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it is clear that

b4(n) = ped(n),

where ped(n) counts the number of partitions of n wherein the even parts are distinct

(and the odd parts are unrestricted). Arithmetical properties and many interest-

ing congruences modulo 2, 3, 4, 6, 8 and 12 for ped(n) were found by Andrews,

Hirschhorn and Sellers [11], Chen [28], Cui and Gu [33], Hirschhorn and Sellers [49],

Xia [69] and Merca [57].

In Chapter 4, we prove the following new generating function representation for

b4(5n+ 3), equivalently, for ped(5n+ 3), by employing relations involving R(q) and

R(q4).

∞∑
n=0

b4(5n+ 3)qn = 3
E2

2E
6
10

E5
1E4E2

20

+ q
E4

2E
5
5E

3
20

E6
1E

2
4E

4
10

+ 4q2
E3

2E10E
3
20

E5
1E

2
4

.

Similar technique can be used to find generating function representations of some

other partition functions. We present with an example involving a4(n), the number

of 4-core partitions of n. A t-core partition and at(n), the number of t-core partitions

of n, are defined below.

The Ferrers-Young diagram of a partition π = (π1, π2, . . . , πk) of n is an array of

left-aligned nodes with πi nodes in the ith row. Let π′
j denote the number of nodes

in column j in the Ferrers-Young diagram of π. The hook number of the (i, j) node

in the Ferrers-Young diagram of π is denoted by H(i, j) := πi + π′
j − i − j + 1. A

partition of n is called a t-core partition (or simply a t-core) if none of the hook

numbers is a multiple of t. For example, the Ferrers-Young diagram of the partition

π = (5, 2, 1) is given by:

• • • • •
• •
•

The nodes (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2) and (3, 1) have hook numbers

7, 5, 3, 2, 1, 3, 1 and 1 respectively. Therefore π is a 4-core. Obviously, it is a t-core

for t ≥ 8.
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If at(n) denotes the number of partitions of n that are t-cores, then the generating

function for at(n) is given by [40, Eq.(2.1)]

∞∑
n=0

at(n)q
n =

Et
t

E1

.

In particular, if a4(n) denotes the number 4-core partitions of n, then

∞∑
n=0

a4(n)q
n =

E4
4

E1

.

In Chapter 4, we present a new generating function representation for a4(5n).

1.8 Conjectural congruences of S. H. Chan on

Appell-Lerch sums

Let x, z ∈ C∗ with neither z nor xz an integral power of q. Following the

definition given by Hickerson and Mortenson in [44, Definition 1.1], an Appell-Lerch

sum m(x, q, z) is a series of the form

m(x, q, z) :=
1

(q, q/z, q; q)∞

∞∑
r=−∞

(−1)n+1qn(n+1)/2zn+1

1− xzqn
.

These sums were first studied in the nineteenth century by Appell [13, 14, 15] and

then by Lerch [54]. But, in recent years, there has been considerable work on these

sums and their connections to mock theta functions. We refer to [10, 26, 44, 45, 58,

59, 66, 74] for the details.

In his lost notebook [62, pp. 2, 4, 13, 17], Ramanujan recorded seven mock

theta functions and eleven identities involving them. Andrews and Hickerson [10]

proved these eleven identities and called the seven functions sixth order mock theta

functions. Three of the sixth order mock theta functions are

ρ(q) :=
∞∑
n=0

(−q; q)nqn(n+1)/2

(q; q2)n+1

,

µ(q) :=
∞∑
n=0

(−1)n(q; q2)nq
(n+1)2

(−q; q)2n+1
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and

λ(q) :=
∞∑
n=0

(−1)n(q; q2)nq
n

(−q; q)n
.

On page 3 of his lost notebook [62], Ramanujan defines the function

ϕ(q) :=
∞∑
n=0

(−q; q)2nqn+1

(q; q2)2n+1

,

and then states that

ρ(q) = 2q−1ϕ(q3) +
(q2; q2)2∞(−q3; q3)∞
(q; q2)2∞(q3; q3)∞

.

Choi [32] proved two analogous identities involving ϕ and the two functions µ and

λ. The function ϕ(q) was also studied by Hikami [46].

Now, let
∑∞

n=1 a(n)q
n := ϕ(q). S. H. Chan [26] proved several congruences for

the coefficients a(n) of the function ϕ modulo 2, 3, 4, 5, 7, and 27. In particular, S.

H. Chan [26] proved the congruence

a(10n+ 9) ≡ 0 (mod 5) (1.8.1)

and conjectured ([26, Conjecture 7.1]) that, for any nonnegative integer n,

a(50n+ 19) ≡ a(50n+ 39) ≡ a(50n+ 49) ≡ 0 (mod 25). (1.8.2)

In the fifth and final chapter of our thesis, we find the exact generating function

of a(10n+9) analogous to (1.1.4) and deduce the above congruences. Furthermore,

we find the following new congruences:

For any nonnegative integer n, we have

a(1250n+ 250r + 219) ≡ 0 (mod 125), for r = 1, 3, 4.

In [26], S. H. Chan studied some other functions similar to ϕ and found congru-

ences for them. In particular, he considered, for any integer p ≥ 2 and 1 ≤ j ≤ p−1

with p and j coprime, the Appell-Lerch sum

∞∑
n=0

aj,p(n)q
n =

1

(qj, qp−j, qp; qp)∞

∞∑
n=−∞

(−1)nqpn(n+1)/2+jn+j

1− qpn+j
,
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and proved that

∞∑
n=0

aj,p(pn+ (p− j)j)qn = p
E4

p

(qj, qp−j; qp)2∞E
3
1

,

which readily implies the congruence

aj,p(pn+ (p− j)j) ≡ 0 (mod p).

It is to be noted that 2a(n) = a1,2(n).

In [27], S. H. Chan and Mao gave a generalization of aj,p.

S. H. Chan [26, Conjecture 7.1] also presented the following conjectural congru-

ences:

a1,6(2n) ≡ 0 (mod 2), (1.8.3)

a1,10(2n) ≡ a3,10(2n) ≡ 0 (mod 2), (1.8.4)

a1,6(6n+ 3) ≡ 0 (mod 3), (1.8.5)

a1,3(5n+ 3) ≡ a1,3(5n+ 4) ≡ 0 (mod 5), (1.8.6)

a1,10(10n+ 5) ≡ 0 (mod 5) (1.8.7)

and

a3,10(10n+ 5) ≡ 0 (mod 5). (1.8.8)

Recently, Qu, Wang, and Yao [60] proved (1.8.3) and (1.8.4) by finding the

following general congruence:

If j and k are positive integers with 1 ≤ j ≤ k − 1 and j odd, then for any

nonnegative integer n,

aj,2k(2n) ≡ 0 (mod 2).

They also proved (1.8.5) by finding the following identity analogous to (1.1.4):

∞∑
n=0

a1,6(6n+ 3)qn = 3
E3

2E
5
3

E6
1E6

.

Congruences in (1.8.6) were proved by Ding and Xia [35].

In Chapter 5, we prove the remaining conjectural congruences (1.8.7) and (1.8.8)

of S. H. Chan [26].
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