Bibliography

[1] Adansie, P., Chern, S., Xia, E. X. W. New infinite families of congruences for the number of tagged parts over partitions with designated summands. International Journal of Number Theory, 14:1935-1942, 2018.
[2] Adiga, C., Cooper, S. and Han, J. H. A general relation between sums of squares and sums of triangular numbers. International Journal of Number Theory, 1:175-182, 2005.
[3] Alaca, A. Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9. Acta Arithmetica, 136:151-166, 2009.
[4] Alaca, A. Representations by quaternary quadratic forms whose coefficients are 1, 4, 9 and 36. Journal of Number Theory, 131:2192-2218, 2011.
[5] Alaca, A., Alaca, Ş, Lemire, M. F. and Williams, K. S. Nineteen quaternary quadratic forms. Acta Arithmetica, 130:277-310, 2007.
[6] Alaca, A., Alaca, Ş, Lemire, M. F. and Williams, K. S. Jacobi's identity and representations of integers by certain quaternary quadratic forms. International Journal of Modern Mathematics, 2:143-176, 2007.
[7] Alaca, A., Alaca, Ş, Lemire, M. F. and Williams, K. S. Theta function identities and representations by certain quaternary quadratic forms II. International Mathematical Forum, 3:539-579, 2008.
[8] Alaca, A., Alaca, Ş, Lemire, M. F. and Williams, K. S. Theta function identities and representations by certain quaternary quadratic forms. International Journal of Number Theory, 4:219-239, 2008.
[9] Alaca, A., Alaca, Ş, Lemire, M. F. and Williams, K. S. The number of representa tions of a positive integer by certain quaternary quadratic forms. International Journal of Number Theory, 5:13-40, 2009.
[10] Alladi, K and Gordon, B. Vanishing Coefficients in the Expansion of Products of Rogers-Ramanujan Type. In The Rademacher Legacy in Mathematics(University Park, PA, 1992), Contemporary Mathematics, 166:129139,(American Mathematical Society, Providence, RI, 1994).
[11] Andrews, G. E and Bressoud, D. Vanishing coefficients in infinite product expansions. Journal of the Australian Mathematical Society, Series A, 27:199-202, 1979.
[12] Andrews, G.E., Lewis, R.P. and Lovejoy, J. Partitions with designated summands. Acta Arithmetica, 105:51-66, 2002.
[13] Baruah, N. D and Begum, N. M. Exact generating functions for the number of partitions into distinct parts. International Journal of Number Theory, 14:19952011, 2018.
[14] Baruah, N. D and Berndt, B. C. Partition identities and Ramanujans modular equations. Journal of Combinatorial Theory Series A, 114:1024-1045, 2007.
[15] Baruah, N. D., Cooper, S. and Hirschhorn, M. Sums of squares and sums of triangular numbers induced by partitions of 8. International Journal of Number Theory, 4:525-538, 2008.
[16] Baruah, N. D. and Kaur, M. New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands. The Ramanujan Journal, https://doi.org/10.1007/s11139-018-0112-x, 2018.
[17] Baruah, N. D., Kaur, M., Kim, M. and Oh, B. K. Proofs of some conjectures of Z. -H. Sun on relations between sums of squares and sums of triangular numbers. Indian Journal of Pure and Applied Mathematics, to appear.
[18] Baruah, N. D. and Kaur, M. Resolution of some conjectures posed by Zhi-Hong Sun on relations between sums of squares and sums of triangular numbers. Submitted.
[19] Baruah, N. D. and Kaur, M. Some new results on vanishing coefficients in infinite product expansions. The Ramanujan Journal, https://doi.org/10.1007/s11139-019-00172-x, 2019.
[20] Baruah, N. D. and Ojah, K. K. Partitions with designated summands in which all parts are odd. Integers, 15:\#A9, 16 pp., 2015.
[21] Berndt, B. C. Ramanujan's Notebooks, Part III. Springer, New York, 1991.
[22] Berndt, B. C., Choi, G., Choi, Y. -S., Hahn, H., Yeap, B. P., Yee, A. J., Yesilyurt, H. and Yi, J. Ramanujan's forty identities for the Rogers-Ramanujan functions. Memoirs of the American Mathematical Society, 188:no. 880, vi+96 pp, 2007.
[23] Cao, Z. Integer matrix exact covering systems and product identities for theta functions. International Mathematics Research Notices, 19:4471-4514, 2011.
[24] Chen, W. Y. C., Ji, K. Q., Jin, H.-T. and Shen, E.Y.Y. On the number of partitions with designated summands. Journal of Number Theory, 133:29292938, 2013.
[25] Cooper, S. On the number of representations of integers by certain quadratic forms. Bulletin of the Australian Mathematical Society, 78:129-140, 2008.
[26] Cooper, S. On the number of representations of integers by certain quadratic forms, II. Journal of Combinatorics and Number Theory, 1:153-182, 2009.
[27] Hirschhorn, M. D. The power of q : A Personal Journey. Developments in Mathematics, 49. Springer, Cham, 2017.
[28] Hirschhorn, M. D. Two remarkable q-series expansions. The Ramanujan Journal, https://doi.org/10.1007/ s11139-018-0016-9, 2018.
[29] Hirschhorn, M. D., Garvan, F. and Borwein, J. Cubic analogs of the Jacobian cubic theta function $\theta(z, q)$. Canadian Journal of Mathematics, 45:673-694, 1993.
[30] Kim, M. and Oh, B. -K. The number of representations by a ternary sum of triangular numbers. Journal of the Korean Mathematical Society, 56:67-80, 2019.
[31] Lin, B. L. S. The number of tagged parts over the partitions with designated summands. Journal of Number Theory, 184:216-234, 2018.
[32] Mc Laughlin, J. Further results on vanishing coefficients in infinite product expansions, Journal of the Australian Mathematical Society, Series A, 98:6977, 2015.
[33] Richmond, B. and Szekeres, G. The Taylor coefficients of certain infinite products. Acta Scientiarum Mathematicarum (Szeged), 40:347-369, 1978.
[34] Sun, Z. -H. Some relations between $t(a ; b ; c ; d ; n)$ and $N(a ; b ; c ; d ; n)$. Acta Arithmetica, 175:169-189, 2016.
[35] Sun, Z. -H. Ramanujan's theta functions and sums of triangular numbers. International Journal of Number Theory, https://doi.org/10.1142/ S1793042119500520, 2018.
[36] Tang, D. Vanishing coefficients in some q-series expansions. International Journal of Number Theory, 15:763-773, 2019.
[37] Wang, M. and Sun, Z. -H. On the number of representations of n as a linear combination of four triangular numbers. International Journal of Number Theory, 12:1641-1662, 2016.
[38] Wang, M. and Sun, Z. -H. On the number of representations of n as a linear combination of four triangular numbers II. International Journal of Number Theory, 13:593-617, 2017.
[39] Williams, K. S. $n=\triangle+\triangle+2(\triangle+\triangle)$. Far East Journal of Mathematical Sciences, 11:233-240, 2003.
[40] Williams, K. S. On the representations of a positive integer by the forms $x^{2}+y^{2}+$ $z^{2}+2 t^{2}$ and $x^{2}+2 y^{2}+2 z^{2}+2 t^{2}$. International Journal of Modern Mathematics, 3:225-230, 2008.
[41] Williams, K. S. Number Theory in the Spirit of Liouville. Cambridge University Press, New York, 2011.
[42] Xia, E. X. W. Arithmetic properties of partitions with designated summands. Journal of Number Theory, 159:160-175, 2016.
[43] Xia, E. X. W and Yan, Z. Proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers. International Journal of Number Theory, 15:189-212, 2019.
[44] Xia, E. X. W. and Zhong, Z. X. Proofs of some conjectures of Sun on the relations between $N(a, b, c, d ; n)$ and $t(a, b, c, d ; n)$. Journal of Mathematical Analysis and Applications, 463:1-18, 2018.
[45] Yao, O. X. M. The relations between $N(a, b, c, d ; n)$ and $t(a, b, c, d, n)$ and (p, k) parametrization of theta functions. Journal of Mathematical Analysis and Applications, 453:125-143, 2017.
[46] Yao, O. X. M. Generalizations of some conjectures of Sun on the relations between $N(a, b, c, d ; n)$ and $t(a, b, c, d, n)$. The Ramanujan Journal, 48:639-654, 2019.
[47] Yao, O. X. M. and Xia, E. X. W. New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions. Journal of Number Theory, 133:1932-1949, 2013.

